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Abstract:

In thispaper, a new formula of B} issuggested for conjugate gradient method of solving unconstrained
optimization problems based on step size of Barzilai and Borwein. Our new proposed CG-method has
descent condition, sufficient descent condition and global convergence properties. Numerical comparisons
with a standard conjugate gradient algorithm show that this algorithm very effective depending on the

number of iterations and the number of functions evaluation.

KeyWords:

unconstrained  optimization,

conjugate gradient,

descent condition, sufficient descent

condition,Barzlai and Borwein step size and global convergence.

1- Introduction

We ae concerned with the
unconstrained minimization problem:
minf(x), : x € R™ (1.1)
Wheref : R™ — Riscontinuously
differentiable and its gradient g, = Vf (xy)is
available. There are several kinds of numerical
methods for solving (1.1), which include the
Steepest Descent (SD) method, the Newton
method and Quasi-Newton (QN) methods.
Among them, the CG-method is one choice for
solving large scale problems, because it does not
need any matrices Liu et a.(1993), Liu and
Storey(1991)]. CG-methods are iterative
methods and at the k-th iteration, it's genera
formisgiven by:
Xk+1 = Xk + akdk k=0,1,.. (12)
where o > 0 is a step size and dyis the search
direction defined by:
di+1 = —8k+1 + Prdi, do = —80(1.3)
where gyis the gradient of f(x)at the point
Xk- Bk €ERis a scalar  parameter  which
characterizes the CG-method. Iffis a strictly
convex quadratic function and the line search is
exact, then the iterative method (1.2)-(1.3) is
called linear CG-method. Well-known formulas
for Brare the Fletcher-Reeves (FR) Fletcher and
Reeves (1964), Polak-Ribiere- Polyak (PRP)
(1969)) , Hestenes-Stiefel (HS) (1952), Dai and
Liao (DL) (2001), Conjugate Descent (CD)
Fletcher (1987), Liu and Storey (LS) (1991),
and Dai and Yuan (DY) (1996), formulas and
they are given by:

FR _ gE+1gk+1
Bic” = nggk (1'4)

PR _ Yk+1Vk
" = 99k

following

(1.5)

104

T
HS _ Ik+1Vk 1.6
s = 21

T _
pPL = Gker Or=V) \hever > 0(1.7)

d%Yk
T
CD _ Jk+19k+1 (1 @
¢ = S (1)
T
ﬁLS — Jk+1Vk (1 9)

—grdy

T
Ik+19
BEY = St (1.10)

Wherel|. ||denotes the Euclidean norm, and
Ve = 9r+1 — 9Jr - The globa  convergence
properties of the FR, PRP and HS methods
without regular restarts have been studied by
many researchers, including Al-Baali(1985) and
Gilbert and Nocedal(1992), Zoutendijk (1970),
Liu et a (1993),, Powell (1977), and Dai and
Yuan(1995),. To establish the convergence
results of these methods, it is normally required
that the step-length oy, satisfies the following
strong Wolfe conditions:

f(xi + aedi) — f(xi) < pagegi di(1.11)

lg(xi + ardi)"die| < —0gjdi(1.12)

Wherep € (0, %)and o € (0,1)

Some convergence analysis even require that the
step-sizea, can be computed by an exact line
search, namely:

f g + ady) = min g 5o f (xp + ard;)(1.13)

On the other hand, many other numerical
methods for unconstrained optimization are
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proved to be convergent under the standard
Wolfe conditions (1.10):

f e + ardy) = f (%) < pagegi di(1.14)

g9(x + ardy)"dy = ogjdy (1.15)

For example, see Fletcher(1987),. Hence, it is
interesting to investigate whether there exists a
CG-method that converges under the standard
Wolfe conditions.

In this paper, we present our new formula of 8;in
Section 2. In Section 3 we will proof the descent
condition and sufficient descent condition of our
new formula. We analyze globa convergence of
the proposed method with inexact line searches
in Section 4. Some interesting numerical results
and discussions are presented in Section 5 by
comparing our new method with the other CG
method. Finally, our conclusions are presented
in Section 6.

