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ABSTRACT:

In this paper, we determine the nullity of generalized rooted t-tuple coalescence graphs and the nullity
of generalized rooted t-tuple with b-bridge coalescence graphs. Finally, the nullity of generalized rooted t-
tuple with b-path coalescence graph and (b-bridge)-tuple coalescence graph and nullity of (b-path)-tuple
coalescence graph is obtained for some special types of graphs.
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1- INTRODUCTION

The nullity (degree of singularity) of a graph G is the algebraic multiplicity of the number zero in
the spectrum of G. It is denoted by n(G) and was studied by (Cvetkovic, Doob and Sachs, (1979).,
n.d.). Let {(Gy, v1), (G2, V2), ..., (G, vy} be a family of not necessary distinct connected graphs with
roots vy, vy, ..., Vi, respectively. A connected graph G= G;oGjo...0G; is called the multiple
coalescence of Gj, Gy,...,G; provided that the vertices vy, v, ..., v; are identified to reform the
coalescence vertex v. The t-tuple coalescence graph is denoted by G't! is the multiple coalescence of t
isomorphic copies of a graph G (Sharaf & Ali, 2014).

2- Nullity of Generalized Rooted t-Tuple Coalescence Graphs

In this part, we introduce some results about the nullity and now the nullity of generalized rooted t-
tuple coalescence graphs can be determined.
Proposition 2.1. (Cvetkovic, Doob and Sachs, (1979)., n.d.)

. 1, ifnis odd,

) n(P“)_{ 0, ifnis eve?. )

. 2, ifn = 0(mod 4),

) n(Cu) { 0, otherwise.

i) (K, n)=m+n-2, for all m, n.

. 1,ifn =1,

W)”(K“)_{ 0,ifn > 1.

Corollary 2.2.(Cvetkovic, Doob and Sachs, (1979)., n.d.) (End Vertex Corollary (E.V.C.)) If G is a
bipartite graph with an end vertex, and if H is an induced subgraph of G obtained by deleting this
vertex together with the vertex adjacent to it, then n(G)=n(H).

Theorem 2.3. (Gong & Xu, 2012) Let v be a cut-vertex of a graph G of order n and Gy, Gy, ..., G; be
all components of G-v. If there exists a component, say G;, among G;, G,,.., Gy such that
N(G)=N(Gy+v)+1, then n(G)=n(G-v) — 1 =X n(G;) — 1.

Theorem 2.4. (Gong & Xu, 2012) Let v be a cut-vertex of a graph G of order n and G; be a
component of G-v. If n(G,)=n(G; + v)-1, then n(G)=n(G,)™(G-G)).

Lemma 2.5. (Sharaf & Ali, 2014) (Coneighbor Lemma (C.L.)) For any pair of coneighbor vertices u
and v in a graph G, n(G)=n(G-u)+1=n(G-v)+1.

Lemma 2.6: (Ibrahim, 2013) (Generalized Coneighbor Lemma(G.C.L.)) If v{,v,,...,v, are pairwise
coneighbor vertices of a graph G, then n(G)=n(G-(S-{vj}))+t-1, 1<5j<t, in which S={v,, v, ..., v}.
Lemma 2.7: (Ibrahim, 2013) (Semi-Coneighbor Lemma (S.C.L.)) If u and v are semi-coneighbor
vertices of a graph G, then

n(G) < n(G-u=n(G-v).

In the following, we define a new concept of t-tuple coalescence graphs and determined their nullities.
Definition 2.8. Let G be a graph consisting of n vertices and G*= {Glltl, Glztl, ooy GLtl} be a family of
rooted t-tuple coalescence graphs with rooted vertices vy, vy, ..., vy, respectively. Then, the graph
formed by identifying the rooted of t-tuple coalescence graph Gy to the k™ (1<k<n) vertex of G is
called the generalized rooted t-tuple coalescence graph and is denoted by G(G*). G itself is called
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the core of G(G"). If each member of G* is isomorphic to the rooted graph Gy, then the graph G(G*) is
denoted by G(GLt I).

Fig. (1) Generalized rooted t-tuple coalescence graphs G(G{;c I).

The nullity of generalized rooted t-tuple coalescence for cycle graph C, is determined in the
following proposition.

