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ABSTRACT: 

Numerical solution of the well-known Bagley-Torvik equation is considered. The Bagley-Torvik equation is transformed into a 

system of first-order ordinary differential equations using the infinite series of integer-order derivatives expansion. The 

approximation of fractional-order derivative and the order of the truncated error are illustrated through some examples. Comparison 

between our result and exact solution are made by considering some examples of initial value problems for Bagley-Torvik equation 

with known analytical solutions to show the preciseness of our proposed approach. 

KEYWORDS: Bagley-Torvik Equation, Riemann–Liouville Fractional Integral and Derivative, Numerical Solution, Infinite 

Series of Integer-Order Derivative Expansion. 

1. INTRODUCTION 

The present of fractional-order derivative in differential 

equations, ordinary and partial, has recently increased and the 

mathematical formulation of many applications ended up 

with fractional (non-integer) order of derivatives or integrals. 

Partial differential equations with space\time fractional-order 

derivative appear in the investigation of transport dynamics 

in complex systems (Metzler & Klafter, 2000). Also (Barkai, 

Metzler, & Klafter, 2000) used the fractional Fokker–Planck 

equation for anomalous diffusion in an external field and 

(Henry & Wearne, 2000) introduced the fractional advection 

diffusion equation for anomalous diffusion with sources and 

sinks. As to Ordinary Differential Equations (ODEs), the 

Bagley-Torvik equation (1) which governs some problems in 

applied science applications and engineering. This second 

order differential equation contains also a term with 3/2-

order derivative and it describes the plate, which is 

considered to be rigid, immersing in viscous Newtonian 

fluid. The Bagley-Torvik equation which contains a 1/2-

order derivative, for a damped oscillator describes its 

decaying motion. See (Torvik & Bagley, 1983) and (Torvik 

& Bagley, 1984).  

For more fractional-order differential equations one can see 

the following. (Hilfer, 2000) for thermodynamics; (Benson, 

Wheatcraft & Meerschaert, 2000) for fractional advection 

dispersion equation; (Rousan, Malkawi, Rabei & Widyan, 

2002) for some physical systems in gravity; (Chatterjee, 

2005) for viscous fluid flows; (Bhrawy, Doha, Baleanu, Ezz-

Eldien & Abdelkawy, 2015) for control problems; (Battaglia, 

2002) for problems in heat conduction and etc.  

In this paper we study the numerical solution of the Bagley-

Torvik equation which has the following form 

 

 
  𝑎1

𝑑2𝑦(𝑡)

𝑑𝑡2 + 𝑎2

𝑑3/2𝑦(𝑡)

𝑑𝑡3/2
+ 𝑎3𝑦(𝑡) = 𝑔(𝑡). (1) 

 

Equation (1) represents the motion of a large plate (thin and 

rigid) in a Newtonian fluid (Torvik & Bagley, 1984). In 

equation (1)  𝑎1 ≠ 0,  𝑎2 and  𝑎3 are real constants, where  𝑎1 

represents the mass of the plate, 𝑎2 = 2𝑎√𝜇𝜌, with 𝑎 is area 

of the part of the rigid plate immersed in the fluid, with 𝜇 is 

the viscosity of the fluid, and 𝜌 is its density, and 𝑎3 is the 

stiffness of the spring, (Podlubny, 1999), and 𝑔(𝑡) is any analytic 

function defined on the interval [0, 𝑇], 𝑇 > 0. The equation (1) is 

supplemented with initial conditions  

 

                                          𝑦|𝑡=0 = 0,                                  (2) 

and 

 

                                         
𝑑𝑦

𝑑𝑡
|𝑡=0 = 0.                                  (3) 

 

The discussion on existence and uniqueness of the solution to the 

problem (1-3) is presented by (Luchko & Gorenflo, 1998), 

therefore we do not go into these matters in the present study. 

As the problem (1-3) contains fractional-order derivative and due 

to the fact that the analytical solutions of such problems do not 

always exist and have a complicated form. Therefore, the 

solution to the initial-value problem (1-3) has developed recently 

by many researchers. In the following we try to mention some of 

the contributions which have been made for this particular 

problem.  

