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Abstract: 

In this paper, a new formula of ࢼ is suggested for conjugate gradient method of solving unconstrained 
optimization problems based on step size of Barzilai and Borwein. Our new proposed CG-method has 
descent condition, sufficient descent condition and global convergence properties. Numerical comparisons 
with a standard conjugate gradient algorithm show that this algorithm very effective depending on the 
number of iterations and the number of functions evaluation. 

 
KeyWords: unconstrained optimization, conjugate gradient, descent condition, sufficient descent 
condition,Barzilai and Borwein step size  and global convergence. 

 
1- Introduction 

We are concerned with the following 
unconstrained minimization problem: ݂݉݅݊(ݔ), ∶ ݔ		 ∈ ܴ (1.1) 
Where݂ ∶ 	ܴ 	→ 	ܴis continuously  
differentiable and its gradient g୩ = ∇f	(x୩)is 
available. There are several kinds of numerical 
methods for solving (1.1), which include the 
Steepest Descent (SD) method, the Newton 
method and Quasi-Newton (QN) methods. 
Among them, the CG-method is one choice for 
solving large scale problems, because it does not 
need any matrices Liu et al.(1993), Liu and 
Storey(1991)]. CG-methods are iterative 
methods and at the k-th iteration, it's general 
form is given by: x୩ାଵ = x୩ + α୩d୩			k = 0,1, …	(1.2)  
where α୩ > 0 is a step size and d୩is the search 
direction defined by: d୩ାଵ = −g୩ାଵ + β୩d୩ ,  d = −g(1.3) 
where g୩is the gradient of f	(x)	at the point x୩. β୩ ∈ Ris a scalar parameter which 
characterizes the CG-method. Iffis a strictly 
convex quadratic function and the line search is 
exact, then the iterative method (1.2)-(1.3) is 
called linear CG-method. Well-known formulas 
for β୩are the Fletcher-Reeves (FR) Fletcher and 
Reeves (1964),  Polak-Ribiere- Polyak (PRP)  
(1969)) , Hestenes-Stiefel (HS)  (1952), Dai and 
Liao (DL)  (2001), Conjugate Descent (CD) 
Fletcher (1987), Liu and Storey (LS)  (1991),  
and Dai and Yuan (DY)  (1996),  formulas and 
they are given by: β୩ୖ = ౡశభ ౡశభౡౡ ோߚ (1.4)   = ೖశభ ௬ೖೖೖ      (1.5) 

ுௌߚ = ೖశభ ௬ೖௗೖ௬ೖ (1.6) 

ߚ = ೖశభ 	(௬ೖି௧௩ೖ)ௗೖ௬ೖ ,whereݐ > 0(1.7) 

ߚ = ೖశభ ೖశభିೖௗೖ     (1.8) 

ௌߚ = ೖశభ ௬ೖିೖௗೖ     (1.9) 

ߚ = ೖశభ ೖశభௗೖ௬ೖ   (1.10) 

Where‖. ‖denotes the Euclidean norm, and  ݕ = ݃ାଵ − ݃	.			The global convergence 
properties of the FR, PRP and HS methods 
without regular restarts have been studied by 
many researchers, including Al-Baali(1985) and 
Gilbert and Nocedal(1992), Zoutendijk (1970), 
Liu et al (1993),, Powell (1977), and Dai and 
Yuan(1995),. To establish the convergence 
results of these methods, it is normally required 
that the step-length α୩ satisfies the following 
strong Wolfe conditions: f(x୩ + α୩d୩) − f(x୩) ≤ ݔ)݃| ்݃݀(1.11)ߙߩ + |݀)்݀ߙ ≤  ்݀(1.12)݃ߪ−

Where ߩ ∈ ቀ0, ଵଶቁand  ߪ ∈ (0,1) 
Some convergence analysis even require that the 
step-sizeߙcan be computed by an exact line 
search, namely: ݂(ݔ + (݀ߙ = min	ೖஹ݂(ݔ +  ݀)(1.13)ߙ

On the other hand, many other numerical 
methods for unconstrained optimization are 
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proved to be convergent under the standard 
Wolfe conditions (1.10): ݂(ݔ + (݀ߙ − (ݔ)݂ ≤ ݔ)݃ ்݃݀(1.14)ߙߩ + ݀)்݀ߙ ≥  ்݀ (1.15)݃ߪ
For example, see Fletcher(1987),. Hence, it is 
interesting to investigate whether there exists a 
CG-method that converges under the standard 
Wolfe conditions. 
In this paper, we present our new formula ofߚin 
Section 2. In Section 3 we will proof the descent 
condition and sufficient descent condition of our 
new formula. We analyze global convergence of 
the proposed method with inexact line searches 
in Section 4. Some interesting numerical results 
and discussions are presented in Section 5 by 
comparing our new method with the other CG 
method. Finally, our conclusions are presented 
in Section 6. 
 

