Operation Approaches on *P_s***-Open Sets and its Separation Axioms**

Baravan A. Asaad

Dept. of Mathematics, Faculty of Science, University of Zakho, Kurdistan-region, Iraq. (Accepted for publication: May 22, 2016)

Abstract:

The purpose of this paper is to introduce the concept of an operation on a class of P_s -open subsets of topological spaces. Using this operation, we define the concept of P_s^{γ} -open sets, and study some of their related topological properties. Furthermore, some separation axioms by utilizing the operation γ on $P_sO(X)$ and the set P_s^{γ} -open have been investigated.

KEYWORDS: P_s^{γ} -open sets, P_s^{γ} - separation axioms

1. Introductions and Preliminaries

Throughout this paper, the space (X, τ) (or simply X) always means a topological space on which no separation axioms are assumed unless explicitly stated. The concept of preopen sets and semiopen sets was introduced respectively by Mashhour, Abd El-Monsef and El-Deeb (1982) and Levine (1963). On the other hand, Kasahara (1979) defined the concept of an operation on τ and introduced the concept of α closed graphs of functions. The operation α had been renamed as γ operation on τ by Ogata (1991). Recently, An, Cuong and Maki (2008) defined and investigated the concept of the mapping γ_p on the collection of all preopen PO(X) subsets of (X, τ) , and introduced the notion of pre γ_p -open sets and studied some of their properties.

Khalaf and Asaad (2009) defined the concept of P_S -open sets in a space X which is denoted by $P_SO(X)$. The aim of this paper is to introduce the concept of an operation γ on $P_SO(X)$ and to define the notion of P_S^{γ} -open sets of (X, τ) by using this operation. Section 3, contains some topological properties of P_S^{γ} -open sets and some relationships with other concepts. In the last section, some separation axioms by utilizing the operation γ on $P_SO(X)$ and the set P_S^{γ} -open are investigated.

For a subset A of a space X, the closure and the interior of A are denoted by Cl(A) and Int(A), respectively.

Definition 1.1: A subset *A* of a space *X* is said to be:

- 1. preopen if $A \subseteq Int(Cl(A))$ (Mashhour et al., 1982).
- **2.** semiopen if $A \subseteq Cl(Int(A))$ (Levine, 1963).

The complement of a semiopen set is said to be semiclosed (Crossley and Hildebrand, 1971). A preopen subset A of a topological space (X, τ) is called P_s-open (Khalaf and Asaad, 2009) if for each $x \in A$, there exists a semiclosed set F such that $x \in F \subseteq A$. The complement of a P_S -open set is Ps-closed (Khalaf and Asaad, 2009), and the P_{S} -closure of a subset A of X is defined as the intersection of all P_S -closed sets containing A and it is denoted by $P_SCl(A)$ (Khalaf and Asaad, 2009). The P_S -interior of a subset A of X is defined as the union of all P_s -open sets contained in A and it is denoted by $P_{S}Int(A)$ (Khalaf and Asaad, 2009). An operation γ on the topology τ on X is a mapping $\gamma : \tau \to P(X)$ such that $U \subseteq U^{\gamma}$ for each $U \in \tau$, where P(X) is the power set of X and U^{γ} denotes the value of γ at U (Ogata, 1991). A nonempty subset A of a topological space (X, τ) with an operation γ on τ is said to be γ -open if for each $x \in A$, there exists an open set U containing x such that $U^{\gamma} \subseteq A$ (Ogata, 1991).

Definition 1.2 (An et al., 2008): An operation γ_p on PO(X) is a mapping $\gamma_p : PO(X) \to P(X)$ such that $U \subseteq U^{pp}$ for each $U \in PO(X)$, where U^{pp} denotes the value of γ_p at U. A nonempty set A of X is said to be pre γ_p -open if for each $x \in A$, there exists a preopen set U such that $x \in U$ and $U^{pp} \subseteq A$.

Recall that a topological space (X, τ) is locally indiscrete (Dontchev, 1998) if every open subset of X is closed, or if every closed subset of X is open. Also, a topological space (X, τ) is called semi- T_1 (Maheshwari and Prasad, 1975) if for each pair of distinct points x, y in X, there exist two semiopen sets U and V such that $x \in U$ but y $\notin U$ and $y \in V$ but $x \notin V$. **Theorem 1.3** (Khalaf and Asaad, 2009): Let (X, τ) be a topological space. Then the following statements are true:

- 1. If X is locally indiscrete, then $P_SO(X) = \tau$
- 2. If X is semi- T_1 , then $P_SO(X) = PO(X)$.

2. P_{S}^{γ} -OPEN SETS

Definition 2.1: An operation γ on $P_SO(X)$ is a mapping $\gamma : P_SO(X) \rightarrow P(X)$ such that $G \subseteq G^{\gamma}$ for every $G \in P_SO(X)$, where P(X) is the power set of *X* and G^{γ} is the value of γ at *G*.

From this definition, we can easy to find $X^{\gamma} = X$ for any operation $\gamma: P_S O(X) \to P(X)$.

Definition 2.2: Let (X, τ) be a topological space and $\gamma : P_SO(X) \rightarrow P(X)$ be an operation on $P_SO(X)$. A nonempty set A of X is said to be P_S^{γ} open if for each $x \in A$, there exists a P_S -open set G such that $x \in G$ and $G^{\gamma} \subseteq A$.