Analytically a solution to the initial-value problem (1-3) is 

introduced by Podlubny, (Podlubny, 1999), in terms of Green’s 

function expressed as an infinite sum of derivatives of Mittag-

Leffler functions in a convolution integral. However this solution 

cannot be evaluated conveniently for general functions 𝑔(t). The 

previous solution considered for homogeneous conditions. But 

Luchko and Gorenflo, in their paper, (Luchko & Gorenflo, 1998), 

presented the analytical solution for the problem with 

inhomogeneous conditions in terms of multivariate 

generalizations of Mittag-Leffler functions which is long and 

complicated to be handled.  

A numerical solution of the equation (1) proposed by 

Leszczynski and Ciesielski; by using the Abel integral equations, 

the equation (1) is written as a system of ordinary differential 

equations (Leszczyński & Ciesielski, 2001). Diethelm and Ford 

introduced a numerical scheme for the equation (1), (Diethelm & 

Ford, 2002). They converted the equation (1) into a system of 

1/2-order differential equations and then numerically solved the 

system. In addition, they used a different approach scheme which 

is called Adams-type predictor-corrector approach which has 

been previously developed by Diethelm and Freed, (Diethelm, & 

Freed, 1999). Under suitable assumption they found that the error 

behaves like 𝑂(ℎ2) (ℎ is the step size). The method of Adomian 

decomposition used and applied by Ray and Bera to the equation 

(1), (Ray & Bera, 2005), and they obtained the same solution as 
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http://sjuoz.uoz.edu.krd/
https://doi.org/10.25271/2018.6.2.437


A. S. Hasan / Science Journal of University of Zakho 6(2), 64-69, June-2018 

 65 

the Podlubny’s solution by Green’s function. Nouri, Elahi-

Mehr and Torkzadeh, (Nouri, Elahi-Mehr, & Torkzadeh, 

2016) used a numerical algorithm by inverse Laplace 

transform.  

2. PRELIMINARIES AND FUNDAMENTAL 

RELATIONS 

In this section some related definitions and properties which 

will be used throughout the present study are shown. For 

more details on the given definitions and properties see 

(Samko, Kilbas, & Marichev, 1993) and (Podlubny, 1999). 

 

Definition 2.1: Let 𝛼 > 0, for 𝑓(𝑡) ∈ 𝐿1(0, 𝑇), then the 

operator 𝐼𝛼
0
𝑡 defined as 

 

  𝐼𝛼
0
𝑡 𝑓(𝑡) =

1

Γ(𝛼)
∫ (𝑡 − 𝜏)𝛼−1𝑓(𝜏)𝑑𝜏

𝑡

0
,      (4) 

    

is called the Riemann-Liouville fractional integral operator 

of order 𝛼 > 0. For 𝛼 = 0, 𝐼𝛼
0
𝑡 𝑓(𝑡) = 𝑓(𝑡). 

 

Definition 2.2: For 𝑓(𝑡) ∈ C𝑛[0, 𝑇], then the operator 

𝐷𝛼
0
𝑡 defined as 

 

𝐷𝛼
0
𝑡 𝑓(𝑡) = 𝐷𝑛 𝐼𝑛−𝛼

0
𝑡 𝑓(𝑡) 

 

 
=

1

Γ(𝑛 − 𝛼)

𝑑𝑛

𝑑𝑡𝑛 ∫ (𝑡 − 𝜏)𝑛−𝛼−1𝑓(𝜏)𝑑𝜏,
𝑡

0

 (5) 

 

is called the Riemann-Liouville fractional derivative operator 

of order 𝛼 > 0, 𝑛 − 1 < 𝛼 < 𝑛. 

 

In equation (5), 𝐼𝑛−𝛼
0
𝑡  is the Riemann-Liouville fractional 

integral of order 𝑛 − 𝛼 > 0 which is defined in (4). Note that 

for 𝛼 = 𝑛, 𝐷𝛼
0
𝑡 𝑓(𝑡) =

𝑑𝑛𝑓(𝑡)

𝑑𝑡𝑛 . 

 

One of the obstacles in fractional calculus is that we have 

more than one definition for fractional integrals and 

derivatives. In addition to the above definitions, Riemann-

Liouville fractional integral and derivative, there are also 

different definitions like: Caputo fractional derivative, 

Erdelyi-Kober fractional integral and derivative, Hadamard 

part fractional integral and derivative, Riesz fractional 

integral and derivative, and Grünwald-Letnikov fractional 

derivative. All the above mentioned definitions play an 

important role in the fractional calculus field and its 

applications. In this paper only definitions (2.1-2.2) matter, 

for other definitions and relations between them see (Samko, 

Kilbas, & Marichev, 1993) and (Podlubny, 1999).  