2- New Conjugate Gradient Algorithm (࢝ࢋࡺࢼ) 

In this section, we will derive a new conjugate 
gradient coefficient for unconstraint 
optimizations based on ߚby using step size of 
(Barzilai and Borwein)for finding the minimum 
of the continuous function  ݂(ݔ). 
Considerݒ = ାଵݔ − ݔ =  ݀ߙ

Letݒ∗ =  ∗݀  (2.1)ߙ

Where ߙ∗ = ௩ೖ௩ೖ௩ೖ௬ೖ , see [Barzilai and Borwein  

(1988),]  

or ݒ∗ = ௩ೖௗೖ௩ೖ௬ೖ  (2.2)ݒ

Now, replacing ݒ by ݒ∗  in (1.7), so, equation 
(1.7) becomes 

ߚ = ݃ାଵ் ݕ)	 − t ௩ೖௗೖ௩ೖ௬ೖ ݕ)்݀ݒ  

This implies that 

ߚ = ೖశభ 	(௬ೖି୲ഀೖೖೖೖೖ ௗೖ)ௗೖ௬ೖ   

 

After some algebraic operations, we get   

ே௪ߚ = ݃ାଵ் ݕ்݀ݕ − ݐ ‖݀‖ଶ݃ାଵ்ߙ ݀(்݀ݕ)ଶ  

ே௪ߚ = ுௌߚ − ݐ ఈೖ‖ௗೖ‖మೖశభ ௗೖ(ௗೖ௬ೖ)మ (2.3) 

Algorithm of New Method (࢝ࢋࡺࢼ): 
 

Step (1): The initial point ݔ	, ߝ = 1 × 10ିହ. 

Step (2): ݃ = If:݃ 	,(ݔ)݂∇ = 0, then stop,  

Step (3): set k=0,    ݀ = −݃ 

Step (4):  compute ߙto minimize ݂(ݔାଵ)(i.e.)	݂(ݔାଵ) ≤  using cubic line (ݔ)݂
search 

Step (5): ݔାଵ = ݔ +  ݀ߙ

Step (6): ݃ାଵ = ‖If ‖݃ାଵ	,(ାଵݔ)݂∇ <  ߝ	

             then stop 

Step (7): compute  ߚ from (2.3) 

Step (8): ݀ାଵ = −݃ାଵ +  ே௪݀ߚ

Step (9): If ݇ = ݊ or if ห்݃݃ାଵห ≤ 0.2‖݃ାଵ‖ଶ 

is satisfied go to step 3, 

else݇ = ݇ + 1 and go to step 4 

 

 

 

 

 



Journal University of Zakho, Vol. 4(A) , No.1, Pp 104-114, 2016 
 

 106

ISSN: 2410-7549

3- Descent and the Sufficient Descent Conditions of the New Conjugate Gradient Algorithm 

 (࢝ࢋࡺࢼ)

Theorem (3.1):- Assume that the sequence {ݔ} is generated by the form (1.2), where ߙ is 
determined by the Wolfe line search (1.14) and (1.15) then the ݀ାଵ given by (1.3) with modified CG-

method in form (2.3) is a descent direction, i.e. ݀ାଵ் ݃ାଵ ≤ 0 in both cases: exact and inexact line 
search. 