The complement of a P_S^{γ} -open set of X is P_S^{γ} closed. Assume that the empty set φ is also P_S^{γ} open set for any operation $\gamma : P_SO(X) \to P(X)$. The class of all P_S^{γ} -open subsets of a space (X, τ) is denoted by $P_S^{\gamma}O(X)$. For each $x \in X$, the class of all P_S^{γ} -open sets of (X, τ) containing a point x is denoted by $P_S^{\gamma}O(X, x)$.

It is obvious that every P_S^{γ} -open set is P_S open (that is, $P_S^{\gamma}O(X) \subseteq P_SO(X)$), but the converse is not true as shown from the following example.

Example 2.3: Let $X = \{a, b, c\}$ and $\tau = \{\varphi, X, \{a\}, \{b, c\}\} = P_S O(X)$. Define an operation γ : $P_S O(X) \rightarrow P(X)$ as follows: For every $A \in P_S O(X)$

$$A^{\gamma} = \begin{cases} A & if \quad a \in A \\ X & if \quad a \notin A \end{cases}$$

Clearly, $P_S^{\gamma}O(X) = \{\varphi, X, \{a\}\}$. Then the set $\{b, c\}$ is P_S -open, but $\{b, c\} \notin P_S^{\gamma}O(X)$. Therefore, $P_SO(X) \perp P_S^{\gamma}O(X)$.

We can say that a subset A is P_S^{id} -open of X if and only if A is P_S -open in X. The identity operation *id* on $P_SO(X)$ is a mapping *id* : $P_SO(X)$ → P(X) such that $H^{id} = H$ for every $H \in P_SO(X)$. Then $P_S^{id}O(X) = P_SO(X)$.

Theorem 2.4: Let (X, τ) be a topological space and $\gamma : P_SO(X) \rightarrow P(X)$ be an operation on $P_SO(X)$. Then the following are true:

- 1. The union of any class of P_S^{γ} -open sets in X is also a P_S^{γ} -open.
- 2. The intersection of any class of P_S^{γ} -closed sets in X is also a P_S^{γ} -closed.

Proof: (1) Let $x \in \bigcup_{\lambda \in \Lambda} \{A_{\lambda}\}$, where $A_{\lambda} \in P_{S}^{\gamma}O(X)$ for all λ . Then $x \in A_{\lambda}$ for some $\lambda \in \Lambda$. Since A_{λ} is P_{S}^{γ} -open set in X, then there exists a P_{S} -open set G such that $x \in G \subseteq G^{\gamma} \subseteq A_{\lambda} \subseteq \bigcup_{\lambda \in \Lambda} \{A_{\lambda}\}$. Therefore, $\bigcup_{\lambda \in \Lambda} \{A_{\lambda}\}$ is P_{S}^{γ} -open set in X.

(2) Similar to part (1) using complement.

Generally, the intersection (resp. the union) of any two P_S^{γ} -open (resp. P_S^{γ} -closed) sets in (X, τ) may not be a P_S^{γ} -open (resp. P_S^{γ} -closed) set as demonstrated in the following example.

Example 2.5: Consider the space $X = \{a, b, c\}$ and $\tau = P(X) = P_SO(X)$. Let $\gamma : P_SO(X) \rightarrow P(X)$ be an operation on $P_SO(X)$ defined as follows: For every $A \in P_SO(X)$

$$A^{\gamma} = \begin{cases} A & \text{if } A \neq \{c\} \\ \{b,c\} & \text{if } A = \{c\} \end{cases}$$

Obviously, $P_S^{\gamma}O(X) = P(X) - \{c\}$. Then the sets $\{a, c\}$ and $\{b, c\}$ are P_S^{γ} -open, but $\{a, c\}$ $\bigcap \{b, c\} = \{c\}$ is not a P_S^{γ} -open set since $\{c\} \notin P_S^{\gamma}O(X)$. Also, $\{a\}$ and $\{b\}$ are P_S^{γ} -closed sets, but $\{a\} \cup \{b\} = \{a, b\}$ is not a P_S^{γ} -closed set.

Therefore, the class of all P_S^{γ} -open sets of any topological space (X, τ) need not be a topology on X in general.

Theorem 2.6: The following properties are true for any topological space (X, τ) :

1. If (X, τ) is locally indiscrete, then the operations γ on $P_SO(X)$ and γ on τ are equivalent and hence the concept of P_S^{γ} -open set and γ -open set are identical.

2. If (X, τ) is semi- T_I , then the operations γ on $P_SO(X)$ and γ_p on PO(X) are equivalent and hence the concept of P_S^{γ} -open set and pre γ_p -open set are identical.

Proof: (1) Follows from their definitions and Theorem 1.3 (1).

(2) Follows from their definitions and Theorem 1.3 (2).

Definition 2.7: Let (X, τ) be any topological space. An operation γ on $P_SO(X)$ is said to be P_{S^-} regular if for each $x \in X$ and for every pair of P_{S^-} open sets G_1 and G_2 such that both containing x, there exists a P_{S^-} open set H containing x such that $H^{\gamma} \subseteq G_1^{\gamma} \cap G_2^{\gamma}$.

For example, the mapping $\gamma : P_S O(X) \rightarrow P(X)$ defined in Example 2.3 is P_S -regular operation.

Theorem 2.8: Let a mapping γ be P_S -regular operation on $P_SO(X)$. If the subsets A and B are P_S^{γ} -open in a topological space (X, τ) , then $A \cap$

B is also P_S^{γ} -open set in (X, τ) .