 

Definition 2.3: The classical Mittag-Leffler function, first 

introduced by Mittag-Leffler, (Mittag-Leffler, 1903), 

𝐸𝛼(𝑧), has the form 

 

 
  𝐸𝜃(𝑧) = ∑

𝑧𝑘

Γ(𝜃𝑘 + 1)
 .

∞

𝑘=0

 (6) 

 

Where Γ(⋅) is the Gamma function which is intrinsically tied 

to fractional calculus and 𝑧 ∈ ℂ; 𝑅𝑒(𝜃) >  0, and ℂ  is the set 

of all complex numbers. The Mittag-Leffler function is a 

great tool in the research of fractional calculus. We refer to 

the reader the book by Samko, Kilbas and Marichev, (Samko, 

Kilbas & Marichev, 1993), for more details on this important 

functions. The generalised Mittag-Leffler functions has the 

following form 

 

 
  𝐸𝜃,𝛽(𝑧) = ∑

𝑧𝑘

Γ(𝜃𝑘 + 𝛽)
 .

∞

𝑘=0

 (7) 

 

Where 𝛽 is any real number. 

 

Property 2.1: For 𝑓(𝑡) = 𝑡𝜆 with 𝛼, 𝜆 > 0, we have 

 

 
𝐷𝛼

0
𝑡 𝑡𝜆 =

Γ(𝜆 + 1)

Γ(𝜆 + 1 − 𝛼)
𝑡𝜆−𝛼 . (8) 

 

Property 2.2: For 𝑓(𝑡) = 𝑒𝜆𝑡  with 𝛼 > 0 and  𝜆 ∈ ℝ, we have 

 

 𝐷𝛼
0
𝑡 𝑒𝜆𝑡 = 𝑡−𝛼   𝐸1,1−𝛼(𝜆𝑡). (9) 

 

Definition 2.4: The integer-order derivative expansion for the 

Riemann–Liouville fractional derivative (5) is defined as, 

(Samko, Kilbas, & Marichev, 1993)  

 

  
𝐷𝛼𝑓(𝑡) = ∑ (

𝛼
𝑘

)
(𝑡 − 𝑏)𝑘−𝛼

Γ(𝑘 − 𝛼 + 1)

∞

𝑘=0

𝑑𝑘𝑓(𝑡)

𝑑𝑡𝑘 . (10) 

 

Where 𝑏 is the base point of the Riemann–Liouville derivative. 

Also the generalized binomial coefficient, (
𝛼
𝑘

), which is valid for 

fractional order 𝛼, is defined as, see (Samko, Kilbas, & Marichev, 

1993)      

 

(
𝛼
𝑘

) =
Γ(𝛼+1)

Γ(𝑘+1)Γ(𝛼−𝑘+1)
 =

(−1)k−1 α Γ(𝑘−𝛼)

Γ(1−𝛼)Γ(𝑘+1)
 .   (11) 

 

As we mentioned earlier that the different definitions of 

fractional integrals and derivatives are related to each other. The 

above definition, equation (11), is also applied for Caputo and 

Grünwald-Letnikov fractional derivative in (Gladkina, 

Shchedrin, Khawaja, & Carr, 2017).  

The conversion of fractional derivative into infinite series of 

integer derivatives was first established by (Samko, Kilbas, & 

Marichev, 1993). Also some different representation for 

fractional derivatives in terms of infinite series introduced. For 

example see (Atanacković, Janev, Konjik, Pilipović, & Zorica, 

2014) and (Atanackovic, & Stankovic, 2004). However the 

information about how many terms need to be computed 

numerically to reach the desired accuracy or the truncated error 

for the first finite number of terms was not studied. For this 

reason (Gladkina, Shchedrin, Khawaja, & Carr, 2017) gave in 

details the numerical computations for such infinite series. They 

showed that, for solving linear fractional differential equations, 

calculations based on the truncated integer-derivative expansion 

is a great tool. 

 

3. DESCRIPTION OF THE METHOD 

In this section we present our numerical scheme to find an 

approximate solution of the Bagley-Torvik equation (1) with 

attached homogeneous initial conditions (2-3).  

