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Silver nanoparticles, which are appreciated due to their increased antibacterial, catalytic and
conductive functions, are commonly employed in medical kits, cloths, cosmetics, and water filters,
but their release through wastewater, biosolids, and runoff is highly dangerous as there is no
regulation of their emission and transformation, such as sulfidation, aggregation, and dissolution. In
soil ecosystems, AgNPs react with pH, redox conditions, organic matter, and clay, and sulfidation to
AgS causes short-term bioavailability to decrease but increases persistence; they disrupt microbial
communities, inhibit nitrogen-fixing bacteria (e.g., Rhizobium), mycorrhizal fungi, and enzyme
activities, decrease soil fertility, nutrient cycling, and plant-microbe symbiosis and cause oxidative
stress in earthworms. Aquatic systems facilitate AgNP disaggregation, sedimentation, and ion release
driven by organic matter and ions and cause toxicity at all trophic levels: algae experience the
inhibition of photosynthesis and ROS damage, zooplankton feeding problems, and fish experience
bioaccumulation, neurotoxicity and reproductive problems. Ag" ion release leading to protein/DNA
damage, Oxidative stress due to ROS, membrane peroxidation, quorum sensing disruption and
systemic changes in stress, detoxification and metabolism pathways confirmed by omics is a subset
of the toxicity mechanisms. Though the water body information is plentiful, soil research is still very
limited; gaps still exist in long-term low dose field effects and co-contamination. The research in the
future recommends mesocosm/field testing, model dynamic transformation, and the safer design of
nanoparticles to guide the risk analysis and sustainable management.

KEYWORDS: Silver nanoparticles; Environmental fate; Ecotoxicology; Aquatic ecosystems; Soil
ecosystems.

1. INTRODUCTION

Nanotechnology has enabled the production of

management (Sharma et al., 2019). Despite the rapid
expansion of AgNP production due to the expanding
consumer market for nano-enabled products,

nanoparticles of silver (AgNPs) that exhibit enhanced
physical, chemical, and biological characteristics that
exceed those of bulk silver (Wang et al., 2018). Nano-
sized materials are used to enhance catalytic activity,
antibacterial properties, and electrical conduction, thereby
expanding their applications in medical kits, antimicrobial
protection, wound dressings, textiles, water filters,
cosmetics, and packaging materials (Ghobashy et al.,
2021). These applications utilize the microbial membrane-
disrupting properties of AgNPs against microbial cells,
making them invaluable in infection control and hygiene

environmental risk assessments and regulatory measures
have not kept pace (Khan et al., 2023). Therefore, although
the usefulness remains unquestionable, widespread,
unregulated use of AgNPs requires a simultaneous
assessment of their ecological and long-term
environmental consequences (Dang et al., 2021).

AgNPs enter the environment mainly via wastewater
discharge, leaching out of landfills, and the surface runoff
of agricultural soils treated with nano-enabled
agrochemicals (Dodds et al., 2021). Once liberated, silver
nanoparticles are too small to settle due to their colloidal
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nature and may remain suspended in water bodies or
within permeable soil matrices, where they may undergo
intricate transformation processes (Leon-Silva et al.,
2016). Research indicated that traditional wastewater
treatment  facilities cannot effectively eliminate
nanoparticles, leading to their buildup in sewage sludge or
release into natural water sources (McGee, 2020). AgNPs
present in bio solids are often used as fertilizers in
agricultural environments, where they have direct contact
with soil biota/crops (Arienzo & Ferrara, 2022; Asad et al.,
2025).