Proof: Suppose $x \in A \cap B$ for any P_S^{γ} -open subsets A and B in (X, τ) both containing x. Then there exist P_S -open sets G_1 and G_2 such that $x \in$ $G_1 \subseteq A$ and $x \in G_2 \subseteq B$. Since γ is a P_S -regular operation on $P_SO(X)$, then there exists a P_S -open set H containing x such that $H^{\gamma} \subseteq G_1^{\gamma} \cap G_2^{\gamma} \subseteq$ $A \cap B$. Therefore, $A \cap B$ is P_S^{γ} -open set in (X, τ) .

By applying Theorem 2.8, it is easy to show that $P_S^{\gamma}O(X)$ forms a topology on X for any P_S regular operation γ on $P_SO(X)$.

Definition 2.9: A topological space (X, τ) with an operation γ on $P_SO(X)$ is said to be P_S^{γ} regular if for each $x \in X$ and for each P_S -open set *G* containing *x*, there exists a P_S -open set *H* containing *x* such that $H^{\gamma} \subseteq G$.

Theorem 2.10: Let (X, τ) be a topological space and $\gamma : P_SO(X) \rightarrow P(X)$ be an operation on $P_SO(X)$. Then the following conditions are equivalent:

- **1.** $P_{S}O(X) = P_{S}^{\gamma}O(X)$.
- **2.** (X, τ) is a P_S^{γ} -regular space.
- **3.** For every $x \in X$ and for every P_s -open set G of (X, τ) containing x, there exists a P_s^{γ} -

open set *H* of (X, τ) containing *x* such that $H \subseteq G$.

Proof: (1) \Rightarrow (2) Let $x \in X$ and G be a P_S -open set in X such that $x \in G$. It follows from assumption that G is a P_S^{γ} -open set. This implies that there exists a P_S -open set H such that $x \in H$ and $H^{\gamma} \subseteq G$. Therefore, the space (X, τ) is P_S^{γ} -regular.

(2) \Rightarrow (3) Let $x \in X$ and G be a P_S -open set in (X, τ) containing x. Then by (2), there is a P_S -open set H such that $x \in H \subseteq H^{\gamma} \subseteq G$. Again, by using (2) for the set H, it is shown that H is P_S^{γ} -open. Hence H is a P_S^{γ} -open set containing x such that $H \subseteq G$.

(3) \Rightarrow (1) By applying the part (3) and Theorem 2.4 (1), it follows that every P_s -open set of X is P_s^{γ} -open in X. That is, $P_sO(X) \subseteq P_s^{\gamma}O(X)$. Since every P_s^{γ} -open set is P_s -open (that is, $P_s^{\gamma}O(X) \subseteq P_sO(X)$ in general). Hence $P_sO(X) = P_s^{\gamma}O(X)$.

3. TOPOLOGICAL PROPERTIES OF P_S^{γ} - OPEN SETS

We begin with the definition of P_S^{γ} -limit point of a set A.

Definition 3.1: Let *A* be any subset of a topological space (X, τ) and γ be an operation on $P_SO(X)$. A point $x \in X$ is said to be P_S^{γ} -limit point of *A* if for every P_S^{γ} -open set *G* containing $x, G \cap (A - \{x\}) \neq \varphi$. The set of all P_S^{γ} -limit points of *A* is called a P_S^{γ} -derived set of *A* and it is denoted by $P_S^{\gamma}D(A)$.

Some basic properties of P_S^{γ} -derived set are mentioned in the following theorem.

Theorem 3.2: The following properties hold for any sets A and B in a topological space (X, τ) with an operation γ on $P_SO(X)$.

- $1. \quad P_S^{\gamma} D(\varphi) = \varphi \, .$
- **2.** If $A \subseteq B$, then $P_S^{\gamma} D(A) \subseteq P_S^{\gamma} D(B)$.
- 3. $P_{s}^{\gamma}D(A \cap B) \subseteq P_{s}^{\gamma}D(A) \cap P_{s}^{\gamma}D(B)$.
- 4. $P_s^{\gamma}D(A \cup B) \supseteq P_s^{\gamma}D(A) \cup P_s^{\gamma}D(B)$.
- 5. $P_s^{\gamma} D(P_s^{\gamma} D(A)) A \subseteq P_s^{\gamma} D(A)$.
- 6. $P_{S}^{\gamma}D(A \bigcup P_{S}^{\gamma}D(A)) \subseteq A \bigcup P_{S}^{\gamma}D(A).$

Proof: It is enough to proof the parts (5) and (6) since the proofs of the other parts are obvious and hence they are omitted.