2- New Conjugate Gradient Algorithm (BNe%

In this section, we will derive a new conjugate
gradient coefficient for unconstraint
optimizations based on B2 by using step size of
(Barzilai and Borwein)for finding the minimum
of the continuous function f(x).
ConSidervk = Xkg+1 — X = akdk

Letv; = ajdy (2.1)

T

Where a; =;”;;" , see [Barzila and Borwein
kYVk

(1988)]

or

T
* dek
vy = Ty v, (2.2)

Now, replacing v, by vy in (1.7), so, equation
(1.7) becomes

T
dek

T— Uk)
Vi YVk

Gir1 Ok — t
ﬂ =
“ dlCYk

Thisimplies that

T
T akddi
Gie+1 Wkt dg)
k+1 d%yk

Br = aTyx
After some algebraic operations, we get

New _ F+1Yk _ e lldicll® giv1di
“ dryk (dLyi)?

New _ pHS ., @klldil®gh,di
B = B> — t—(dgyk’)‘i —=(2.3)

Algorithm of New Method (BYe"):

Step (1): Theinitial point x,,e = 1 x 1075,
Step (2): gx = Vf(xy), If:gx = 0, then stop,
Step (3) %t kZO, do = _go

Step (4): compute a,to minimize

f(xrs1)(.€) f(xps1) < f(x) using cubic line
search

Step (5): xp 41 = X + g dy

Step (6): grr1 = Vf Ceryr), I llgpsall < €
then stop

Step (7): compute B, from (2.3)

Step (8): dis1 = —Gi+1 + B ™ di

Step (9): If k = norif |gf gis1| < 0.2l ge1lI?

is satisfied go to step 3,

elsek =k +1andgotostep4
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3- Descent and the Sufficient Descent Conditions of the New Conjugate Gradient Algorithm

BE™)

Theorem (3.1):- Assume that the sequence {x,} is generated by the form (1.2), where a; is
determined by the Wolfe line search (1.14) and (1.15) then the dj ., given by (1.3) with modified CG-
method in form (2.3) is a descent direction, i.e. d%,,gx+1 < 0 in both cases: exact and inexact line
search.

Pr oof:

From (1.3) and (2.3), we have

s, cxlldil’gr,1dk
=— — ¢ Ak Tket1 %y g (3.1
di+1 Ir+1 + (B t @Ty)? )d,(3.1)

Multiply both sidesby g7, ,, we get

aglldy ||291z+1dk
(dICYk)Z

1Ak = —llgrs1l> + B — )Ih+1dk

aplldicll? (gF 1 dk)? (3.2)

— HS
g£+1dk+1 = —||9k+1||2 + By g£+1dk - @lyp?

The proof is complete if the step length «, is chosen by an exact line search which requiresd?. g1 =
0. Now, if the step length a;, is chosen by an inexact line search which requiresd? g, # 0. It is
clearly the first two term of equation (3.2) is less than or equal to zero, and we know that
t,a, lldill?, (gisrdi)?and

(d,fyk)zare positive we get to the third term of equation (3.2) is less than to zero.

illdill®(Ghs 1A

So, we have —t <
(dryi)?

Finally, we have

alldell* (9had)® _ o
(d£Yk)2 B

Ir 1Ak = =l grsrl> + B gE 4 1dr —

Then the proof is complete.

Theorem (3.2): Suppose that the search direction d;, given by (1.3) and (2.3).We assume that the step
length a, satisfies strong Wolfe conditions (1.11) and (1.12). Then, the following result:

T
Ir+19k+1 = _C||gk+1||2

holdsforany k > 0 .

Proof

For theinitial direction k=0, we have

do = —go = dygo = =95 9o < —llgoll* , which satisfied

Now, we suppose that dLg, < 0,
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Vi=1.2,..k,multiplying (1.3) by g7, ,, we get:

Gir1dr+1 = = gr+1ll? + BR Y ghy1di
e lldi > gj 41
Gh+1dr+1 = =l grsall* + B — Ty, )2+1 )Tik+1k
gk+13’k ak||dk||2(g£+1dk)z (33)

T .d = — Z 4 d
Ik+1%+1 lgr+11l® + 9k+1 Kk~ @y

Itisclearly that t, ay, , || dill%, (g,fﬂdk)zand(d,fyk)zare positive, then we get to the third term of
equation (3.3) isless than or equal to zero.