Once in environmental compartments, AgNPs do not
remain chemically stable; their properties are altered due
to pH, redox potential, organic matter, and ionic strength
(Khan & Akram, 2020). Nanoparticle contamination is a
major concern for soil ecosystems, which are microbial
diverse systems, and are indispensable to global nutrient
cycling (Tangaa et al., 2016). AgNPs exposure may also
inhibit symbiosis plant-microbe by inhibiting nitrogen-
fixing bacteria and mycorrhizal fungi (Rajput et al., 2020).
Research has reported a lowering of enzymatic activity,
low microbial respiration, and changes in the turnover of
carbon and nitrogen in the soil after exposure to AgNP .
Such disturbances reduce not only the fertility of the soil
but also above-ground productivity and biodiversity
(Jahan et al., 2017). Additionally, plant roots can absorb
and transfer AgNPs to plant tissues above ground, where
they may proceed into the food chain may causing further
damage to herbivores and even human beings (Du et al.,
2018). Species that are detritivores, such as earthworms,
are key in soil aeration and decomposition of organic
matter, and evidence has been found that there are
oxidative stress, stunted growth, and reproductive
abnormalities in these organisms when they ingest AgNPs,
thus indicating larger repercussions at the population level
(Kalantzi et al., 2019).
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Figure 1: Summary of the industrial uses, the
environmental exposure pathways, and biological hazards
of AgNPs.

AgNPs in soil undergo sulfidation, aggregation, and
complexation with organic matter, which affect microbial
activity, plant health, and nutrient cycling. By contrast,
aquatic systems facilitate dissolution, photoreduction, and
ion release, which contribute to oxidative stress and
bioaccumulation and can alter aquatic food webs.
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Although data on aquatic toxicology are sufficient, studies
on soil are relatively narrow in scope and duration. It is
essential to recognize that transformation pathways and
vulnerabilities to the ecological environment vary between
these settings, underscoring the necessity to tailor risk
assessment to each specific situation and adopt sustainable
methods for nanoparticle management (Padhye et al.,
2023).

PRISMA-Guided Systematic Review:

An extensive and systematic literature review was
done according to the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA)
(https://prisma-statement.org/)  protocol to provide
methodological soundness and transparency. The search
protocol targeted three of the largest academic databases,
Web of Science (https://www.webofscience.com/),
Scopus  (https://www.scopus.com/), and PubMed
(https://pubchem.ncbi.nlm.nih.gov/), to identify as many
inter-disciplinary investigations as possible on the
environmental fate of AgNPs. Research works that
focused on environmental exposure pathways, trophic
relationships, bacterial responses, and toxicological effects
in non-human beings were given a higher priority
(Kurwadkar et al., 2015). Articles were, in turn, not
included when they paid attention to medical applications,
synthetic protocols, or in vitro mammalian toxicology, and
did not carry the ecological element. The removal of
duplicate records and non-peer-reviewed (opinion pieces,
conference abstracts, etc.) sources were also provided
through additional filtering (Buffet et al., 2014). By using
these criteria of inclusion and exclusion, 162 peer-
reviewed articles published between the years 2010 and
2025 were found appropriate to be subject to a deeper level
of analysis. The combination of these studies covers a
variety of geographic areas, experimental geometry, and
environmental conditions, which provides a solid
background on assessing trends in pattern AgNP
transformation, exposure pathways, and ecological risk
exposure in terrestrial and aquatic environments (Akhter et
al.,2024).

Ag NPs Environmental Fate:

AgNPs' fate in the environment depends on their size,
surface coatings, and shape, and exogenous environmental
factors, including pH, redox conditions, ionic strengths,
and organic matter contents (Li et al., 2020). In the
environment, AgNPs have been shown to exhibit dynamic
transformations involving aggregation, dissolution to Ag+
ions, sulfidation, and complexation with natural ligands
(Furtado et al., 2015). AgNPs persist in soil, affecting
microbes and nutrient cycling, while in water, they remain
bioavailable and toxic to aquatic life. While soil acts as a
terminal sink, aquatic systems remain continuously
polluted because wastewater treatment cannot fully
remove AgNPs (Zhang et al., 2019).

AgNP in Soil Ecosystems:

AgNPs interact dynamically in soils, influenced by
factors like pH, redox potential, organic matter, cation
exchange capacity, and texture. Introduced via biosolids,
agricultural inputs, or leachate, AgNPs can undergo
sulfidation in sulfur-rich or anoxic environments, forming
Ag.S (Eivazi & Afrasiabi, 2018). Moreover, AgNPs
34
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spontaneously aggregate with clay minerals and become
bound to humic and fulvic acids, which contribute to the
surface adsorption of AgNPs, mostly at the topsoil roll
(Griin et al., 2019). However, changes in pH, rainfall, or
flooding can release AgNPs or ions, enabling vertical
movement into subsoil, particularly in coarse-textured
soils like sandy loams (Yang et al., 2017).