Proposition 2.9.
)) {2, if n = 0(mod4),

[t]
1) ‘1( (P2m+1 0, otherwise.

nt + 2,if n,m = 0(mod4),
{nt ifn # 0(mod 4)and m = 0(mod4),

(P

( ( )0,1fmf— 3. (mod4)
(Kg’m))z{nt 2m — 3) + 2,ifn = 0(mod4),
(

nt(2Zm — 3), otherwise.
Klfl')) =0, ifm > 3.

1) Applying E.V.C. (nmt times), we get: 1) (C (P2|§r|1+1)> = 1(C,), and by Proposition 2.1(ii) , we get
the result.

2) Applying E.V.C. (nm times) in each tuple graph, we get: 1) (C (Pltl )) -1+t—-1+--+t—
1=n(t—1).

3) If n, m=0(mod 4), then by using Theorem 2.4 (n times), we have: 1 (Cn (d;l)) =t+t+--+
n(C,) = nt+ 2.

If n#0(mod 4) and m=0(mod 4), using Theorem 2.4 (n times), we have: 1 (Cn (Clrtll)) =t+t+--+

n(C,), and by Proposition 2.1(ii), we get: 1 (Cn (Clrtll)) = nt.
If m=3, using S.C.L. with E.V.C., we get the result.
4) Applying Theorem 2.4 (n times), we get: 1| (Cn (Klr;lm» =t(2m —3) + t(2m — 3) + -+ + 1(Cp)

=nt(2m — 3) + n(C,), then by proposition 2.1(ii), we have:
It] _ (nt(2m — 3) + 2,if n = 0(mod4),
N (C“ (Km'm)> - { nt(2m — 3), otherwise.
5) The case m=2 is proved by (2). If m=3, using S.C.L. with E.V.C. (n times), we get the result.
The nullity of generalized rooted t-tuple coalescence for complete bipartite graph K, , is determined
in the following proposition.
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Proposition 2.10.

|t| _ (2n(t—1),if mis even,
1)‘1( nn P >_{ 2n — 2,if mis odd.

|t| _ (2nt+2n —2,if m = 0 (mod 4),
2”( e (G >_{ 0,ifm=3.

31 (Kn,n (KN )) = 2nt(2m — 3) + 2n — 2.

2n(t—1 1fm—Zandt>1
4)n<Kn,n(K§')) { ( )lfm>3

Proof.
1) Applying E.V.C. (2n times), we get the result.

2) By applying Theorem 2.4 (2n times), we have: 1 (Kn’n (Crlrtll)) =t+t+--+n(K,y), then by

Proposition 2.1(iii), we get: 1 (Kn'n (Clrtll)) = 2nt+ 2n - 2.
If m=3, using S.C.L. with E.V.C. (2n times), we get the result.
3) By applying Theorem 2.4 (2n times) we have:n (Knn (Klr;lm)) =t2m—-3)+t2m—3) + -+

1(Kpn). then by proposition 2.1(iii), we get: 1 (Kn,n (c't')) = 2n(t(2m — 3) + 2n — 2.

4) If m=2, is the same proof of case (1), if m = 3, is the same proof of case 2.

The nullity of generalized rooted t-tuple coalescence for complete graph K, is determined in the
following proposition.

Proposition 2.11.

|t| —1),if mis even,
1)‘1( P ) { 0,if m is odd.

|t| _ (nt,if m = 0(mod 4),
2)‘1( C >_{ 0,if m = 3.

3) n( o (KN m)) = nt(2m — 3).

It| n(t—1),ifm = 2,
4)‘1( (K )) { 0,ifm > 2.
Pr oof.

The proof is similar to the proof of the Proposition 2.10.

3- Nullity of Generalized Rooted t-Tuple with b-Bridges Coalescence Graphs
In this part, we define a new t-tuple coalescence graph having bridges and study the nullity of such
composite tuple graphs.

Definition 3.1. Let G be a graph on n vertices and each vertex in G is a rooted vertex and G|t| {GItI
Glztl, e GLt l} be a family of rooted t-tuple coalescence graphs. Then, the graph formed by introducing
the rooted of t-tuple coalescence graph G!tlto the rooted vertex in G by an edge called bridge is called

generalized rooted t-tuple with b-bridges coalescence graph and denoted by G(b) G!” , as
illustrated in Figure 2.

Fig. (2) Generalized rooted t-Tuple with b-Bridges coalescence graphs G(b) Gl!tl.
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Proposition 3.2.

n(t — 1),if n and m is even,

Dn (Pn(b)Prlrfl) =1{n(t—1) + 1,if mis even and n is odd,
0, ifmis odd.