So, we have( “"”d’zl (g")“d") > < 0, then equation (3.3), we get
kYk

Ghe1is1 < =llgicrall* + g’m”‘ - Ger1di (3.4)
Since gr,.d, < dfvy ,equation (3.4) becomes
Gk+1%k+1 S =Gk lI> + Gkr1 Yk

Now, we apply the inequality

Fier1Yk < lgx+1llllyill, hence

191 < =N Gra1l* + N grs1 vl

Iyl
gk+1dk+1 -(1- 9% ”)||gk+1||2

Finally, we have

gk+1dk+1 C”gk+1”

Wherec = 1 — 2l 5

lgr+1ll

Then the proof is complete.
4- The Global Convergence Analysis of the New Conjugate Gradient Algorithm (B’,}’e“’)

In order to establish the global convergence of new method, we need the following basic assumptions
on the objective function.

Assumption (H).

i. Thelevel setS = {x:x € R™, f(x) < f(x;)} isbounded, where x; isthe starting point.
ii.  In aneighborhood Q of S, f is continuously differentiable and its gradient g is Lipschitz
continuously, namely, there exists a constant L > 0 such that

lg(x) — g(xi)ll < Lllx — xll, v, x, € Q (4.1)
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Under these assumptions on f there exists a constant y > 0,
suchthat [[g(x)|| <y, Vx€S.

Lemma (4.1). Suppose that the assumption (H) holds and consider any conjugate gradient (1.2) and
(1.3), where is a descent direction d;, and «a, is obtained by the strong Wolfe line search. If

1

Zkam =, 4.2
Then
limy,e infllgill = 0. See (Dai and Yuan (1999)) (4.3)

If f isauniformly convex function, there exists a constant ¥ > 0 such that:

T
() —g() (x—y) 29lx-yll* €Q (4.4)
We can rewrite (4.4) in the following manner:
Vv 2 Ollvell?. (4.5)

Theorem (4.1): Suppose the assumption (H) holds and that f isauniformly convex function. The new
agorithm of the form (1.2), (1.3) and (2.3) where d;, satisfies the descent condition anda,,is obtained
by the strong Wolfe conditions (1.11) and (1.12) satisfies the global convergence.

(i.e)limy_ o infllgr+1ll =0
Proof:

From (1.3) and (2.3), we get

— New
i1 = —Grs1 + B di, (4.6)
|'3New| — Ihs1Vk _ arlldill?gh .1 dk
. Ly @lyi)?

Since gir1di < dicYi,

aglldgll®
d£Yk

T
Ik+1YVk

|'Blivew| = diyi

, (4.7)

From (4.5) it follows that
Ivill® < yi v,
Impliesthat ,

2
T4 < Ollvell
Yk k="

sincegl 1 vk < llgx+1lllvill and from Lipschitz Condition ||y || < Lllvgll . Then

|'3New| < agLllgr4all ar?lldgll?
ko 1= 9l e

Implies that

108



Journal University of Zakho, Vol. 4(A) , No.1, Pp 104-114, 2016

ISSN: 2410-7549

New| agly |t
B | < ol T 9" (4.8)

Sincelld 411l < g+l + |.Bllcvew|||dk||, (4.9)

Then

agly t

Ly t
ldiall <7 + G+ 5 vl
Sincellvell = llx — x|l
D = max{|[x — x¢|[}, Vx, xx € R}

Hence (4.10) becomes

Ly . tD
ldisa1ll < v + (?-I_ak_ﬁ) = Q.

Zkﬂ; = oo .By using lemma (1), we get
i+ l?