In addition to their geochemical activity, AgNPs
produce a dramatic impact on the biological activity of soil
microbiota and plant-microbe interaction (Kulikova,
2021). Oxidative dissolving of AgNPs leads to the
liberation of silver ions (Ag'"), which is an extremely
active form that inhibits crucial essential activities in the
beneficial soil organisms (Peyrot et al., 2014). The effects
of Ag* can be particularly toxic to nitrogen-fixing bacteria
like Rhizobium and Azotobacter, with the presence of Ag*
shown to affect colony-forming units, activity of
associated enzymes (e.g., nitrogenize), and symbiotic root
nodulation (Cao ef al., 2017). Such disruptions not only
decrease nitrogen availability to plants, but also undermine
larger soil fertility and ecosystem services (de Oca-
Vasquez., et al., 2020). Moreover, AgNPs exposure has
been known to decrease microbial carbon biomass and
phosphatase  responses, another way to express
deteriorating microbial-mediated nutrient cycling (Zhang
et al., 2020). Therefore, transformation processes can lead
to changes in AgNP mobility, but the concomitant
formation of detrimental species of silver introduces an
ongoing ecological risk to the landscape food webs and
crop production continuity (Lépez-Mondéjar et al., 2020).

Figure 2 illustrates. AgNPs in soils undergo
sulfidation to form Ag.S, reducing short-term
bioavailability while increasing long-term persistence
(Zhang et al., 2020).
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Figure 2: Diagrammatic representation of
transformation, mobility, and the effect of AgNP in the
soil ecosystem with important connections to soil
components and microbial communities.
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Aquatic Environments:

Aquatic environment forms a highly heterogeneous
and chemically active environment where the fate and
behavior of AgNPs are determined via a wide-ranging
transformation ~ mechanism. AgNPs are usually
disaggregated in freshwater because of their interaction
with divalent cations and natural organic matter, and such
contacts decrease colloidal stability (Ellis e al.,2016). The
results of this aggregation frequently sediment out of the
water column and are laid down in sediments, particularly
in lakes and slow-flowing rivers (Ottoni ef al., 2020).

Figure 3 shows how AgNPs interact with dissolved
organic carbon in water, leading to aggregation,
agglomeration, and sedimentation, particularly in
freshwater bodies (Sohn et al., 2015).
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Figure 3: Major environmental routes, conversions, and
fate of silver nanoparticles (AgNPs) in waters, which
determined dissolved organic matter, chloride ions, and
sulfides.

Ecotoxicological Impacts:

AgNPs exert ecotoxicological effects on several
trophic levels through the destabilization of physiologic
and biochemical mechanisms of affected organisms (Noga
et al., 2023). Their small, reactive particles enter cells,
causing oxidative stress, membrane damage, enzyme
inhibition, and genotoxicity (Singh et al., 2022). AgNPs

disrupt nutrient cycling, plant-microbe interactions, and
microbial biomass by impairing nitrogen fixation and
other key soil enzyme activities (Tonczyk et al., 2025).
AgNPs and Ag" disrupt algal photosynthesis, alter
zooplankton feeding, and bioaccumulate in fish, causing
inflammation, neurotoxicity, and reproductive failure
(Aslam et al., 2024).

Organisms in soil:

Soil invertebrates, such as earthworms (Eisenia
fetida) and springtails (Folsomia candida), are key
bioindicators of soil health (Courtois, 2020).
Environmentally relevant doses of AgNPs reduce growth,
reproduction, and alter behavior (Oktarina, 2017). AgNPs
enter soil invertebrates via integument penetration or
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ingestion, localizing in gut tissues and disrupting
physiology (He et al, 2016). They induce ROS
production, causing oxidative stress, mitochondrial
dysfunction, DNA damage, and protein impairment. In
earthworms, this leads to gut epithelial disruption and lipid
peroxidation (Griin ef al., 2017).

