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Abstract:

In this paper, we propose a modification of the self-scaling quasi-Newton (DFP) method for
unconstrained optimization using logistic mapping. We shoe that it produces a positive definite matrix.
Numerical results demonstrate that the new algorithm is superior to standard DFP method with respect to

the NOI and NOF.
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1- Introduction

The quasi-Newton  algorithms  for
minimizing a function f(x),x € R", are
iterative accelerated gradient methods which use
past positions and functional values rather than
an analytically or numerically calculated one to
approximate the inverse of the Hessian matrix H
of the function. This is accomplished by
selecting an initial approximation H, to the
inverse Hessian, as well as an initial
approximation x; to the minimum of f(x), and
then finding at each step ay, the scalar parameter
which  minimizes f(x;, — apHrgr) where
gk = 90a) = Vf(x).

It is known that the search direction of the
quasi-Newton algorithms is

di = — Hkge, (1.1

and the approximate matrix H is updated by

Hiyy = He + Dy, (1.2)
where Dy, is the correction matrix.

The Davidon Fletcher Powell
(DFP) algorithm was the first quasi-Newton
algorithm created (Shanno and Kettler, 1970). In

T T
o ViV _ HrYeYiHei
substituting Tk~ yTHx
where vy = Xp4q1 - Xgand Y = gr+1 — gx for
D and giving

this technique,

H - H _HkkaIZHk Vi
k+1 — k Ty T, *
YiAkYVk Vi Vk

(1.3)

The following theorem will be used later.

Theorem (1.1). (Edwin and Stanislaw, 2001).
Let a function f € C, x;, € R™, g, = 0, and Hy, is
an n X n real symmetric positive definite matrix.
If we set xp41 = x;, — ay Hggy, where a; =
arg main f(xx —aHpgy), then a; >0, and

fOesn) < f ().

2- A new self- scaling quasi-Newton (DFP)
formula

For a control parameter, u, the logistic
mapping (Lu et al., 2006) is defined by

Zgpr = pz(1—z)  (2.1)

Let us consider the quasi-Newton condition

Hyp1Vie = vk, (2.2)

where v, = apdy = Xg41 - Xk, U,y € (0,1)
and yx =Agk = Gr+1 — G-

A new self-scaling quasi-Newton (DFP)
formula can be defined as

T T
_ HiyeYiHe | py(1=y)vev
Hpy1 = Hy ——7 T (2.3)
Vi HiYk Vi Vk
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Algorithm: A New DFP Algorithm

Step (1):- Set k = 0; select x, and a real symmetric positive definite Hy(Hy = I).
Step (2):- If g = 0, stop ; else di = —Hygy, where g(x) = Vf(x)
Step (3):- Compute aj = arg min f(x, + ady)
Xpy1 =X + ay di.
Step (4):- Compute vy, = Ax, = agdy
Ve = Agk = Gr+1- 9k . ;
Husn = H 2200y wrCopue]

Step (5):-Setk = k+1; gotostep?2.

, where i,y € (0,1)

Theorem (2.1). If the new self-scaling quasi-Newton (DFP) formula (2.3) applied to the quadratic
function with Hessian G = G, then Hy,1Ag; = uy (1 — y)Ax; for 0 < i < k where v, = Axy, = Xj4q
-xg and Y = Agy = 41 — Gk = GV

Note: df Gd;=0.

Proof. We prove this theorem by using induction criteria. For k = 0, we have

Hoyoyo Ho uy (1 —y)vovgy
Y;)FHoYo 0 VgYo

H; yo = Hoyo — ]

=uy(1 =7)v.
Assume the result is true for k — 1 ; thatis HyAg; = uy(1 —y)Ax; ,0<i <k-—-1.
We now show that Hy,,Ag; = uy(1 —y)Ax;, 0 < i < k. First consider i = k, we have

Hyyyr Hy wy (1 = Vv vf
T Y + T
Vi Hi Vi Vi Yk

Hiy1ye = Heye — Yk,
implies that

Hyr1 yie = uy (1 =) v
It remains to consider the case i < k. Using the hypothesis, we have

Hyyyyi Hy y, py (1 = Y)vvp
yiHieye ' Vi Vi

Hpp1yi = Heyp —

i

- Hyyi ry(1-y)vi
=y =Y)vi = om o Yivi) + Tye (wiyi)-

Since
vly, = vlGv; = aga;diGd; =0

and
yiv; = viGv; = apa;dLGd; = 0.

Hence,

Hipyi=uy (1 —y)v;.

The proof is completed
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Theorem (2.2). Suppose that g, # 0. In the new self-scaling quasi-Newton (DFP) formula (2.3), if Hj,
is positive definite, then so is Hy41.
Proof. Multiply both sides of (2.3) by x” from left and by x from right, we get

T T T T
x'H H,x 1—y)x' vv.x
xTHpy1x = xTHpx — kY iV Tk +m/( ") 7k

T T
Vi Hi Vi Vi Yk
T 2 T, 2
X" H 1—- X'V
= xTHyx _( ! kYk) n my( VT)( k) .
YieHkYk Vi Yk

We can define

a= H;/Zx and b= H;/Zyk ,

1/2

where Hy = H, H?