Only when we have inhomogeneous conditions, the Riemann–

Liouville (which is considered here) and Caputo definition for 

fractional derivative are different. Therefore, in the present study 

the use of Caputo fractional derivative will lead to the same result 

due to using homogeneous initial conditions (2-3) in this paper.   

Using the definition 2.3, the second term in the Bagley-Torvik 

equation (1) can be written as 

 

  𝑑3/2𝑦(𝑡)

𝑑𝑡3/2
= ∑ (

3/2
𝑘

)
𝑡𝑘−3/2

Γ(𝑘 − 1/2)

∞

𝑘=0

𝑑𝑘𝑦(𝑡)

𝑑𝑡𝑘 . (12) 
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Where the base point, 𝑏, here is chosen to be zero. The only 

restriction on the function 𝑦(𝑡) in equation (12) is to be 

analytic for all 𝑡 ∈ [0, 𝑇]. The approximated form of the 

equation (12) is  

 

 𝑑3/2𝑦(𝑡)

𝑑𝑡3/2
≅ ∑ (

3/2
𝑘

)
𝑡𝑘−3/2

Γ(𝑘 − 1/2)

𝑁

𝑘=0

𝑑𝑘𝑦(𝑡)

𝑑𝑡𝑘 . (13) 

 

Where 𝑁 could be any non-negative integer. From the 

definition 2.4, equation (10), and some manipulation, the 

infinite series of integer-order expansion, equation (12), 

which represents  
𝑑3/2𝑦

𝑑𝑡3/2
 , can be rewritten as follow 

 

𝑑3/2𝑦(𝑡)

𝑑𝑡3/2
=

𝑡−3/2

2√𝜋
(−𝑦(𝑡) + 3𝑡

𝑑𝑦(𝑡)

𝑑𝑡

+ 3/2 𝑡2
𝑑2𝑦(𝑡)

𝑑𝑡2 ) + 𝑅(𝑡). 

 (14) 

 

Where 𝑅(𝑡) represent the remaining terms of the infinite 

series in (10), (Gladkina, Shchedrin, Khawaja, & Carr, 2017). 

Although the behaviour of the truncated error is presented in 

(Gladkina, Shchedrin, Khawaja, & Carr, 2017), we also show 

through the following figures the approximated value for the 

fractional derivatives of some functions.  

For polynomials of degree 𝜆 = 2, 3, equation (13) is used to 

represent 𝐷3/2
0
𝑡 𝑡𝜆 on the interval [0, 1]. In this paper 𝑁 = 2 

is considered (the first three terms), however as 𝜆 and 𝛼 

increase, one notices that 𝑁 = 2 may not be enough.  

 

 
Figure 1.Graph of 𝐷3/2

0
𝑡 𝑡2 (solid line) and its approximated 

form (stars) using equation (13) with 𝑁 = 2. 
 

  
Figure 2. The absolute error of the two graphs in Figure 1. 

 

 

 
Figure 3.Graph of 𝐷3/2

0
𝑡 𝑡3 (solid line) and its approximated form 

(stars) using equation (13) with 𝑁 = 2. 
 

 
Figure 4. The absolute error between the two graphs in Figure 3. 
 

For Figure 1 with 𝜆 = 3 and Figure 3 with 𝜆 = 3 we used 

property 2.1, equation (6), to compute and plot the exact graph of  

𝐷3/2
0
𝑡 𝑡𝜆. Also equation (13) is used to plot approximately  

𝐷3/2
0
𝑡 𝑡𝜆 with 𝑁 = 2, three first terms of equation (13). In Figure 

2 and Figure 4, the absolute error of the corresponding figures are 

shown.  Figure 2 shows that equation (13) represents 𝐷3/2
0
𝑡 𝑡2 

almost exactly by its three first terms as the absolute error is of 

order 𝑂(10−16), while in Figure 4 this difference is significant.  

 

  
Figure 5. Graph of 𝐷1/4

0
𝑡 𝑒−𝑥 (solid line) and its approximated 

form (stars) using equation (13) with 𝑁 = 2. 
 

 
Figure 6. The absolute error of the two graphs in Figure 5. 