In addition to the invertebrates, AgNPs, notably, the
plant-root interaction microbes, also affect the beneficial
microorganisms in the soil negatively. Mycorrhizal fungi,
which aid the uptake of water and nutrients, and
rhizobacteria, which aid in nitrogen fixation and the
production of phytohormones, are very sensitive to
exposure to nanoparticles (Tortella et al., 2020). The
presence of AgNPs is especially highlighted in a multi-
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tiered ecotoxicological effect on soil biota, as shown in
Figure 4.

Figure 4: Mechanistic diagram of the effects of AgNP on
soil organisms, including effects on invertebrates,
mycorrhizal fungi, rhizobacteria, and microbial
community.

Aquatic life:

Aquatic  organisms  exhibit a  pronounced
susceptibility to the toxic effects of AgNPs, with toxicity
pathways strongly influenced by particle size,
concentration, and the mode of exposure (Chaachouay et
al.,2024). Chlorella vulgaris and similar algae are primary
producers in aquatic systems, making them among the first
things to be exposed to AgNPs (Kusi & Maier, 2022).

Exposed AgNPs adsorb to the algal cell surface, or
cell wall, into which they enter, interfering with
chloroplast action and thylakoid membrane integrity. This
leads to the reduction of chlorophyll levels and a
malfunction of photosystem II, with such a detrimental
effect on photosynthetic efficiency (Lapresta-Fernandez et
al., 2012; Al Sulivany et al.,2025). Reactive oxygen
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species (ROS) generation increases cellular stress in algae,
leading to oxidative damage and reduced photosynthetic
efficiency, thus weakening the aquatic food (Kwok et al.,
2012). Additionally, nanoparticle surface coatings such as
citrate, polyethylene glycol, or polyvinylpyrrolidone
strongly influence AgNP dissolution and cellular uptake,
modulating algal toxicity (Kang et al., 2023).

Figure 5 presents the specific organism adverse
pathways that occur because of the AgNP exposure to the
aquatic life.
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Figure 5: AgNP Toxicity mechanisms in aquatic biota

approaches, representation in a schematic view with the

point of defining organism-specific impacts, as well as
the effects of particle size and surface chemistry.

Mechanisms of Toxicity:

The fundamental AgNP cellular toxicity mechanisms
can be described using Figure 6. Ag” release interferes with
the structure of the protein and causes DNA to fragment,
and the production of ROS causes oxidative stress and
pervasive damage to the cell (De Matteis et al., 2015).
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Figure 6: Mechanism of toxicity

Table 1: escribing the main ways in which AgNPs have cell toxicity, like, release of ions, the production of ROS, the
disruption of membranes, and the disruption of microbes.

Mechanism Title Description Blol.ogl.cal Ref.
Implications
AgNPs undergo partial dissolution under oxidative or ..

. 2 . . s . . Genotoxicity,

Ag' Ion Release acidic conditions, releasing Ag* ions. These ions bind . . . .
. R . . . ) . . impaired protein (De Matteis

Causing Protein and  to thiol groups in cysteine-rich proteins, leading to function. apoptosis etal., 2015)
DNA Damage denaturation, and interact with DNA, causing strand » 4pop ’ ”

and mutation risk
breaks. v
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ROS Generation and
Ocxidative Stress

AgNPs catalyze the formation of ROS such as
superoxide, hydrogen peroxide,
radicals. These overwhelm cellular antioxidants,
leading to lipid peroxidation, protein oxidation, and
mitochondrial dysfunction.

Redox imbalance,

and hydroxyl inflammation, (Flores-
mitochondrial Lopez et al.,
damage, chronic 2019)
toxicity

AgNPs adhere to phospholipid membranes,

Membrz!ne . disrupting their structure. Lipid peroxidation leads to Cell lysis, 1mp aired .
Interaction Causing e . homeostasis, (Paciorek et
. . S membrane destabilization, ion leakage, and osmotic . .
Lipid Peroxidation . . . . . necrosis, or apoptosis  al., 2020)
imbalance, often triggering necrotic or apoptotic cell . .. "
and Leakage 1nitiation
death.
Disruption of AgNPs. disrupt bac‘Ferlal _communication by Suppressed microbial
. . degrading or Dblocking signaling molecules, S ) (Gomez-
Microbial Quorum ; . . . activity, biofilm
. suppressing biofilm formation and gene expression. . . ...~ . Gomez et
Sensing and e . . inhibition, nutrient
. Ag" ions inhibit key enzymes involved in energy and al., 2019)
Enzymatic Pathways . . cycle collapse
nitrogen metabolism.
. . . Whole-
Omics studies reveal widespread gene oreanism
Omics-Based expression changes linked to stress, detoxification, ganis;
. . . . . . dysfunction, (Abdelkader
Evidence of Systemic and inflammation. Proteomics and metabolomics
prolonged stress et al., 2023)