0,if m = 3 and n is even,

2) (Pn(b)Cllfll) =4 1,if m = 3and nis odd,

nt,if n m = 0(mod 4).

3) 1 (P, (Kl ) = nt(2m - 3).

n(t—1) + 1,if m = 2 and nis odd,
4) 1 (P.KN) =] n(t—1),ifm = 2 and nis even,
0,if m > 3.

Proof.

1) If n and m is even, applying E.V.C. (n(m/2) times) in each tuple graph and by Proposition 2.1(i),
we get the result.

If m is odd, applying E.V.C. (m-1/2 times) in each tuple graph and after them using E.V.C., we get the
result.

2) If m=3, using S.C.L. with E.V.C. (n times), we get the result, if m=0(mod 4), applying Theorem

2.3(n times), we get: 0 (B ()ClE ) =n () =1+ (cl) =1+ +n(ch) -1
=n(t+1) —n=nt.
3) Applying Theorem 2.3 (n times), we get:
n(Pn(b)Klfl'_m) =t2m—3)+1—-1+t@2m—-3)+1—1+--+t2m—-3)+1—1
=nt(2m — 3).
4) If m=2, applying E.V.C. (n times), we get:
n (Pn(b)Klr;l) =t—1+t—1+--+n(P,), and by Proposition 2.1(i), we get the result. And if m >2

using S.C.L. with E.V.C., we get the result.
Proposition 3.3.

[t] —
1) 1 (Ca(®)PJihy, ) = 0.

it _ (n(t—1) + 2,if n = 0(mod4),
2)m (Cn(b)PZm) o { n(t—1), otherwise.
2,ifm = 3and n = 0 (mod 4),
3) N (Cn(b)Cllfll) =1 0,ifm =3 and n # 0(mod 4),

nt, if m = 0(mod 4).
4) 1 (Ca@KH , ) = nt@m - 3).
n(t—1) + 2,if m = 2 and n = 0 (mod 4),
5) n(Cy(0KM) = { n(t—1),if m = 2 and n # 0(mod 4),
0,if m > 3.

Proof.
1) By applying E.V.C. ((t(2m-1/2)) times) in each tuple graph we get the result.
2) By applying E.V.C. (m times) in each tuple graph we get the result.

3) If m=3, by using S.C.L. with E.V.C. (n times) we get the result, if m=3 and n=0(mod 4) the proof is
easy.
If m=0(mod 4), applying Theorem 2.3(n times), we get:

n(Cat)eh) =n(ch)=1+n(ch)-1+-+n(ch)-1=nt+1D-n=nt
4) Applying Theorem 2.3 (n times), we get:
N(Ca®Kilm ) =t@m=3)+1-1+t2m-3)+1 -1+~ +t@m—-3) +1-1

=nt(2m — 3).
5) If m=2, using S.C.L with E.V.C. (n times), we get:

1 (Cn (b)Klrfll) =t—14+t—14:-4+n(C,), and by Proposition 2.1(ii), we get the result.
If m > 3, using S.C.L. with E.V.C., we get the result.
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Proposition 3.4.
{Z(nt —1),if mis even,
0, ifmisodd.

1) 1 (Kna ()P4
It| 2n — 2,if m = 3 and n is even,
2)m (Kn'n (b)Cm) 2nt, if and m = 0(mod 4).

3) 1 (Kna®Kh ) = 2nt(2m - 3).
1ty _ (2n(t—1) + 2n — 2,if m = 2 and n is odd,
4 1 (Knn(0)Ky) = { 0,if m > 3.
Proof.
The proof is similar to the proof of the Proposition 3.2.

Proposition 3.5.

1t _ (n(t—1),if mis even,
Hm (Kn(b)Pm ) - { 0, if mis odd.

1ty _ ( n(t—1),ifm =3,
2 (K“(b)cm) B {nt, if m = 0(mod 4).

3) 1 (Ka (Kl ) = nt(2m - 3).
ity _ (n(t—1),ifm =2,
4 (Kn(b)Km) - { 0,if m > 3.
Proof.
The proof is similar to the proof of the Proposition 3.2.