Jim infllgiall = 0

5- Numerical results

This section is devoted to test the implementation of the new method. We compare the new conjugate
gradient algorithm (New) and standard (H/S).The comparative tests involve well known nonlinear
problems (see Appendix) with different function 4 <n < 5000. All programs are written in
FORTRAN 95 language and for all cases the stopping condition ||gx++|l < 1 x 10~>and restart using
Powell condition |gL gr+1| = 0.2lgp+1 1 are used. The line search routine was a cubic interpolation
which uses function and gradient values. The results given in table (1) specifically quote the number
of iteration NOI and the number of function NOF. Experimental results in table (1) confirm that the
new conjugate gradient algorithm (New) is superior to standard algorithm (H/S) with respect to the

number of iterations NOI and the number of functions NOF.
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Table (1)Comparing the Performance of the Two Algorithms of Standard (H/S) and (New)

Standard formula (HS)

New formula (New)

Number of N
problem NOI NOF NOI NOF
2 5 14 5 14
100 5 14 5 14
1 500 6 16 5 14
1000 6 16 5 14
5000 6 16 5 14
2 11 24 11 24
100 49 99 49 99
2 500 52 105 50 101
1000 70 141 50 101
5000 165 348 146 309
2 3 11 3 11
100 14 81 11 57
3 500 21 124 13 67
1000 23 128 14 73
5000 31 159 16 89
2 8 45 8 46
100 49 185 47 166
4 500 112 353 105 315
1000 156 473 154 467
5000 256 774 282 843
4 28 85 31 102
100 33 114 32 104
5 500 40 146 35 122
1000 46 176 35 122
5000 54 211 43 160
2 24 64 23 64
100 29 79 29 79
6 500 F F 29 79
1000 29 79 29 83
5000 30 81 30 83
4 22 159 22 158
100 22 159 22 158
7 500 23 171 23 170
1000 23 171 23 170
5000 30 272 30 272
4 30 83 30 83
100 30 83 30 85
8 500 30 83 19 54
1000 30 83 22 61
5000 30 83 18 53
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4 38 108 31 92
100 40 122 31 92
9 500 41 124 34 109
1000 41 124 34 109
5000 41 124 34 109
Total 1890 6268 1703 5611

Note: Thefail result in standard CG is considered atwice value of new CG results.

Table (2) Comparing the Rate of Improvement between the New Algorithm (New) and the Standard Algorithm
(H/S)

Tools Standard New algorithm
algorithm (H/S) (New)
NOI 100% 90.1058%
NOF 100% 89.5182%

Table (2) shows the rate of improvement in the new algorithm (New) with the standard algorithm
(H/S). The numerical results of the new algorithm are better than the standard algorithm. As we notice
that (NOI), (NOF) of the standard algorithm are about 100%. That means the new agorithm has
improvement as compared to standard algorithm with (9.8942%) in (NOI) and (10.4818%) in (NOF).
In general, the new algorithm (New) has been improved by (10.188%) as compared to standard
algorithm (H/S).

7000

New

mH/S

6000

5000

4000

3000

2000

1000

NOI NOF

Figure (1): shows the comparison between new algorithm (New) and the standard algorithm (H/S) according to
the total number of iterations (NOI) and the total number of functions (NOF).
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6- Conclusion

In this paper, we have presented a new conjugate gradient method based on step size of Barzilai
and Borwein, the descent, sufficient descent conditions and global convergence are proved and
comparative numerical performances of well-known conjugate gradient algorithm (H/S) by using
some standard test functions. Numerical results have shown that our new formula (8)¢")performs
better than (H/S).

7- References

Al-Baali, M., (1985), Descent property and global convergence of the Fletcher-Reeves method with inexact line
search, IMA Journal of Numerical Analysis, 5, 121-124.
Barzilai, J. and Borwein, JM. (1988), Tow point step size gradient methods, IMA J. Numer. Anal., 8, 141-148

Dai, Y. H. and Liao, L.Z. (2001), New conjugacy conditions and related nonlinear conjugate gradient methods,
Application Mathematical Optimization, 43, 87—101.

Dai, Y. H. and Yuan, Y.(1995), Further studies on the Polak-Ribiere- Polyak method, Research report ICM-95-
040, Ingtitute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of
Sciences.

Dai, Y. H. and Yuan, Y. (1996), Convergence properties of the Fletcher-Reeves method, IMAJ. Numer. Anal., 2
, 155-164.

Dai, Y. H. and Yuan, Y. (1999), A nonlinear conjugate gradient method with a strong global convergence
property, SIAM Journal on Optimization, 10, 177-182.