Disruption

confirm disruption in cytoskeletal proteins and
energy/lipid metabolism.

responses, impaired

metabolic regulation

Ag ions leaking into Cells, resulting in Damage to
Proteins and DNA:

Silver ions (Ag") release due to one of the most basic
mechanisms of AgNP toxicity has highly characteristic
biochemical activities AgNPs can also easily transform
into a partial dissolution form to release Ag‘-agents,
especially in oxidation conditions or acidic environments.
The effects of silver ion (Ag") infiltration into cells are
illustrated in Figure 7. Once inside, Ag' binds to thiol-
containing proteins and nucleic acids, disrupting their
structural integrity (Li ef al., 2017).

Damage to

Proteins
(e &
<

Damage
to DNA

Figure 7: Oxidative stress is linked to intracellular
Ag+ infiltration, which damages proteins and DNA as
presented.

Reactive Oxygen Species production and oxidative
stress:

It is also known that AgNPs can catalyze the
generation of ROS, including superoxide radicals,
hydrogen peroxide, and hydroxyl radicals. This occurs by
redox cycling at the nanoparticle surface or as secondary
responses of cells to Ag+. The production of ROS throws
the intercellular redox balance out of control and
overburdens antioxidant countermeasures like glutathione,

DOI: https.//doi.org/10.25271/sjuoz.2026.14.1.1838

superoxide dismutase, and catalase (Saini et al., 2016).
This leads to widespread cellular damage due to oxidative
stress, such as the peroxidation of lipids, carbonylation of
proteins, and oxidative changes in nucleic acids (He,
2013).

Interaction of AgNPs with Cell Membranes leading to
Lipid Peroxidation and Loss of Membrane Integrity:

Another important mechanism of AgNPs is direct
interactions with cell membranes. Due to their small size
and high surface area, AgNPs readily interact with
phospholipid membranes, increasing permeability and
losing selective ion gradients (Ahmed et al., 2018;
Paciorek et al., 2020). These interactions promote lipid
peroxidation and membrane destabilization, leading to
osmotic imbalance, enzyme inhibition, and ultimately
necrotic or apoptotic cell death (Nayak et al., 2016). The
interaction of nanoparticles or reactive oxygen species
with the lipid bilayer of the cell membrane induces
peroxidation of the lipid (Figure 8).

Lipid
peroxidation

GRRRRRANRY SR
SY ”

Leakage

Interaction

Figure 8: Lipid peroxidation produces disruption
of the cell membranes, resulting in structural damage and
intracellular leakage.
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Influence on Bacterial quorum sensing and enzymatic
pathways:

AgNPs also affect metabolism and intercellular
communication, besides compromising the cellular
structure in the microbial system (Awadelkareem et al.,
2023). The chemical communication chain known as
quorum sensing (QS), through which bacteria synchronize
group behavior like biofilm production, aggressiveness,
and sharing of resources, is highly susceptible to the
interference of AgNP (Shah et al., 2019). AgNPs may have
the ability to suppress QS-controlled gene expression by
breaking down signal molecules (e.g., acyl homoserine
lactones) or attaching to receptor sites (Wolska et al.,
2017). Furthermore, the presence of released Ag+ ions into
the nanoparticles distorts important enzyme reactions,
including the ATP production process, nitrogen fixation
(e.g., nitrogenase activity), and dehydrogenase activity
(Qadeer et al., 2024). The effect of this disturbance
ultimately reduces bacterial growth and survival (Khusro
etal., 2023).

