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Abstract:

The purpose of this paper isto introduce the concept of an operation on a class of Ps-open subsets of topological
spaces. Using this operation, we define the concept of P " -open sets, and study some of their related topological

properties. Furthermore, some separation axioms by utilizing the operation y on PsO(X) and the set P~ -open have

been investigated.
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1. Introductions and Preliminaries

hroughout this paper, the space (X, 7) (or

simply X) always means a topological
space on which no separation axioms are
assumed unless explicitly stated. The concept of
preopen sets and semiopen sets was introduced
respectively by Mashhour, Abd El-Monsef and
El-Deeb (1982) and Levine (1963). On the other
hand, Kasahara (1979) defined the concept of an
operation on 7 and introduced the concept of o-
closed graphs of functions. The operation « had
been renamed as y operation on 7 by Ogata
(1991). Recently, An, Cuong and Maki (2008)
defined and investigated the concept of the
mapping j, on the collection of all preopen
PO(X) subsets of (X, 7), and introduced the
notion of pre y,-open sets and studied some of
their properties.

Khalaf and Asaad (2009) defined the concept
of Ps-open sets in a space X which is denoted by
PsO(X). The aim of this paper is to introduce the
concept of an operation y on PsO(X) and to

define the notion of Py -open sets of (X, 7) by
using this operation. Section 3, contains some
topological properties of P, -open sets and some

relationships with other concepts. In the last
section, some separation axioms by utilizing the
operation y on PsO(X) and the set P -open are
investigated.

For a subset 4 of a space X, the closure and
the interior of 4 are denoted by CI(A4) and Int(A4),
respectively.

Definition 1.1: A subset A of a space X is said to
be:
1. preopen if A < In{(Cl(4)) (Mashhour et al.,
1982).

2. semiopen if 4 ¢ Cl(Int(4)) (Levine, 1963).
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The complement of a semiopen set is said to
be semiclosed (Crossley and Hildebrand, 1971).
A preopen subset A of a topological space (X, 7)
is called Ps-open (Khalaf and Asaad, 2009) if for
each x € A, there exists a semiclosed set ' such
that x € F < A. The complement of a Ps-open set
is Ps-closed (Khalaf and Asaad, 2009), and the
Pg-closure of a subset A of X is defined as the
intersection of all Ps-closed sets containing A
and it is denoted by PsCl(A) (Khalaf and Asaad,
2009). The Ps-interior of a subset A of X is
defined as the union of all Ps-open sets
contained in 4 and it is denoted by Pslnt(A)
(Khalaf and Asaad, 2009). An operation y on the
topology 7 on X is a mapping y: 7 = P(X) such
that U < U” for each U € 1, where P(X) is the
power set of X and U” denotes the value of yat U
(Ogata, 1991). A nonempty subset A of a
topological space (X, t) with an operation y on 7
is said to be y~open if for each x € A, there exists
an open set U containing x such that U < 4
(Ogata, 1991).

Definition 1.2 (An et al., 2008): An operation y,
on PO(X) is a mapping y, : PO(X) = P(X) such
that U < U” for each U € PO(X), where U”
denotes the value of y, at U. A nonempty set 4
of X is said to be pre y,-open if for each x € 4,
there exists a preopen set U such that x € U and
U? c A.

Recall that a topological space (X, 7) is locally
indiscrete (Dontchev, 1998) if every open subset
of X is closed, or if every closed subset of X is
open. Also, a topological space (X, 7) is called
semi-7; (Maheshwari and Prasad, 1975) if for
each pair of distinct points x, y in X, there exist
two semiopen sets U and V such that x € U but y
g Uandy € Vbutx ¢ V.
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Theorem 1.3 (Khalaf and Asaad, 2009): Let (X,
7) be a topological space. Then the following
statements are true:

1. If X is locally indiscrete, then PsO(X) =

T.
2. If Xis semi-T7, then PsO(X) = PO(X).

2. P/ -OPEN SETS

Definition 2.1: An operation y on PsO(X) is a
mapping 7 : PsO(X) — P(X) such that G < G’
for every G € PsO(X), where P(X) is the power
set of X and G is the value of yat G.

From this definition, we can easy to find X 7=
X for any operation y: PsO(X) > P(X).
Definition 2.2: Let (X, 7) be a topological space
and y : PsO(X) — P(X) be an operation on
PsO(X). A nonempty set 4 of X is said to be Py -
open if for each x € 4, there exists a Ps-open set
G such thatx € Gand G' c A.

The complement of a P/ -open set of X is Py -
closed. Assume that the empty set ¢ is also Py’
-open set for any operation y : PsO(X) — P(X).
The class of all P -open subsets of a space (X,
7) is denoted by P/O(X ). For each x € X, the
class of all P, -open sets of (X, ) containing a

point x is denoted by PO (X ,x).

It is obvious that every P/ -open set is Ps-

open (that is, PJ/O(X )< PsO(X)), but the

converse is not true as shown from the following
example.
Example 2.3: Let X = {a, b, c} and 7= { @, X,

{a}, {b, c}} = PsO(X). Define an operation y :
PsO(X) — P(X) as follows: For every 4 €
PsO(X)
Ayz{A if
X i
Clearly, P/O(X )={¢, X, {a}}. Then the set
{b, ¢} is Ps-open, but {b, ¢} ¢ P/O(X).
Therefore, PsO(X) = P/O(X ).

ae A
ag A

We can say that a subset 4 is PSid -open of X

if and only if 4 is Ps-open in X. The identity
operation id on PsO(X) is a mapping id : PsO(X)

— P(X) such that H“= H for every H €
PsO(X). Then PO (X )= PsO(X).
Theorem 2.4: Let (X, 1) be a topological space
and y : PsO(X) — P(X) be an operation on
PsO(X). Then the following are true:

1. The union of any class of P/ -open sets in X
is also a P -open.
2. The intersection of any class of P -closed

sets in X is also a Py -closed.
Proof: (1) Let x € U{Az}’ where 4, €

AeA
P/O(X) for all A. Then x € A, for some
AeA . Since A ,is Py -open set in X, then there

exists a Pg-open set G such that x e G < G’
A4,c U {4,}. Therefore, U {4,}is P/ -

AeA AeA

open set in X,
(2) Similar to part (1) using complement.