 



A. S. Hasan / Science Journal of University of Zakho 6(2), 64-69, June-2018 

 67 

In Figure 5 we used property 2.2, equation (9), to plot the 

graph of 𝐷1/4
0
𝑡 𝑒−𝑡 and we used equation (13) for 

approximately plotting 𝐷1/4
0
𝑡 𝑒−𝑡 again with 𝑁 = 2. For 

numerical computation of Mettag-Liffler function we 

calculated the first hundred terms, 𝑘 = 0, 1, … , 100. In 

Figure 6 the absolute error shows a difference of order 

𝑂(10−3). 

Now we continue our proposed scheme for solving Bagley-

Torvik equation (1) with initial conditions (2-3). The 

equation (14) approximately can be written as 

 

           2√𝜋𝑡
3
2

𝑑3/2𝑦(𝑡)

𝑑𝑡3/2
≅ −𝑦(𝑡) + 3𝑡

𝑑𝑦(𝑡)

𝑑𝑡
+

3

2
𝑡2

𝑑2𝑦(𝑡)

𝑑𝑡2 .    (2) 

  

Substitution of equation (15) for 
𝑑3/2𝑦

𝑑𝑡3/2 into equation (1) 

implies  

 

 𝑑2𝑦(𝑡)

𝑑𝑡2 + 𝐴(𝑡)
𝑑𝑦(𝑡)

𝑑𝑡
+ 𝐵(𝑡) 𝑦(𝑡) ≅ 𝐺(𝑡).   (16) 

 

Where  

 

 

 

and   

 

 

Equation (16) is an approximated form for the Bagley-Torvik 

equation (1) after we used the infinite series of integer-order 

derivative expansion given in equation (10). We converted 

the second-order ordinary differential equation, equation (1), 

with fractional order and constant coefficients into equation 

(16). Equation (16) is a second-order ODE with all integer-

order derivatives but with variable coefficients. It is shown in 

(Gladkina, Shchedrin, Khawaja, & Carr, 2017) that this 

approximation on differential equation with constant 

coefficients works more accurate than those with variable 

coefficients.  

The numerical solution to the equation (16), can be found in 

different ways. We follow the fourth order Runge-Kutta 

method. This will be done by rewriting equation (16) in the 

form of a system of two first order ODEs using the following 

change of variables  

 

 

The corresponding system of equation (16) by using the 

change of variables (21) takes the form 

 

 

Where the variable coefficients 𝐴(𝑡), 𝐵(𝑡) and 𝐺(𝑡) are 

defined by equations (17-19), respectively. From initial 

conditions (2-3), system (22) is supplemented with the 

following homogeneous initial conditions  

 

                                          𝑢|𝑡=0 = 0,                                  (23) 

and 

 

                                         𝑣|𝑡=0 = 0.                                  (24) 

 

This method can be generalised by increasing the number of the 

chosen first terms, say 𝑀>N, which results a system of 𝑀 first 

order ODEs and 𝑀 initial homogeneous conditions.  

4. NUMERICAL RESULTS 

In this section we choose two examples with known analytical 

solutions and we apply our numerical method to make a 

comparison. For the following example we choose the constant 

coefficients of equation (1) as  𝑎1 =  𝑎2 =  𝑎3 =1. We use the 

numerical solver command “ode45” which is available in 

MATLAB to solve the system (22-24). 

 

4.1 Example 1: For the first example we consider the following 

Bagley-Torvik equation  

 

𝑑2𝑦(𝑡)

𝑑𝑡2 +
𝑑3/2𝑦(𝑡)

𝑑𝑡3/2
+ 𝑦(𝑡) = 𝑡 (𝑡2 + 8√

𝑥

𝜋
+ 6).        (25) 

 

With 𝑦(𝑡) satisfies the homogeneous initial conditions (2-3). The 

exact solution of equation (25) which satisfies initial conditions 

(2-3) is  

 

 

Approximating the term with fractional derivative in equation 

(25), using only the first three terms of the infinite series (12), we 

arrive at the system (22-24).  

 

 
Figure 7. A comparison between the exact solution (solid line), 

equation (26), and the approximated numerical solution of the 

equation (25). 

Figure 8. The absolute error of the two graphs in Figure 7. 

 

Figure 7 shows the exact solution of equation (25) and its 

numerical solution after it has been approximated. Their absolute 

error is plotted in Figure 8. It is shown that absolute error is of 

order 𝑂(10−3). This confirms that the first three terms which 

represent the fractional derivative term are almost dominant in 

equation (25). Results for both numerical and analytical solutions 

with their absolute error are also shown in Table 1. 