P
Now, using the definition of a and b, we obtain

xTHpx = xTH;/2 H;/Zx =a'a,
xTHkyk = XTH;/Z H;/zyk = aTb,
and

1/2 1/2
yrHyy = YEH;{/ Hk/ yk = b7b.

Hence
THe ey = T — (@b)®  w@—-y)x"v)?
ket bTb Vi Vi
_ llall2lplI*=(a"b)? | uy(1-y)(xTvg)?
lIblI2 vkYk
We know that uy(1—7y) is positive and we have vl y, = vl (grs1 — gr) = —VEgx because

v grs1 = axdrgre1 = 0 by (In the conjugate direction algorithm, g7, ,d; = 0 for all k, 0 < k <
n—1,and 0 < i < k (Edwin and Stanislaw, 2001)).

Since vy, = ayd, = —aHi gy, we get
ViV = ~Vi gk = eIk Hedr,
The above yields
2 2_ThH\2 _ T, \2
XTHy\ % = llall“lpll*—(a"b)* | py(1-y)(x vi) (2.4)

bl akxgy Hidk

The fractional terms on the right-hand side of (2.4) are nonnegative, the first term is nonnegative
because of the Cauchy-Schwarz inequality, and the second term is nonnegative because Hy, aj > 0 by
Theorem (1.1) and uy(1 —y) > 0. Therefore, to show that x”Hy,;x > 0 for x # 0, we only need to
demonstrate that these terms do not vanish simultaneously. The first term vanishes only if a and b are
proportional, that is if a = Bb for a scalar ).
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_ T 2
To complete the proof it is enough to show that if a = b, then SACSICRINEN)

axgk Hkgk
First observe that
1/2 1/2 1/2
HY?x = a = Bb = BH*y, = HY*(Byio).
Hence,
x = By
Using the above expression for x and v}y, = —aygr Hy g, we obtain

WA -av)? A —PE2Oevd? _ (1 — VB (@ Higr)’?
18k Hicg gy Higie gk Higie
=y (1 = y)Baxgi Higy > 0.

Thus, forall x # 0
xTHy4q1x > 0.
Then the proof is completed.

3- Numerical Results

This section is devoted to test the implementation of the new method. We compare standard
formula of DFP and new formula of self-scaling Q-N (DFF), the comparative tests involve well-
known nonlinear problems (standard test function) with different dimensions 4 <n < 100, all
programs are written in FORTRANOS5 language and for all cases the stopping condition is ||gr4+1llc0 <
107>, Efficiency of the new DFP algorithm has been tested by means of 10 standard problems.
Experimental results in Table (1) represent the number of function evaluations NOF and the number of
iterations NOI. Table (2) shows the percentage of improving the new algorithm and confirms that the
new method is superior to standard method with respect to the NOI and NOF.
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Table (1): Comparison between the performance of the standard DFP update and new DFP update.

Standard formula New formula
Test fun. n
NOI NOF NOI NOF
Powell 4 23 126 17 89
100 80 467 35 142
500 60 328 35 137
1000 44 230 38 151
4 39 250 37 192
Wood 100 243 1380 251 1178
500 751 3439 700 2575
1000 1192 4758 1106 3548
4 7 18 7 16
Wolfe 100 72 145 55 111
500 82 165 61 123
1000 95 191 68 137
4 18 76 17 62
Cubic 100 34 114 46 132
500 54 166 41 123
1000 60 183 47 135
4 36 145 34 116
Rosen 100 247 1017 219 767
500 605 2240 348 1038
1000 984 3570 459 1347
4 26 119 24 95
Mile 100 38 174 30 123
500 34 152 31 125
1000 44 193 41 164
4 8 22 8 21
Beale 100 10 27 10 26
500 10 27 10 26
1000 10 27 10 26
4 6 18 5 14
Gedger 100 6 18 6 16
500 6 18 6 16
1000 6 18 6 16
4 13 40 13 36
shallow 100 15 45 15 40
500 16 46 15 40
1000 16 46 15 40
4 21 146 11 52
G. central 100 21 146 16 97
500 22 154 16 97
100 22 154 16 97
Total 5076 20598 3925 13286

Table (2): Percentage of improving the new algorithm

Tools Standard formula New formula
NOI 100 % 77.3%

NOF 100 % 64.5 %
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4- Conclusion

A new formula for updating quasi-Newton matrices based on DFP and which uses logistic mapping
is presented. It is shown that the new algorithm produces positive definite matrices. Numerical
experiments indicate that our algorithm is better than the original DFP with respect to the NOI and
NOF.
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