Proof:  

From (1.3) and (2.3), we have ݀ାଵ = −݃ାଵ + ுௌߚ) − ݐ ఈೖ‖ௗೖ‖మೖశభ ௗೖ(ௗೖ௬ೖ)మ )݀(3.1) 

Multiply both sides by  ݃ାଵ் , we get 

݃ାଵ் ݀ାଵ = −‖݃ାଵ‖ଶ ுௌߚ)	+ − ݐ																								 ‖݀‖ଶ݃ାଵ்ߙ ݀(்݀ݕ)ଶ )݃ାଵ் ݀ 

݃ାଵ் ݀ାଵ = −‖݃ାଵ‖ଶ + ுௌ݃ାଵ்ߚ ݀ − ݐ																								 ఈೖ‖ௗೖ‖మ(ೖశభ ௗೖ)మ(ௗೖ௬ೖ)మ     (3.2) 

The proof is complete if the step length ߙ is chosen by an exact line search which requires்݀݃ାଵ =0. Now, if the step length ߙ is chosen by an inexact line search which requires்݀݃ାଵ ≠ 0. It is 
clearly the first two term of equation (3.2) is less than or equal to zero, and we know that ݐ	, ,	ߙ ‖݀‖ଶ, (݃ାଵ் ݀)ଶand ൫்݀ݕ൯ଶare positive we get to the third term of equation (3.2) is less than to zero. 

So, we have −ݐ ఈೖ‖ௗೖ‖మ(ೖశభ ௗೖ)మ(ௗೖ௬ೖ)మ ≤ 0 

Finally, we have  

݃ାଵ் ݀ାଵ = −‖݃ାଵ‖ଶ + ுௌ݃ାଵ்ߚ ݀ − ݐ																								 ‖݀‖ଶ(݃ାଵ்ߙ ݀)ଶ(்݀ݕ)ଶ ≤ 0 

Then the proof is complete. 

Theorem (3.2): Suppose that the search direction ݀ given by (1.3) and (2.3).We assume that the step 
length ߙ satisfies strong Wolfe conditions (1.11) and (1.12). Then, the following result: ݃ାଵ் ݀ାଵ ≤ −ܿ‖݃ାଵ‖ଶ 

holds for any ݇ ≥ 0 . 

Proof  

For the initial direction k=0, we have  ݀ = −݃ ⇒ ்݀݃ = −்݃݃ ≤ −‖݃‖ଶ , which satisfied  

Now, we suppose that ்݀݃ ≤ 0	, 
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	∀	݅ = 1,2, … , ݇ , multiplying (1.3) by ݃ାଵ் , we get: ݃ାଵ் ݀ାଵ = −‖݃ାଵ‖ଶ + ே௪݃ାଵ்ߚ ݀ 

݃ାଵ் ݀ାଵ = −‖݃ାଵ‖ଶ ுௌߚ)	+ − ݐ																								 ‖݀‖ଶ݃ାଵ்ߙ ݀(்݀ݕ)ଶ )݃ାଵ் ݀ 

݃ାଵ் ݀ାଵ = −‖݃ାଵ‖ଶ + ೖశభ ௬ೖௗೖ௬ೖ ݃ାଵ் ݀ − ݐ																							 ఈೖ‖ௗೖ‖మ(ೖశభ ௗೖ)మ(ௗೖ௬ೖ)మ    (3.3) 

     It is clearly that ݐ	, ,	ߙ ‖݀‖ଶ, (݃ାଵ் ݀)ଶand൫்݀ݕ൯ଶare positive, then we get to the third term of 

equation (3.3) is less than or equal to zero. 

So, we haveቆ−ݐ ఈೖ‖ௗೖ‖మ൫ೖశభ ௗೖ൯మ൫ௗೖ௬ೖ൯మ ቇ ≤ 0, then equation (3.3), we get  

݃ାଵ் ݀ାଵ ≤ −‖݃ାଵ‖ଶ + ೖశభ ௬ೖௗೖ௬ೖ ݃ାଵ் ݀ (3.4) 

Since  ݃ାଵ் ݀ ≤ ்݀ݕ ,equation (3.4) becomes ݃ାଵ் ݀ାଵ ≤ −‖݃ାଵ‖ଶ + ݃ାଵ்  ,ݕ

Now, we apply the inequality ݃ାଵ் ݕ ≤ ‖݃ାଵ‖‖ݕ‖, hence  ݃ାଵ் ݀ାଵ ≤ −‖݃ାଵ‖ଶ + ‖݃ାଵ‖‖ݕ‖, 

∴ ݃ାଵ் ݀ାଵ ≤ −(1 −  ‖‖݃ାଵ‖)‖݃ାଵ‖ଶݕ‖

Finally, we have ݃ାଵ் ݀ାଵ ≤ −ܿ‖݃ାଵ‖ଶ, 

Where ܿ = 1 − ‖௬ೖ‖‖ೖశభ‖ > 0 

Then the proof is complete. 