 
𝐴(𝑡) =

3𝑎2

√𝑡
 𝜇(𝑡),   (17) 

 𝐵(𝑡) = (3𝑎3√𝜋 − 𝑎2𝑡−3/2) 𝜇(𝑡),   (18) 

 𝐺(𝑡) = 2√𝜋 𝑔(𝑡) 𝜇(𝑡),   (19) 

 𝜇(𝑡) = (2𝑎1√𝜋 + 3/2 𝑎2√𝑡)
−1

.   (20) 

 𝑢(𝑡) = 𝑦(𝑡),   𝑣(𝑡) =
𝑑𝑦(𝑡)

𝑑𝑡
 .   (21) 

 𝑑𝑢(𝑡)

𝑑𝑡
= 𝑣(𝑡),    

 
𝑑𝑣(𝑡)

𝑑𝑡
= 𝐺(𝑡) − 𝐴(𝑡)𝑣(𝑡) − 𝐵(𝑡)𝑢(𝑡) . 

  (22) 

                                𝑦(𝑡) = 𝑡3.        (26) 
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Table 1. Comparison of results for the solution of the first 

example. 

 t Approximated Exact Absolute error 

0.11 0.00149424 0.0013 0.000041988615692 

0.16 0.00435591 0.0041 0.000086231348493 

0.21 0.00955164 0.0093 0.000164549047641 

0.26 0.01777239 0.0176 0.000291891919603 

0.31 0.02970800 0.0298 0.000484303260347 

0.36 0.04604743 0.0467 0.000758710698154 

0.40 0.06747894 0.0640 0.001132765351892 

0.45 0.09469016 0.0911 0.001624712612298 

0.50 0.12285095 0.1250 0.002149044622339 

 

4.2 Example 2: Our second example is the following Bagley-

Torvik equation 

The exact analytical solution of equation (27) is 

 

𝑦(𝑡) = 𝑡2, (28) 

 

which satisfies the homogeneous initial conditions (2-3). In 

Figure 9 we plot the exact solution of equation (27) and its 

numerical solution after an approximated form for equation 

(27) is transformed into a system of ODEs. To show the 

accuracy of our numerical method the absolute error is 

plotted in Figure 10. It is noticed that absolute error is of 

order 𝑂(10−8). Therefore, again, we have confirmed that by 

remaining only the first three terms of the infinite series of 

integer-order expansion, equation (12), which represents the 

term with fractional derivative in equation (27) we are 

keeping almost all the dominant terms and it produces an 

error in our numerical solution which is of order 𝑂(10−8).  

This example is also numerically solved by Ghorbani and 

Alavi, (Ghorbani, & Alavi, 2008), and the absolute error that 

they found between the numerical and analytical solution is 

of order 𝑂(10−5). A comparison is made between our 

numerical and analytical results in Table 2.  

 
Figure 9. A comparison between the exact solution (solid 

line), equation (28), and the approximated numerical solution 

of the equation (27). 

 
Figure 10. The absolute error of the two graphs in Figure 7. 

 

Table 2. Comparison of results for the solution of the second 

example. 

t Approximated Exact Absolute error 

0.1 0.010000001723771 0.01 0.1828e-07 

0.2 0.040000046369413 0.04 0.0637e-07 

0.3 0.090000089366190 0.09 0.2937e-07 

0.4 0.160000120342059 0.16 0.4034e-07 

0.5 0.250000148387098 0.25 0.4839e-07 

0.6 0.360000175093239 0.36 0.5509e-07 

0.7 0.490000200907060 0.49 0.6091e-07 

0.8 0.640000225992179 0.64 0.6599e-07 

0.9 0.810000250421551 0.81 0.7042e-07 

1.0 1.000000273512726 1.00 0.7351e-07 

5. CONCLUSION 

The Bagley-Torvik equation with constant coefficients is 

approximated using the infinite series representation of integer-

order derivatives. The derived system solved numerically by the 

fourth order Runge-Kutta method. The plots and their absolute 

error are presented by figures and tables. By providing two 

examples we illustrated the accuracy and efficiency of our 

proposed scheme for numerically solving the fractional 

differential equations. By considering the Bagley-Torvik 

equation which contains a term with fractional derivative, we 

showed through two examples that the scheme presented in this 

work is producing a close solution comparing to its exact 

analytical solution.  
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