(5) Let $x \in P_s^{\gamma} D(P_s^{\gamma} D(A)) - A$ and G is a P_s^{γ} -open set containing x. Then GΠ $(P_s^{\gamma}D(A)) - \{x\}) \neq \varphi$. Let $y \in G$ Π $(P_s^{\gamma}D(A)) - \{x\})$. Then, since $y \in P_s^{\gamma}D(A)$ and $y \in G$, $G \cap (A - \{y\}) \neq \varphi$. Let $z \in G \cap$ $(A - \{y\})$. Hence $z \neq x$ for $z \in A$ and $x \notin A$. So $G \cap (A - \{x\}) \neq \varphi$. Therefore, $x \in P_S^{\gamma}D(A)$. (6) Let $x \in P_{S}^{\gamma}D(A \cup P_{S}^{\gamma}D(A))$. If $x \in A$, the result is clear. So, let $x \in P_s^{\gamma} D(A \bigcup P_s^{\gamma} D(A))$ -A. Then, for P_{S}^{γ} -open set G containing x, G $\bigcap (A \cup P_S^{\gamma}D(A)) - \{x\} \neq \varphi$. Thus, $G \cap (A)$ $-\{x\} \neq \varphi$ or $G \cap (P_s^{\gamma}D(A) - \{x\}) \neq \varphi$. Now, it follows similarly from the part (5) that G $\bigcap (A - \{x\}) \neq \varphi$. Hence, $x \in P_S^{\gamma}D(A)$. Therefore, in any case, $P_{S}^{\gamma}D(A \bigcup P_{S}^{\gamma}D(A)) \subseteq$ $A \cup P_{S}^{\gamma}D(A)$.

Definition 3.3: Let *A* be any subset of a topological space (X, τ) and γ be an operation on $P_SO(X)$. The P_S^{γ} -closure of *A* is defined as the intersection of all P_S^{γ} -closed sets of *X* containing *A* and it is denoted by $P_S^{\gamma}Cl(A)$. That is, $P_S^{\gamma}Cl(A) = \bigcap \{F : A \subseteq F, X - F \text{ is } P_S^{\gamma} - \text{open set in } X\}$.

Some important properties of P_S^{γ} -closure operator will be given in the next lemma.

Lemma 3.4: The following statements are true for any subsets *A* and *B* of a topological space (X, τ) with an operation γ on $P_SO(X)$.

- 1. $P_S^{\gamma}Cl(\varphi) = \varphi$ and $P_S^{\gamma}Cl(X) = X$.
- **2.** $P_{S}^{\gamma}Cl(A)$ is the smallest P_{S}^{γ} -closed set containing *A*.
- **3.** $P_S^{\gamma}Cl(A)$ is P_S^{γ} -closed set in *X*.
- 4. $A \subseteq P_{S}Cl(A) \subseteq P_{S}^{\gamma}Cl(A)$.
- 5. *A* is P_{S}^{γ} -closed if and only if $P_{S}^{\gamma}Cl(A) = A$.
- 6. If $P_s^{\gamma}Cl(A) \cap P_s^{\gamma}Cl(B) = \varphi$, then $A \cap B = \varphi$.
- 7. If $A \subseteq B$, then $P_S^{\gamma}Cl(A) \subseteq P_S^{\gamma}Cl(B)$.

8. $P_{S}^{\gamma}Cl(A \cap B) \subseteq P_{S}^{\gamma}Cl(A) \cap P_{S}^{\gamma}Cl(B)$. 9. $P_{S}^{\gamma}Cl(A) \cup P_{S}^{\gamma}Cl(B) \subseteq P_{S}^{\gamma}Cl(A \cup B)$. 10. $P_{S}^{\gamma}Cl(P_{S}^{\gamma}Cl(A)) = P_{S}^{\gamma}Cl(A)$. **Proof:** Straightforward.

Theorem 3.5: Let *A* be any subset of a topological space (X, τ) and γ be an operation on $P_SO(X)$. Then $x \in P_S^{\gamma}Cl(A)$ if and only if $A \cap G \neq \varphi$ for every P_S^{γ} -open set *G* of *X* containing *x*.

Proof: Let $x \in P_S^{\gamma}Cl(A)$ and let $A \cap G = \varphi$ for some P_S^{γ} -open set G of X containing x. Then $A \subseteq X - G$ and X - G is P_S^{γ} -closed set in X. So $P_S^{\gamma}Cl(A) \subseteq X - G$. Thus, $x \in X - G$. This is a contradiction. Hence $A \cap G \neq \varphi$ for every P_S^{γ} open set G of X containing x.

Conversely, suppose that $x \notin P_S^{\gamma}Cl(A)$. So there exists a P_S^{γ} -closed set F such that $A \subseteq F$ and $x \notin F$. Then X - F is a P_S^{γ} -open set such that $x \in X - F$ and $A \cap (X - F) = \varphi$. Contradiction of hypothesis. Therefore, $x \in P_S^{\gamma}Cl(A)$.

From Definition 3.1 and Theorem 3.5, we have the following corollary.

Corollary 3.6: Let *A* be any subset of a topological space (X, τ) and γ be an operation on $P_SO(X)$. Then $P_S^{\gamma}D(A) \subseteq P_S^{\gamma}Cl(A)$.

Theorem 3.7: Let *A* be any subset of a topological space (X, τ) and γ be an operation on $P_SO(X)$. Then *A* is P_S^{γ} -closed if and only if *A* contains the set of its P_S^{γ} -limit points.

Proof: Suppose that A is P_S^{γ} -closed subset of a space (X, τ) and let $x \notin A$, then $x \in X - A$ and X - A is P_S^{γ} -open set in X such that $A \cap X - A = \varphi$. This means that $x \notin P_S^{\gamma}D(A)$. Hence $P_S^{\gamma}D(A) \subseteq A$.

Conversely, assume that A contains the set of its P_S^{γ} -limit points (That is, $P_S^{\gamma}D(A) \subseteq A$). To show that A is P_S^{γ} -closed (or X - A is P_S^{γ} -open) set in X. Let $x \in X - A$, then $x \notin A$. By

assumption that there exists a P_S^{γ} -open set U_x of X containing x such that $A \cap U_x = \varphi$. That is, $U_x \subseteq X - A$ and hence $X - A = \bigcup_{x \in (X - A)} U_x$. So X - A is a union of P_S^{γ} -open sets and by Theorem 2.4 (1), X - A is P_S^{γ} -open. Consequently, A is P_S^{γ} -closed set in X.