4- The Global Convergence Analysis of the New Conjugate Gradient Algorithm (࢝ࢋࡺࢼ) 

In order to establish the global convergence of new method, we need the following basic assumptions 
on the objective function. 

Assumption (H). 

i. The level set ܵ = :ݔ} ݔ ∈ ܴ, (ݔ)݂ ≤  .ଵ is the starting pointݔ is bounded, where {(ଵݔ)݂
ii. In a neighborhood Ω of ܵ, ݂ is continuously differentiable and its gradient	݃ is Lipschitz 

continuously, namely, there exists a constant ܮ > 0 such that  ‖݃(ݔ) − ‖(ݔ)݃ ≤ ݔ‖ܮ − ,‖ݔ ,ݔ∀ ݔ ∈ Ω  (4.1) 
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Under these assumptions on	݂ there exists a constant ߛ ≥ 0, 
such that ‖݃(ݔ)‖ ≤ ݔ∀				,ߛ ∈ ܵ . 

Lemma (4.1). Suppose that the assumption (H) holds and consider any conjugate gradient (1.2) and 
(1.3), where is a descent direction ݀ and ߙ is obtained by the strong Wolfe line search. If ∑ ଵ‖ௗೖ‖మ = ∞ஹଵ 	,                              (4.2) 

Then lim→ஶ ݂݅݊‖݃‖ = 0	.	See (Dai and Yuan  (1999))       (4.3) 

If ݂ is a uniformly convex function, there exists a constant ߴ > 0 such that: ൫݃(ݔ) − ݔ)൯்(ݕ)݃ − (ݕ ≥ ݔ‖ߴ − ଶ‖ݕ ∈ Ω	  (4.4) 

We can rewrite (4.4) in the following manner: ݕ் ݒ ≥  ‖ଶ.       (4.5)ݒ‖ߴ

Theorem (4.1): Suppose the assumption (H) holds and that ݂ is a uniformly convex function. The new 
algorithm of the form (1.2), (1.3) and (2.3) where ݀ satisfies the descent condition andߙis obtained 
by the strong Wolfe conditions (1.11) and (1.12) satisfies the global convergence. 

(i.e.)lim→ஶ ݂݅݊‖݃ାଵ‖ = 0 

Proof:  

From (1.3) and (2.3), we get ݀ାଵ = −݃ାଵ +  ே௪݀,  (4.6)ߚ

หߚே௪ห = ฬೖశభ ௬ೖௗೖ௬ೖ − ݐ ఈೖ‖ௗೖ‖మೖశభ ௗೖ(ௗೖ௬ೖ)మ ฬ. 
Since   ݃ାଵ் ݀ ≤ ்݀ݕ, หߚே௪ห ≤ ฬೖశభ ௬ೖௗೖ௬ೖ ฬ + ฬݐ ఈೖ‖ௗೖ‖మௗೖ௬ೖ ฬ,  (4.7) 

From (4.5) it follows that  ݒ‖ߴ‖ଶ ≤ ்ݕ  ,ݒ

Implies that ,  ݕ் ݀ ≥ ణ‖௩ೖ‖మఈೖ , 

Since݃ାଵ் ݕ ≤ ‖݃ାଵ‖‖ݕ‖ and from Lipschitz Condition ‖ݕ‖ ≤ ே௪หߚ‖ . Then  หݒ‖ܮ ≤ ఈೖ‖ೖశభ‖ణ‖௩ೖ‖ + ݐ ఈೖమ‖ௗೖ‖మణ‖௩ೖ‖మ , 

Implies that 
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หߚே௪ห ≤ ఈೖఊణ‖௩ೖ‖ + ௧ణ,  (4.8) 

Since‖݀ାଵ‖ ≤ ‖݃ାଵ‖ + หߚே௪ห‖݀‖,  (4.9) 

Then ‖݀ାଵ‖ ≤ ߛ + ( ఈೖఊణ‖௩ೖ‖ + ௧ణ)‖݀‖,(4.10) 

‖݀ାଵ‖ ≤ ߛ + (ఊణ + ௧ఈೖణ  .(‖ݒ‖
Since‖ݒ‖ = ݔ‖ − ܦ 	,	‖ݔ = max	{‖ݔ − ,	{‖ݔ ,ݔ∀ ݔ ∈ ܴ} 
Hence (4.10) becomes ‖݀ାଵ‖ ≤ ߛ + (ఊణ + ௧ఈೖణ) = ߮. 