4- The Nullity of Generalized Rooted t-Tuple with b-path Coalescence Graphs
If the b-bridge in definition 3.1 is replaced by a b-path graph of odd order, then we call such a t-tuple
with b-bridge coalescence graph by a t-tuple with b-path coalescence graph and symbolized it by G(b-

path) Giltl, as shown in Figure 3.

Fig. (3) Generalized Rooted t-Tuple with b-path Coalescence Graph G(b-path) G!tl.

In the following, we obtain the nullity of generalized rooted t-tuple with b-path coalescence graph of
some special graphs.

Proposition 4.1.
1) Ifnis odd, then
n(t — 1),if mis even,

1 (Pa(b — path)pyy!) = { 1, ifmis odd.
2) If nis even, then

_ 1t _ (n(t—1),if mis even,
N (Pn(b path)Py, ) - { 0, ifmis odd.
0,if m = 3 and nis even,
_ 1ty _ 1,if m = 3 and n is odd,
3 (P“(b path)Cm) " )nt+ 1,ifnis odd and m = 0(mod 4).
nt, if n is even and m = 0(mod 4).

_ It] _ (n(t(2m — 3) + 1,if nis odd,
4 (Pn (b = path)Kp, iy ) B { n(t(2m — 3), ifniseven.
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n(t—1),ifm=2,
5) 1 (Pu(b — path)K};) ={ ( 0 if)m > 3.

Proof.
1) If n is odd and m is even, applying E.V.C. (m/2 times) in each tuple graph, we get: 1 (Pn(b -

path)Pllr'fl) =t—1+t—1+--+7 (Pn(b - path)Pllnlll), also using E.V.C., we get:
1 (Pn(b - path)Plllfl) =n(t—1) + N(Peyen), and by Proposition 2.1(i), we have: 7 (Pn(b —

path)Prlrfl) =n(—1).

If n and m is odd, applying E.V.C., we get the result.

2) The proof is similar to part 1.

3) If m=3, using S.C.L. with E.V.C., we get the result.

If m 3, applying Theorem 2.3 (n times), we get: 1| (Pn(b - path)CLtll) =t+1-1+t+1-1+--+
n(P,), and by Proposition 2.1(i) , we get the result.

4) Applying Theorem 2.3 (n times) with E.V.C., we get: 0 (Pn (b— path)Klr;l’m) = n(t(Zm -3+

1)) —n +1n(P,), and by Proposition 2.1(i) , we get the result.
5) If m=2 is the special case of 1. And if m =3, using S.C.L. with E.V.C., we get the result.

Proposition 4.2.
2,if n = 0(mod4)and m is odd,
B ity _ ) n(t—1),ifn = 0(mod4)and m is even,
1) n(Cn(b path)Fy ) N 0,if n # 0(mod4)and m is odd,
n(t—1), ifn # 0(mod4)and m is odd.
B ity _ (nt+ 2,if n =0 (mod 4),
2)m (Cn(b path)C4m) - { nt,if n # 0(mod 4),
B It] _ (nt(2m — 3) + 2,if n = 0 (mod 4),
3) n(Ca (b= path)Kply, ) = { nt(2m — 3),if n # 0(mod 4),
_ it _ (n(t—1),ifm=2,
9 n(Cato —patmyiil) = " T
Proof.
1) For all cases using E.V.C., we can get the result.

2) Applying Theorem 2.3 (n times), we get: 1 (Cn(b — path)C
1n(C,), and by Proposition 2.1(ii) , we get the result.
3) Applying Theorem 2.3 (n times), we get: 1 (Cn (b - path)Klrfll'm ) =t(2m—-3) +t(2n—3) +

- +1(C,), and by Proposition 2.1(ii), we get the result.
4) The proof is similar to the proof of Proposition 4.1.

It]
4m

J=tHl-l+t+1-1+-+

Proposition 4.3.

2n(t — 1),if mis even,
D 1 (Knn(b ~ path)R}!) = { 2r(1 - 2) if m is odd.
0,ifm=3,

_ [ty _
2) n(K“'“(b path)Cm) - {Z(nt +n—1),ifnand m = 0(mod 4).
3) 1 (Knn (b — path)K}! ) = 2nt(2m — 3) + 2n - 2.

2n(t— 1+,ifm =2,

Proof.
The proof is similar to the proof of the Proposition 4.2.
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Proposition 4.4: If n>2. Then

_ it _ (n(t—1),if mis even,
D (K“(b path)Py, ) - { 0, if misodd.