Lemma 3.8: For any subset *A* of a topological space (X, τ) with an operation γ on $P_SO(X)$. The set $A \cup P_S^{\gamma}D(A)$ is P_S^{γ} -closed in *X*.

Proof: Let $x \notin A \bigcup P_S^{\gamma}D(A)$. Then $x \notin A$ and $x \notin P_S^{\gamma}D(A)$. Since $x \notin P_S^{\gamma}D(A)$, there exists a P_S^{γ} -open set $G_x \subseteq X$ containing x which contains no point of A other than x but $x \notin A$. So G_x contains no point of A, which implies $G_x \subseteq X$ – A. Again, G_x is a P_S^{γ} -open set of each of its points. But as G_x does not contain any point of A, no point of G_x can be a P_S^{γ} -limit point of A. Therefore, no point of G_x can belong to $P_S^{\gamma}D(A)$. This implies that $G_x \subseteq X - P_S^{\gamma}D(A)$. Hence, it follows that $x \in G_x \subseteq X - A \cap X P_S^{\gamma}D(A) = X - (A \bigcup P_S^{\gamma}D(A))$. Therefore, A $\bigcup P_S^{\gamma}D(A)$ is P_S^{γ} -closed.

 P_S^{γ} -limit points provide us with an easy means to find the P_S^{γ} -closure of a set A.

Theorem 3.9: Let (X, τ) be a topological space and γ be an operation on $P_SO(X)$. Then $P_S^{\gamma}Cl(A) = A \bigcup P_S^{\gamma}D(A)$ for any subset A of a space X.

Proof: Since $A \subseteq A \cup P_S^{\gamma}D(A)$. Then by Lemma 3.8, $P_S^{\gamma}Cl(A) \subseteq A \cup P_S^{\gamma}D(A)$.

On the other hand, since $A \subseteq P_S^{\gamma}Cl(A)$ in general and by Corollary 3.6, $P_S^{\gamma}D(A) \subseteq$ $P_S^{\gamma}Cl(A)$. So we have $A \cup P_S^{\gamma}D(A) \subseteq$ $P_S^{\gamma}Cl(A)$. Therefore, in both cases, we obtain that $P_S^{\gamma}Cl(A) = A \cup P_S^{\gamma}D(A)$.

Theorem 3.10: For any subsets A, B of a topological space (X, τ) . If γ is a P_S -regular

operation on $P_sO(X)$, then $P_s^{\gamma}Cl(A) \bigcup P_s^{\gamma}Cl(B) = P_s^{\gamma}Cl(A \bigcup B)$.

Proof: It is enough to proof that $P_S^{\gamma}Cl(A \cup B)$ $\subseteq P_S^{\gamma}Cl(A) \cup P_S^{\gamma}Cl(B)$ since the other part follows directly from Lemma 3.4 (9). Let $x \notin P_S^{\gamma}Cl(A) \cup P_S^{\gamma}Cl(B)$. Then there exist two P_S^{γ} -open sets *G* and *H* containing *x* such that *A* $\bigcap G = \varphi$ and $B \bigcap H = \varphi$. Since γ is a P_S regular operation on $P_SO(X)$, then by Theorem 2.8, $G \bigcap H$ is P_S^{γ} -open in *X* such that $(G \bigcap H)$ $\bigcap (A \cup B) = \varphi$. Therefore, we have $x \notin P_S^{\gamma}Cl(A \cup B)$ and hence $P_S^{\gamma}Cl(A \cup B) \subseteq P_S^{\gamma}Cl(A) \cup P_S^{\gamma}Cl(B)$.

Definition 3.11: A subset *N* of a topological space (X, τ) is called a P_S^{γ} -neighbourhood of a point $x \in X$, if there exists a P_S^{γ} -open set *G* in *X* such that $x \in G \subseteq N$.

The following is a relation between P_S^{γ} -open set and P_S^{γ} -neighbourhood of a point $x \in X$.

Theorem 3.12: Let $U \subseteq (X, \tau)$ be a P_S^{γ} -open if and only if it is a P_S^{γ} -neighbourhood of each of its points.

Proof: Let U be any P_S^{γ} -open set in (X, τ) . Then by Definition 3.11, it is clear that U is a P_S^{γ} neighbourhood of each of its points, since for every $x \in U, x \in U \subseteq U$ and $U \in P_S^{\gamma}O(X)$.

Conversely, suppose U is a P_s^{γ} -neighbourhood of each of its points. Then for each $x \in U$, there exists a P_s^{γ} -open set V_x containing x such that V_x $\subseteq U$. Then $U = \bigcup_{x \in U} V_x$. Since each V_x is P_s^{γ} open. It follows from Theorem 2.4 (1) that U is P_s^{γ} -open set in X.

Definition 3.13: Let *A* be any subset of a topological space (X, τ) and γ be an operation on $P_SO(X)$. The P_S^{γ} -interior of *A* is defined as the union of all P_S^{γ} -open sets of *X* contained in *A* and it is denoted by

 P_S^{γ} Int (A). That is, P_S^{γ} Int $(A) = \bigcup \{G : G \text{ is a} P_S^{\gamma} \text{ -open set in } X \text{ and } G \subseteq A\}$.