 1‖݀ାଵ‖ଶ ≥ஹଵ  1߮ଶ =1ஹଵ = ∞ஹଵ  

∑ ଵ‖ௗೖశభ‖మ = ∞ஹଵ  .By using lemma (1), we get  lim→ஶ ݂݅݊‖݃ାଵ‖ = 0 

 
5- Numerical results 
This section is devoted to test the implementation of the new method. We compare the new conjugate 
gradient algorithm (New) and standard (H/S).The comparative tests involve well known nonlinear 
problems (see Appendix) with different function			4 ≤ ݊ ≤ 5000. All programs are written in 

FORTRAN 95 language and for all cases the stopping condition ‖݃ାଵ‖ ≤ 1 × 10ିହand restart using 

Powell condition ห்݃݃ାଵห ≥ 0.2‖݃ାଵ‖ଶ are used. The line search routine was a cubic interpolation 

which uses function and gradient values. The results given in table (1) specifically quote the number 
of iteration NOI and the number of function NOF. Experimental results in table (1) confirm that the 
new conjugate gradient algorithm (New) is superior to standard algorithm (H/S) with respect to the 
number of iterations NOI and the number of functions NOF. 
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Table (1)Comparing the Performance of the Two Algorithms of Standard (۶/܁) and (New) 

Number of 
problem 

N 
Standard formula (HS) New formula (New) 

NOI NOF NOI NOF 

1 

4 
100 
500 

1000 
5000 

5 
5 
6 
6 
6 

14 
14 
16 
16 
16 

5 
5 
5 
5 
5 

14 
14 
14 
14 
14 

2 

4 
100 
500 

1000 
5000 

11 
49 
52 
70 

165 

24 
99 

105 
141 
348 

11 
49 
50 
50 

146 

24 
99 

101 
101 
309 

3 

4 
100 
500 

1000 
5000 

3 
14 
21 
23 
31 

11 
81 

124 
128 
159 

3 
11 
13 
14 
16 

11 
57 
67 
73 
89 

4 

4 
100 
500 

1000 
5000 

8 
49 

112 
156 
256 

45 
185 
353 
473 
774 

8 
47 

105 
154 
282 

46 
166 
315 
467 
843 

5 

4 
100 
500 

1000 
5000 

28 
33 
40 
46 
54 

85 
114 
146 
176 
211 

31 
32 
35 
35 
43 

102 
104 
122 
122 
160 

6 

4 
100 
500 

1000 
5000 

24 
29 
F 
29 
30 

64 
79 
F 
79 
81 

23 
29 
29 
29 
30 

64 
79 
79 
83 
83 

7 

4 
100 
500 

1000 
5000 

22 
22 
23 
23 
30 

159 
159 
171 
171 
272 

22 
22 
23 
23 
30 

158 
158 
170 
170 
272 

8 

4 
100 
500 

1000 
5000 

30 
30 
30 
30 
30 

83 
83 
83 
83 
83 

30 
30 
19 
22 
18 

83 
85 
54 
61 
53 
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9 

4 
100 
500 

1000 
5000 

38 
40 
41 
41 
41 

108 
122 
124 
124 
124 

31 
31 
34 
34 
34 

92 
92 

109 
109 
109 

Total 1890 6268 1703 5611 

Note: The fail result in standard CG is considered a twice value of new CG results.  

Table (2) Comparing the Rate of Improvement between the New Algorithm (New) and the Standard Algorithm 
(H/S) 

Tools 
Standard 

algorithm (H/S) 
New algorithm 

(New) 

NOI 100% 90.1058% 

NOF 100% 89.5182% 

 

Table (2) shows the rate of improvement in the new algorithm (New) with the standard algorithm 
(H/S). The numerical results of the new algorithm are better than the standard algorithm. As we notice 
that (NOI), (NOF) of the standard algorithm are about 100%. That means the new algorithm has 
improvement as compared to standard algorithm with (9.8942%) in (NOI) and (10.4818%) in (NOF). 
In general, the new algorithm (New) has been improved by (10.188%) as compared to standard 
algorithm (H/S). 
 