_ it _ 0,ifm=3,
2)m (Kn(b path)Cr, ) B {nt, if m = 0(mod 4).

3) n( n(b— path)l(It| ) = nt(2m — 3).

4) 1 (Kq(b - path)Kly)) = 0,ifm > 2,

Proof.

The proof is similar to the proof of the Proposition 4.2.

5- The Nullity of Generalized Rooted b-Bridge Tuple Coalescence Graphs
In this part, we introduce the generalized rooted b-bridge tuple coalescence graph, defined as follows:

Definition 5.1. Let G be a graph of order n with vertex set V(G)={ vy, vy, ..., vo} and each vertex in G
is a rooted vertex. Let G ( Klf(Gi)) be the graph obtained from G by identifying each rooted vertex in G

with b-bridge tuple coalescence graph K?(Gi). As illustrated in Figure 4.

Fig. (4) Generalized Rooted b-bridge tuple coalescence graph G ( K;’(Gi) )

The nullity of generalized rooted b-bridge tuple coalescence for cycle graph C, is evaluated in the
next proposition.

Proposition 5.2.

b(Pm) —1,if mis odd,
1)‘1( ) { 2,if m is even.

i (2b — 1),if m = 0(mod 4
2)‘]( (b(C)>:{n Olfmlqtrg(mogrg). )

3) n( n( b(Kmm))> nb(2m — 2) — n.
4) n( » (K b(K‘“)))

Proof.
1) Applying E.V.C., we can get the result.

2) For case (i), using Theorem 2.3 (n times), we get: 0 (Cn (Klf(cm))) =2b+2b+--+2b—n=

2nb — n.
For case (ii), using S.C.L., we get the result.
3) Applying Theorem 2.3 (n times), we get: (Cn (Kb(Km'm))) =b(2m—-2)+b(2m—-2) + -+

1
b(2m — 2) = nb(2m — 2) — n.

4) Using S.C.L., we get the result.

The nullity of generalized rooted b-bridge tuple coalescence for complete bipartite graph K, , is
evaluated in the next proposition.
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Proposition 5.3.

b(Pm) 2n(b — 1),if mis odd,
D (Kn ) { 2n — 2,if m is even.

bcm 2n(2b — 1),if m = 0(mod 4),
2) “(K“ “) ) { ( )0 0.W. ( .

3 1 (Km, (K‘l’“‘m'm))) = 2n(b(2m — 2) — 1).

4 (Kn,n (K?(Km)» = 0.

Proof.

The proof is similar to the proof of the Proposition 5.2.

The nullity of generalized rooted b-bridge tuple coalescence for complete graph K, is evaluated in the
next proposition.

Proposition 5.4.

1) ( b(Pm) ) {n(b —1),if mis odd,
N 0,if m is even.

2) (k. b(Cm) {n(Zb —1), (;fan‘;] 0(mod 4),

(ka2
3) n(Kn( b“‘mm) ) n(b(2m — 2) — 1).
4) n(Kn( Kpm)) )

Pr oof.

The proof is similar to the proof of the Proposition 5.2.
Definition 5.5: If the b-bridge tuple graph in Definition 3.1 is replaced by a b-path Py, then we call

such a b- tuple graph by a b-path tuple graph and symbolized it by G(Klf_path(ci)). That is

G(Kb_path(ci)) obtained from G by identifying each rooted vertex in G with b-path tuple

graph Kb path(Gl)

Fig. (5) Generalized rooted b-path tuple graph G ( K>~ path(G‘))

Proposition 5.6.

b-path(Pm+1)\) _ (2, if n = 0(mod 4),
D (Cn (Kl )> B { 0, otherwise.

2) 1 (Cn (Kllj_path(sz)» =n(b — 1),ifn = 0(mod 4).

b-path(Csm)\) _ (nb + 2, ifn = 0(mod 4),
Cn (Kl )) o { nb, otherwise.
b-path(Kmm)) | _ {nmb + 2, ifn = 0(mod 4),
A <C“ (Kl )> - nmb, otherwise.
2,ifn = 0(mod 4)and m = 1,

(Cn (Kllj_path(Km))> = { nb,ifm = 2,
0,ifm > 2.

\SJ
=
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Proof.

1) Using E.V.C., we get the result.

2) Using E.V.C., we get the result.