Some important properties of P_S^{γ} -interior operator will be given in Lemma 3.14.

Lemma 3.14: Let *A* and *B* be subset of a topological space (X, τ) and γ be an operation on $P_sO(X)$. Then the following conditions hold:

- **1.** $P_S^{\gamma} Int(\varphi) = \varphi$ and $P_S^{\gamma} Int(X) = X$.
- **2.** $P_{S}^{\gamma} Int(A)$ is the largest P_{S}^{γ} -open set contained in A.
- **3.** P_S^{γ} Int (A) is P_S^{γ} -open set in X.
- **4.** $P_{S}^{\gamma}Int(A) \subseteq P_{S}Int(A) \subseteq A$.
- 5. *A* is P_S^{γ} -open if and only if P_S^{γ} Int (*A*) = *A*.
- 6. If $A \cap B = \varphi$, then $P_S^{\gamma} Int(A) \cap P_S^{\gamma} Int(B) = \varphi$.
- 7. If $A \subseteq B$, then $P_S^{\gamma} Int(A) \subseteq P_S^{\gamma} Int(B)$.
- 8. $P_{S}^{\gamma} Int(A \cap B) \subseteq P_{S}^{\gamma} Int(A) \cap P_{S}^{\gamma} Int(B)$.
- 9. $P_{S}^{\gamma}Int(A) \bigcup P_{S}^{\gamma}Int(B) \subseteq P_{S}^{\gamma}Int(A \bigcup B).$
- **10.** $P_{S}^{\gamma} Int(P_{S}^{\gamma} Int(A)) = P_{S}^{\gamma} Int(A)$.
- **11.** $P_{S}^{\gamma} Int(X A) = X P_{S}^{\gamma} Cl(A)$.

Proof: Straightforward.

 P_S^{γ} -limit points provide us to find the P_S^{γ} interior of a set A.

Theorem 3.15: Let (X, τ) be a topological space and γ be an operation on $P_SO(X)$. Let A be a subset of a space X. Then $P_S^{\gamma}Int(A) = A - P_S^{\gamma}D(X - A)$.

Proof: Let $x \in A - P_S^{\gamma}D(X - A)$, then $x \notin P_S^{\gamma}D(X - A)$ and hence there exists a P_S^{γ} open set G_x containing x such that $G_x \cap (X - A)$ $= \varphi$. That is, $x \in G_x \subseteq A$ and hence $A = \bigcup_{x \in A} G_x$

. So *A* is a union of P_S^{γ} -open sets and hence by Theorem 2.4 (1), *A* is P_S^{γ} -open set in *X* containing *x*. Then by Lemma 3.14 (5), $x \in P_S^{\gamma} Int(A)$. Thus, $A - P_S^{\gamma} D(X - A) \subseteq P_S^{\gamma} Int(A)$.

On the other hand, if $x \in P_S^{\gamma} Int(A) \subseteq A$, then $x \notin P_S^{\gamma} D(X - A)$ since $P_S^{\gamma} Int(A)$ is P_S^{γ} -open set and $P_S^{\gamma} Int(A) \cap (X - A) = \varphi$. So $x \in A - \varphi$

 $P_{S}^{\gamma}D(X - A)$. This implies that $P_{S}^{\gamma}Int(A) \subseteq A - P_{S}^{\gamma}D(X - A)$. Therefore, in both cases, we obtain that $P_{S}^{\gamma}Int(A) = A - P_{S}^{\gamma}D(X - A)$.

Theorem 3.16: If γ is a P_S -regular operation on $P_SO(X)$, then for any subsets A, B of a space X, we have $P_S^{\gamma}Int(A) \cap P_S^{\gamma}Int(B) =$

$$P_S^{\gamma}$$
Int $(A \cap B)$.

Proof: Follows directly from Theorem 3.10 and using Lemma 3.14 (11).

Lemma 3.17: Let (X, τ) be a topological space and γ be a P_S -regular operation on $P_SO(X)$. Then $P_S^{\gamma}Cl(A) \cap G \subseteq P_S^{\gamma}Cl(A \cap G)$ holds for every P_S^{γ} -open set G and every subset A of X.

Proof: Suppose that $x \in P_S^{\gamma}Cl(A) \cap G$ for

every P_S^{γ} -open set G, then $x \in P_S^{\gamma}Cl(A)$ and $x \in G$. Let U be any P_S^{γ} -open set of X containing x. Since γ is P_S -regular on $P_SO(X)$. So by Theorem 2.8, $G \cap U$ is P_S^{γ} -open set containing x. Since $x \in P_S^{\gamma}Cl(A)$, then by Theorem 3.5, we have $A \cap (G \cap U) \neq \varphi$. This means that $(A \cap G) \cap U \neq \varphi$. Therefore, again by Theorem 3.5, we obtain that $x \in P_S^{\gamma}Cl(A \cap G)$. Thus, $P_S^{\gamma}Cl(A) \cap G \subseteq P_S^{\gamma}Cl(A \cap G)$.

The proof of the following lemma is similar to Lemma 3.17 and using Lemma 3.14 (11). **Lemma 3.18:** Let (X, τ) be a topological space and γ be a P_S -regular operation on $P_SO(X)$. Then $P_S^{\gamma}Int(A \cup F) \subseteq P_S^{\gamma}Int(A) \cup F$ holds for every P_S^{γ} -closed set F and every subset A of X.