 

Figure (1): shows the comparison between new algorithm (New) and the standard algorithm (H/S) according to 
the total number of iterations (NOI) and the total number of functions (NOF). 
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6- Conclusion 

In this paper, we have presented a new conjugate gradient method based on step size of Barzilai 
and Borwein, the descent, sufficient descent conditions and global convergence are proved and 
comparative numerical performances of well-known conjugate gradient algorithm (H/S) by using 
some standard test functions. Numerical results have shown that our new formula (ߚே௪)performs 
better than (H/S). 
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Appendix 

Test problems: 

1-Generalized Edger Function: 

(ݔ)݂ =(ݔଶିଵ − 2)ଶ + ଶିଵݔ) − 2)ଶݔଶଶ + ଶݔ) + 1)ଶ ଶൗ
ୀଵ  

ݔ			,	 = (1,0, … ,1,0)். 
2-Wolfe function:  

(ݔ)݂								 = ቀ−ݔଵ ቀ3 − ଵ2ݔ ቁ + ଶݔ2 − 1ቁଶ +ቆݔିଵ − ݔ ቀ3 − 2ݔ + ାଵݔ2 − 1ቁቇଶିଵ
ୀଵ  

	+ ቀݔିଵ − ݔ ቀ3 − 2ݔ ቁ − 1ቁଶ , ݔ = (−1,… ,−1)். 
3- Sum of Quadrics (SUM) Function:  

(ݔ)݂ =(ݔ − ݅)ସ
ୀଵ ݔ					,					 = (1,1, … ,1)்.																		 

4- Oren and Spedicato OSP Function: 

(ݔ)݂ = (݅(ݔ)ଶ
ୀଵ )ଶݔ = (1,… ,1)்	.																								 

5-Miele Function: 

(ݔ)݂			 =(݁௫రషయ + ସିଶ)ଶݔ10 + ସିଶݔ)100 + ସିଵ)ݔ + (tan(ݔସିଵ − ସ))ସݔ + ଼(ସିଷݔ) ସൗ
ୀଵ  

ସݔ)+																																	 − 1)ଶ	, ݔ = (1,2,2, … ,1,2,2)். 
6-Generalized non-diagonal Function: 

(ݔ)݂									 =100൫ݔଵ − ଶ൯ଶݔ + (1 − )ଶݔ
ୀଶ , ݔ = (−1,… ,−1)்.			 

7-Generalized central Function: 

(ݔ)݂									 =(݁ݔ)ݔସିଷ + ସିଶ)ସݔ + ସିଶݔ)100 − ସିଵ)ݔ + ସିଵݔ)݊ܽݐܿݎܽ − ସ)ସݔ ସൗ
ୀଵ +  						,					(ସିଷݔ

ݔ = (1,2,2, 2, … ,1,2,2,2)். 
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8-Generalized Rosen Brock Banana Function: 

(ݔ)݂ =100൫ݔଶ − ଶିଵଶݔ ൯ଶ + (1 − ଶିଵ)ଶݔ ଶൗ
ୀଵ  

ݔ					, = (−1.2,1, … ,−1.2,1)். 
9-Powell Function: 

(ݔ)݂													 =((ݔସିଷ − ସିଶ)ଶݔ10 + ସିଵݔ)5 − ସ)ଶݔ + ସିଶݔ) − ସିଵ)ସݔ2 + ସିଷݔ)10 − ସ)ସ)ݔ ସൗ
ୀଵ 	,		 

ݔ = (3,−1,0,1, … ,3, −1,0,1)். 
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  :الخلاصة
بالاعتماد على طول الخطوة اقتراح خوارزمية جديدة للتدرج المترافق لحل مسائل الامثلية الغير المقيدة،تم في هذا البحث 

الانحدار الكافي  خاصيةالانحدار و  خوارزمية التدرج المترافق التي اقترحنها تمتلك خاصية.(Barzilai and Borwein)ل
التقارب الشامل للخوارزمية المقترحة. النتائج العددية اثبتت بان الطريقة المقترحة اكثر كفاءة عند مقارنتها مع الطرق خاصية و 

  المشاđة لها في هذا المجال بالاعتماد على عدد التكرارات وعدد حسابات الدالة.
  