3) Applying Theorem 2.4 (n times), we get:

n (Cn (Kllj_path(c“m))) =b+b+--+n(C,), and by Proposition 2.1(ii), we get the result.
4) Applying Theorem 2.4(n times), we get:

n (Cn (KllJ_path(Km'm))) =b+ b+ +1(C,), and by Proposition 2.1(ii), we get the result.
5) By using S.C.L., we get the result.

Proposition 5.7.

b-path(Pp)\) _ ( 2n—2,if mis odd,
D (Kn’n (Kl )) “ 2n(b — 1),if m is even.

b-path(Cp, 2n(b + 1) — 2,if m = 0(mod 4),
2) 1 (Kn,n (K1 path( ))> = { ) 0,ifm = 3. ( )
3 1 (Kn,n (Kf‘pa“’“‘m'm))) = 2n(mb + 1) — 2.
2n—2,ifm=1,
4 (Kn,n (Ki"path“‘m))) ={2n(b—1),ifm = 2,
0,ifm > 2.

Proof.
1) If mis odd, applying E.V.C., we get the result.
If m is even, applying E.V.C., (2n times) we get:

1 (Koo (K97P**™)) =b =14 b— 14 +b—1=2n(b - 1),

2) If m=3, apply S.C.L., we get the result.
If m=0 (mod 4), applying Theorem 2.4(2n times), we get:

n (Kn,n (K‘l"path(cm))) —b+b+-+n(Kyn) =2nb+2n—2=2n(b+1) - 2.
3) Applying Theorem 2.4 (2n times), we have:

n (Kn,n (Kll)_path(Km'm))) =mb+ mb+ -+ n(Kyn) = 2mnb + 2n — 2.

4) For m=1 is a special case of case 1 part (1). For n=2, applying E.V.C, we get the result. For case n
> 2 using S.C.L. with E.V.C., we get the result.
The nullity of generalized rooted b-path tuple coalescence for complete graph is evaluated in the next
proposition.

Proposition 5.8.

b-path(P)\) _ (n(b — 1),if nis ven,
Hn (Kn (Kl )) N { 0,if n is odd.

2) n (Kn (K‘l"path(c‘*m))) = nb,ifn > 2.

3 (Kn (KE_path(Km’m))) = nmb.

4) M (Kn (Kl;_path(](m))) =0,ifm > 3.

Proof.
1) The proof is similar to the proof of case (1) of the Proposition 5.7.
2) The proof is similar to the proof of case (3) of the Proposition 5.6.
3) The proof is similar to the proof of case (3) of the Proposition 5.6.
4) The proof is similar to the proof of case (5) of the Proposition 5.6.
b(Gj)

Definition 5.9. In Definition 5.1, we introduced each rooted vertex in G by a bridge with K

we denote it by (G (b) KE(Gi)). As illustrated in Figure 6.

and
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: b(G;)
Fig. (6) A graph G (b)K; """,

Proposition 5.10.
n(b — 1) + 2,if mis even and n = 0(mod 4),
1 n (Cn (b)KE(Pm)) = { n(b — 1),if mis even and n # 0(mod4),
0,if m is odd.

b(Cm) _ n(2b — 1) + 2,if n,m = 0(mod 4),
2 (C“ (b)K; ) B {n(Zb —1),if m = 0(mod 4) and n # 0(mod 4).

b(Kmm)) _ (2nmb — 2nb —n + 2,if n = 0(mod 4),
3 (C“ (b)K; ) - { 2nmb — 2nb — n,if n # 0(mod4),

4 n(Cy @KY*™) = 0,ifm 2 3.

Proof.
The proof is similar to the proof of the Proposition 5.8.

Proposition 5.11.
n(b—1)+ 1,ifn,mis odd,
1 (Pn (b)KE(Pm)) = { n(b — 1),ifnis even,
0,0.W.
n(2b —1) + 1,if nis odd andm = 0(mod 4),
2) 7 (Pn (b)K?(C"‘)) ={ n(2b - 1),ifnis even and m = 0(mod 4).
0,if m = 3.
2nmb — 2nb — n + 1, if nis odd,
2nmb — 2nb — n, if n is even.
n(b—1)+ 1,ifnisoddand m = 1,
4) n (Pn (b)Klf(Km)) = { n(b —1),ifnisevenand m = 1,
0, ifn > 2.

3 n (7 oK) =

Proof.