Fletcher, R. and Reeves, C.M. (1964), Function minimization by conjugate gradients, The Computer Journal. 7,
149-154.

Fletcher, R., (1987), Practical methods of optimization, Unconstrained Optimization, John Wiley & Sons, New
York, NY, USA.

Gilbert, J. C. and Nocedal, J. (1992), Globa convergence properties of conjugate gradient methods for
optimization, SIAM Journal Optimization, 2, 21-42.

Hestenes, M. R. and Stiefel, E. (1952), Methods of conjugate gradients for solving linear systems, Journal of
Research of the National Bureau of Standards. 49 , 409-436.

Liu, G. H.; Han, J. Y. and Yin, H. X. (1993), Global convergence of the Fletcher-Reeves algorithm with an
inexact line search, Report, Ingtitute of Applied Mathematics, Chinese Academy of Sciences.

Liu, Y. and Storey, C. (1991), Efficient generalized conjugate gradient algorithms, part 1. Theory, Journal of
Optimization Theory and Applications, 69, 129-137.

Polak, E. and Ribiere, G. (1969), Note surla convergence des méthodes de directions conjuguées., 3(16), 35-43.

Polyak, B. T., (1969), The conjugate gradient method in extreme problems, USSR Comp. Math. and Math.
Phys., 94-112.

Powell, M.J.D., (1977), Restart procedures for the conjugate gradient method, Mathematical Program. 12, 241—
254.

Zoutendijk, G., (1970), Nonlinear Programming, Computational Methods in Integer and Nonlinear
Programming. North-Holland Amsterdam, 37-86.

112



Journal University of Zakho, Vol. 4(A), No.1, Pp 104-114, 2016 ISSN: 2410-7549

Appendix
Test problems:
1-Generalized Edger Function:

"/2

FO) = ) Cais = 2% + (taios = 270 + G + 1)
i=1

, xo = (1,0, ...,1,0)T.

2-Wolfe function:

n-1

flx) = (—xl (3 — %) + 2x, — 1)2 + Z (xi_l — X; (3 — % + 241 — 1))2

1=

2

+ (no1 —xa (3 xz—”) —1) %= (=1,.., =D,

3- Sum of Quadrics (SUM) Function:
n
fx) = Z(x" -D* , x=(11,.., 1D
i=1
4- Oren and Spedicato OSP Function:
n
flx) = (Z i(x)*)%x, = (1,...,17.
i=1

5-Miele Function:

/4

flx) = Z(ex"’H 4 10x45-5)% + 100(xg;—p + x4;-1)° + (tan(xgi_q — x4))* + (x4;-3)°
i=1

+(xy — D2 ,x0 = (1,2,2,...,1,2,2)T.

6-Generalized non-diagonal Function:
n
fx) = Z 100(x, — xl-z)z +(1=x)%,x = (-1,..,—DT.
i=2

7-Generdlized central Function:

"/a

flx) = 2(€xp(x4i—3 + X4i-2)* +100(xg5_5 — x45-1)° + arctan(og_q — x4)* + x45-3)
i=1

xo = (1,2,2,2,..,1,2,2,2)T.
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8-Generalized Rosen Brock Banana Function:

"/,

FG) = D 1000tz = 251)" + (1 = x31.0)?
i=1

, X0 =(-121,..,—1.2,1DT.
9-Powell Function:

n

fx) = Z((xzu'—s — 10x4;-2)% + 5(xgi-1 — X41)? + (egi—p — 2245-1)* + 100xg;-3 — x4:)*),
i=1

x, = (3,-1,0,1,...,3,—1,0,1)T.

1A

G 5 a0 U3 S syl s 0583l (St 1 6 st (0 S8 (S0 5 e ¢ W S4B (B
LY ¢ )Y gt b sl yliiy L (StEP Size of Barzilai and Borweinye guwa cuiwsiiy Su
B 3,543 aed 0 grdgle iSauy (Spobikw JE3 ljbel Lilsler s agf 238 UgeS 0 Uk SIS
DL IS 05bd 5 03l553 cieple) @ ews Sty 0,831 S aa ) Kl

W EAl
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