4. $P_S^{\gamma} \cdot T_n$ SPACES FOR $n \in \{0, 1, 2\}$ IN TERMS OF $P_S^{\gamma} \cdot \text{OPEN SETS}$

In this section, we introduce some types of P_S^{γ} - separation axioms called P_S^{γ} - T_n for $n \in \{0, 1, 2\}$ using P_S^{γ} -open set. Some basic properties of these spaces are investigated.

Definition 4.1: A topological space (X, τ) with an operation γ on $P_SO(X)$ is called $P_S^{\gamma} - T_0$ if for each pair of distinct points x, y in X, there exists a P_S^{γ} -open set *G* containing one of the points but not the other.

Definition 4.2: A topological space (X, τ) with an operation γ on $P_SO(X)$ is called $P_S^{\gamma} \cdot T_I$ if for each pair of distinct points x, y in X, there exist two P_S^{γ} -open sets G and H such that $x \in G$ but $y \notin G$ and $y \in H$ but $x \notin H$.

Definition 4.3: A topological space (X, τ) with an operation γ on $P_SO(X)$ is called $P_S^{\gamma} - T_2$ if for each pair of distinct points x, y in X, there exist disjoint P_S^{γ} -open sets G and H containing x and y respectively.

Lemma 4.4: If (X, τ) is $P_S^{\gamma} - T_n$ space, then (X, τ)

is P_{S}^{γ} -*T_{n-1}* for *n* = 1, 2.

Proof: Obvious.

Observe that the converse of Lemma 4.4 is not true as shown by the following example.

Example 4.5: Suppose $X = \{a, b, c\}$ and τ be the discrete topology on *X*. Define an operation γ on $P_sO(X)$ as follows:

1. For every
$$A \in P_S^{\gamma}O(X)$$

$$A^{\gamma} = \begin{cases} A & \text{if } c \in A \\ X & \text{if } c \notin A \end{cases}$$

Then the space (X, τ) is $P_S^{\gamma} - T_0$, but it is not $P_S^{\gamma} - T_1$.

2. For every $B \in P_{\mathcal{S}}^{\gamma}O(X)$

$$B^{\gamma} = \begin{cases} B & if \quad B = \{a, b\} \text{ or } \{a, c\} \text{ or } \{b, c\} \\ X & otherwise \end{cases}$$

Then (X, τ) is $P_S^{\gamma} - T_I$ space, but (X, τ) is not $P_S^{\gamma} - T_2$.

Theorem 4.6: Let (X, τ) be a topological space and γ be an operation on $P_SO(X)$. Then the following properties are equivalent:

- **1.** *X* is $P_{S}^{\gamma} T_{2}$.
- 2. If $x \in X$, then there exists a P_S^{γ} -open set G containing x such that $y \notin P_S^{\gamma}Cl(G)$ for each $y \in X$ such that $x \neq y$.
- 3. For each $x \in X$, $\bigcap \{P_S^{\gamma}Cl(G): G \in P_S^{\gamma}O(X,x)\} = \{x\}.$

Proof: (1) \Rightarrow (2) Let *X* be any $P_S^{\gamma} - T_2$ space. For each $x, y \in X$ with $x \neq y$, then there exist two P_S^{γ} -open sets *G* and *H* containing *x* and *y* respectively such that $G \cap H = \varphi$. This implies that $G \subseteq X - H$ and hence $P_S^{\gamma}Cl(\{G\}) \subseteq X - H$ since X - H is P_S^{γ} -closed set in X and $y \notin X - H$. Therefore, $y \notin P_S^{\gamma}Cl(G)$.

 $(2) \Rightarrow (3)$ Obvious.

(3) \Rightarrow (1) Let $x, y \in X$ with $x \neq y$. By hypothesis there exists a P_S^{γ} -open set G containing x such that $y \notin G$ and hence $y \notin P_S^{\gamma}Cl(G)$. Then $y \in$ $X - P_S^{\gamma}Cl(G)$ and $X - P_S^{\gamma}Cl(G)$ is P_S^{γ} -open set. So $G \cap X - P_S^{\gamma}Cl(G) = \varphi$. Therefore, X is $P_S^{\gamma} - T_2$ space.

Theorem 4.7: For a topological space (X, τ) with an operation γ on $P_SO(X)$. Then the following conditions are true:

- 1. X is $P_S^{\gamma} T_I$ if and only if every singleton set in X is P_S^{γ} -closed.
- 2. X is $P_S^{\gamma} T_0$ if and only if $P_S^{\gamma} Cl(\{x\}) \neq P_S^{\gamma} Cl(\{y\})$, for every pair of distinct points x, y of X.

Proof: (1) Necessary Part. Suppose the space X be $P_S^{\gamma} - T_I$. Let $x \in X$. Then for any point $y \in X$ such that $x \neq y$, there exists a P_S^{γ} -open set G such that $y \in G$ but $x \notin G$. Thus, $y \in G \subseteq X - \{x\}$. This implies that $X - \{x\} = \bigcup \{G: y \in X - \{x\}\}$. Since the union of P_S^{γ} -open sets is P_S^{γ} open. Then $X - \{x\}$ is P_S^{γ} -open set in X. Hence $\{x\}$ is P_S^{γ} -closed set in X.