Figure 9 reveals the spatial and functional division in
bacterial cells between quorum-sensing mechanisms and
enzymatic pathways (Peixoto et al., 2022).

Quorum

Enzymatic
Sensing

Pathways

Figure 9: The division of quorum-sensing
processes and enzymatic processes means that the
behavior and metabolism of bacteria can be carefully
regulated.

Evidence of Systemic Disruption by Omics:

Recent developments in high-throughput omics
technologies like transcriptomics, proteomics, and
metabolomics have offered molecular-scale insights into
systems-level responses of organisms to AgNPs exposure
(Aragoneses-Cazorla et al., 2022). Research indicates that
transcriptome profiles are altered, involving oxidative
stress reactions, metal detoxification (e.g.,
metallothioneins), inflammation, and apoptotic signaling
pathways (Anh et al., 2023). As an example, upregulation
of stress-related genes (HSP70, GPX) could reflect
successful efforts in adapting cells, whereas
downregulation of genes related to mitochondrial
respiration and cell division reflects intrinsic toxicity
(Gavin, 2016). The proteomic studies demonstrate that the
expression of cytoskeleton and membrane proteins has
changed, whereas in the metabolomics, alterations were
observed in amino acid, lipid, and energy metabolism (Qi

DOI: https.//doi.org/10.25271/sjuoz.2026.14.1.1838
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etal., 2024). Such multiple-layered perturbations highlight
a systemic cellular response to AgNP exposure, indicating
that the toxicity is not limited to a few specific pathways
but coordinated stress response in a biological system as a
whole (Li et al., 2024).

The combined study of omics layers, genomics,
transcriptomics, proteomics, and metabolomics is offered
in Figure 10 to identify systemic biological perturbations
(Andrejevié et al., 2023).

Transcriptomic

‘ Proteomics

Figure 10: Multi-omics levels unmask systemic
molecular perturbations in terms of their genomic,
transcriptomic, proteomic, and metabolomic aspects.

Future Research Directions:

To fill research gaps, AgNP studies should extend
beyond the lab to mesocosm and field experiments, which
simulate natural conditions and capture ecological
interactions such as microbial responses, nutrient cycling,
and trophic effect (Shaikh ez al., 2021). Such extensive
validation plans will not only prove the environmental
applicability of the previous results but will also help in
elaborating regulatory guidance and risk assessment
methods, which are based on the ecological reality (Jangid
et al., 2024). AgNPs is the examination of nanoparticle
transformation processes occurring under the variable
environmental conditions, particularly to the variation of
redox potential, seasonal changes, and microbial activity
(Xiao et al., 2019). In dynamic ecosystems, AgNPs rarely
remain in their original form; they continuously undergo
oxidation, sulfidation, aggregation, or corona formation,
often driven by microbial activity or environmental factors
such as temperature fluctuations and photoperiod changes
(Rajkuberan et al., 2015). AgNP transformations can alter
surface charge, reactivity, and bioavailability, affecting
toxicity and environmental persistence (Chutrakulwong et
al., 2024; Vivekanandhan et al., 2012). Laboratory
microcosms combined with omics tools can clarify these
changes and guide safer-by-design strategies (Yadav &
Sahu, 2024).

CONCLUSION

AgNPs significantly impact both soil and aquatic
ecosystems due to their small size, high surface activity,
and ion release. They disrupt microbial diversity and
enzyme functionality critical for nutrient cycling, affecting
soil fertility and plant health. AgNP longevity is
influenced by their interactions with soil components,
which affect their mobility and bioavailability. In aquatic
environments, AgNPs cause oxidative stress and alter
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trophic relationships, with toxicity often linked to the
release of Ag+ ions. Bioaccumulation raises concerns for
long-term ecosystem health, especially in nutrient-rich or
slow-flowing waters. Current research reveals knowledge
gaps related to long-term low-concentration exposure and
interactions with co-contaminants, while most studies
focus on short-term, single-species models. Lack of
standardized methodologies hampers comparison and risk
assessment efforts. Future approaches should combine
laboratory, mesocosm, and field studies, utilizing
advanced modeling and omics technologies to enhance
understanding of AgNP effects, alongside prioritizing
environmentally friendly synthesis and design strategies.
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