1) Applying E.V.C., we get the result.

2) For cases (if n is odd andm = 0(mod 4), andif n is even and m = 0(mod 4)), applying Theorem 2.4 (n

times), we get:

n (Pn (b)KE(Cm)) =2b—1+2b—-1+--4+n(P,), and by Proposition 2.1(i), we have
b(Cm n(2b — 1) + 1,if n is odd andm = 0(mod 4),

T](Pn OIS )) - { n(2b — 1),if nis even and m = 0(mod 4).

And for case if m=3, apply S.C.L. with E.V.C., we get the result.

3) The proof is similar to the proof of case 2.

4) For cases (if n is odd and m=1) and (if n is even and m=1), using E.V.C., we get the result. And for

case (if n > 2), using S.C.L. with E.V.C., we get the result.

Proposition 5.12.

() [0 s
2)n (Kn,n(b)Kll)(Cm)) - {4nb - Zz)ififr?n:: (;(.mod 4).

3) 1 (Knn(®)K," ™) = 4nbm —anb-2.

2) 1 (Kn K ) = 0.
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Proof.
The proof is similar to the proof of the Proposition 5.11.
Proposition 5.13.

0,ifnis even,

D 1 (K GK™) = {
2 1 (Kn(b)Ki’(Cm)) _ {n(b - 1)0,’iiffrrr:1=:03(.mod 4),
3) 1 (Ka®)K; ™) = n(2b(m — 1) - 1).

b(Km
2) 1 (Ka K *) = 0.
Proof.
The proof is similar to the proof of the Proposition 5.11.

n(b — 1),if mis odd,

Definition 5.14. In Definition 6.1, we introduced each rooted vertex in G by a b-path with K}

we denote it by (G (b — path) K>y,

Proposition 5.15.

2,if mis even and n = 0(mod 4),
1) 1(Cy (b — path)K; ™) = 0,if m is even and n # 0(mod4),

n(b —1),if mis odd
n(b — 1),if m = 0(mod 4),
21 (Cn (b — path)KE(Cm)) =42, ifm # 3 andn = 0(mod 4),
0,if m = 3 and n # 0(mod 4).
31 (Cn (b — path)Kl;(Km'm)) = 2nb(m — 1).

) n(Cq (0 — path)K;* ™) = 0.

Proof.
1) Applying E.V.C., we get the result.

b

6D and

2) For case m= 0 (mod 4), applying Theorem 2.4 (n times), we get the result. For case m=3, using

S.C.L. with E.V.C., we get the result. .
3) The proof is similar to the proof of case 2.
4) By using S.C.L. with E.V.C., we get the result.

Proposition 5.16.
b(Pm)\ _ 0,if m is even,
D) 1 (Pzn (b~ path)k; ) = {n(b _1),ifm is odd

_ b(Pm)\ _ 1,if m is even,
2) 1 (Ponss (b — path)k; ™) = {n(b _1),ifm is odd

N n(b —1),ifm = 0 (mod 4),
3N (Pn (b— path)Kl(Cm)) = { 0, ifm = 3 and nis even,
1,if m = 3 and nis odd.
2)n (P, (b — path)K; “™™) = 2nb(m - 1).
b(Km
5)n (P (b — path)K; ™) = 0.
Proof.
The proof is similar to the proof of the Proposition 5.15.

Proposition 5.17.
2n,if mis odd,
2n — 2,if mis even.

b(Ppy
1) 1 (Knn (b — path)K; ™)) = {
_ b(Cm)\ _ (4nb — 2,if m = 0(mod 4),
2) 1 (Kpp (b — path)K: )_{ i

b(Km,m
3) n (Kn,n (b - path)Kl( ' ))
= 4nmb — 4nb — 2.
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4) 1 (Knn (b — path)K; ™) = 2n — 2.
Proof.
The proof is similar to the proof of the Proposition 5.15.

Proposition 5.18.

b(Pm
D (Kn (b- path)Kl( )= 0,if m is even.
2nb,if m = 0(mod 4),
0,if m # 0(mod 4).

3) 1 (Ka(b - path)Kl;(Km'm)) = nb(2m — 2).

b(Kpy
4) 1 (Kq(b - path)K; ™) = 0
Proof.

{n(b —1),if mis odd,

b(Cpy
2) n(Kn (b~ path)k;
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The proof is similar to the proof of the Proposition 5.15.
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