Sufficient Part. Suppose every singleton set in *X* is P_S^{γ} -closed. Let *x*, $y \in X$ such that $x \neq y$. This implies that $x \in X - \{y\}$. By hypothesis, we get $X - \{y\}$ is a P_S^{γ} -open set contains *x* but not *y*. Similarly $X - \{x\}$ is a P_S^{γ} -open set contains *y* but not *x*. Therefore, a space *X* is P_S^{γ} - T_I .

(2) Necessary Part. Let X be a $P_S^{\gamma} - T_0$ space and x, y be any two distinct points of X. Then there exists a P_S^{γ} -open set G containing x or y (say x, but not y). So X - G is a P_S^{γ} -closed set, which does not contain x, but contains y. Since $P_S^{\gamma}Cl(\{y\})$ is the smallest P_S^{γ} -closed set containing y, $P_S^{\gamma}Cl(\{y\}) \subseteq X - G$, and so $x \notin P_S^{\gamma}$ $P_{s}^{\gamma}Cl(\{y\})$. Therefore, $P_{s}^{\gamma}Cl(\{x\}) \neq P_{s}^{\gamma}Cl(\{y\})$.

Sufficient Part. Suppose for any $x, y \in X$ with $x \neq y, P_S^{\gamma}Cl(\{x\}) \neq P_S^{\gamma}Cl(\{y\})$. Now, let $z \in X$ such that $z \in P_S^{\gamma}Cl(\{x\})$, but $z \notin P_S^{\gamma}Cl(\{y\})$. Now, we claim that $x \in P_S^{\gamma}Cl(\{y\})$. For, if $x \in P_S^{\gamma}Cl(\{y\})$, then $\{x\} \subseteq P_S^{\gamma}Cl(\{y\})$, which implies that $P_S^{\gamma}Cl(\{x\}) \subseteq P_S^{\gamma}Cl(\{y\})$. This is contradiction to the fact that $z \notin P_S^{\gamma}Cl(\{y\})$. Hence x belongs to the P_S^{γ} -open set $X - P_S^{\gamma}Cl(\{y\})$ to which y does not belong. It gives that X is $P_S^{\gamma} - T_0$ space.

See Definition 4.8 in (An et al., 2008) introduced the concept of pre γ_p - T_n ' spaces, where $n \in \{0, 1, 2\}$ and $\gamma_p : PO(X) \rightarrow P(X)$ is an operation on PO(X), using the notion of pre γ_p -open sets. So by applying Theorem 2.6 (2), we obtain the following lemma.

Lemma 4.8: Let (X, τ) be a semi- T_1 space. Then (X, τ) is $P_S^{\gamma} - T_n$ if and only if it is pre $\gamma_p - T_n'$,

where $n \in \{0, 1, 2\}$, γ is an operation on $P_SO(X)$ and γ_p is an operation on PO(X).

References:

- An T.V., Cuong D.X. and Maki H. (2008), On operationpreopen sets in topological spaces, *Scientiae Mathematicae Japonicae Online*, **68** *1*, 11-30, (e-2008), 241-260.
- Crossley S.G. and Hildebrand S.K. (1971), Semi-closure, *Texas Journal of Science*, **22**, 99-112.
- Dontchev J. (1998), Survey on preopen sets, *The Proceedings of the Yatsushiro Topological Conference*, 1-18.
- Khalaf A.B. and Asaad B.A. (2009), P_S-open sets and P_Scontinuity in topological spaces, J. Duhok Univ., **12** 2, 183-192.
- Levine N. (1963), Semi-open sets and semi-continuity in topological spaces, *Amer. Math. Monthly*, **70** *1*, 36-41.
- Maheshwari S.N. and Prasad R. (1975), Some new separation axioms, Ann. Soc. Sci. Bruxelles, Ser. I., 89, 395-402.
- Mashhour A.S., Abd El-Monsef M.E. and El-Deeb S.N. (1982), On precontinuous and week precontinuous mappings, *Proc. Math. Phys. Soc. Egypt*, **53**, 47-53.
- Kasahara S. (1979), Operation compact spaces, *Math. Japonica*, **24** *1*, 97-105.
- Ogata H. (1991), Operation on topological spaces and associated topology, *Math. Japonica*, **36** *1*, 175-184.

كورتيا ليْكولينيّ:

ئارمانج ژ ڤی ڤەكولینی تیگەهین كریار لسەر جوری كومین ڤەكری ژ جوری P_S ل ڤالاهیین توبولوجی دا كوما ئەم بدەنـه نیاسین. ب كارئینانا ڤی كریاری، مە تیگەهین ژكومین ڤەكری ژ جوری P_s^{γ} دانە نیاسین، ومە ھىدەك ژتایبەتمەندیین توبولوجی یی گریدای پیڅه دانه خواندن. زیّدەباری ڤی چەندی ھىدەك بەلگەنەڤیتین ژیّكڤەكری ب كارئینانـا كریـار γ لسـەر $P_sO(X)$

الملخص:

الهدف من هذا البحث هو تقديم مفهوم العملية على صنف من المجوعات الجزئية المفتوحة من النمط P_S في الفضاءات التبولوجية. باستخدام هذه العملية، عرفنا مفهوم المجوعات المفتوحة من النمط P_S^{γ} ، ودرسنا بعض الخصائص التبولوجية المتعلقة بها. إضافة الى ذلك تم التحقق من بعض بديهيات الفصل باستخدام العملية γ على $P_SO(X)$ والمجموعة المفتوحة من النمط P_S^{γ} .