Generally, the intersection (resp. the union)
of any two Py -open (resp. P -closed) sets in
(X, ) may not be a P -open (resp. Py -closed)

set as demonstrated in the following example.
Example 2.5: Consider the space X ={a, b, ¢}
and 7 = P(X) = PsO(X). Let y: PsO(X) - P(X)
be an operation on PsO(X) defined as follows:
For every 4 € PsO(X)

7 { A if A#ic}

{b,c} if A={c}
Obviously, P/O(X )= P(X) — {c}. Then the
sets {a, ¢} and {b, c} are P, -open, but {a, c}
(N {b, ¢} = {c} isnot a P/ -open set since {c} ¢
P/O(X). Also, {a} and {b} are P, -closed
sets, but {a} U {b} = {a, b} isnot a P/ -closed
set.

Therefore, the class of all P -open sets of

any topological space (X, 7) need not be a

topology on X in general.

Theorem 2.6: The following properties are true

for any topological space (X, 7):

1. If (X, 7) is locally indiscrete, then the
operations ¥ on PsO(X) and y on 7 are
equivalent and hence the concept of P, -open

set and j~open set are identical.
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2. If (X, 7) is semi-T}, then the operations y on
PsO(X) and y, on PO(X) are equivalent and
hence the concept of P, -open set and pre 7,-

open set are identical.
Proof: (1) Follows from their definitions and
Theorem 1.3 (1).
(2) Follows from their definitions and Theorem
1.3 (2).

Definition 2.7: Let (X, 7) be any topological
space. An operation y on PsO(X) is said to be Ps-
regular if for each x € X and for every pair of Ps-
open sets G; and G, such that both containing x,
there exists a Ps-open set H containing x such

that H < G/ N G!.

For example, the mapping y : PsO(X) — P(X)
defined in Example 2.3 is Ps-regular operation.

Theorem 2.8: Let a mapping y be Ps-regular
operation on PsO(X). If the subsets 4 and B are

P/ -open in a topological space (X, 1), then 4 N
Bis also P) -open set in (X, 7).

Proof: Suppose x € A [ B for any P/ -open

subsets 4 and B in (X, 7) both containing x. Then
there exist Ps-open sets G; and G, such that x €
G, c A and x € G, < B. Since yis a Psregular
operation on PsO(X), then there exists a Ps-open

set H containing x such that H” < G/ 1 GJ ¢
A () B. Therefore, A () B is P/ -open set in (X,

7).
By applying Theorem 2.8, it is easy to show
that P/O (X ) forms a topology on X for any Ps-

regular operation yon PsO(X).

Definition 2.9: A topological space (X, 7) with
an operation y on PsO(X) is said to be Py -
regular if for each x € X and for each Ps-open
set G containing x, there exists a Ps-open set H

containing x such that H” < G.

Theorem 2.10: Let (X, 7) be a topological space
and y : PsO(X) — P(X) be an operation on
PsO(X). Then the following conditions are
equivalent:

1. PsOX)=P/O(X).

2. (X,7)isa P/ -regular space.

3. For every x € X and for every Ps-open set
G of (X, 7) containing x, there exists a Py -
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open set H of (X, 7) containing x such that
HcG.
Proof: (1) = (2) Let x € X and G be a Ps-open
set in X such that x € G. It follows from

assumption that G is a P/ -open set. This
implies that there exists a Ps-open set H such
that x € H and H” < G. Therefore, the space
(X, 1) is PJ -regular.

(2) = (3) Let x € X and G be a Ps-open set in
(X, 7) containing x. Then by (2), there is a Ps-

open set H such thatx € H ¢ H” < G. Again,
by using (2) for the set H, it is shown that H is

P/ -open. Hence H is a P; -open set containing

x such that H ¢ G.

(3) = (1) By applying the part (3) and Theorem
2.4 (1), it follows that every Ps-open set of X is
P/ -open in X. That is, PsO(X) cP/O(X).
Since every P -open set is Ps-open (that is,
P/O(X )< PsO(X) in general). Hence PsO(X)
=P/O(X).

3. TOPOLOGICAL PROPERTIESOF P/ -
OPEN SETS

We begin with the definition of Py -limit

point of a set 4.
Definition 3.1: Let 4 be any subset of a
topological space (X, 7) and y be an operation on

PsO(X). A point x € X is said to be P/ -limit
point of 4 if for every P -open set G containing
x, G N (A-{x}) # @. The set of all P, -limit
points of 4 is called a P -derived set of 4 and it
is denoted by P/ D (4).

Some basic properties of Py -derived set are

mentioned in the following theorem.

Theorem 3.2: The following properties hold for
any sets 4 and B in a topological space (X, 7)
with an operation y on PsO(X).

1. P/D(p)=¢.

If4 < B, then P/D(A)c P/D(B).
P/D(ANB)c P/D(A)N P/D(B).
P/D(AUB)=> P/D(4)U P/D(B).
P/D(P/D(A))—A < P/D(4).
P/D(AUP{D(A)) c4U P/D(4).

o o &~ 0D
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Proof: Tt is enough to proof the parts (5) and (6)
since the proofs of the other parts are obvious
and hence they are omitted.

(5) Letx e P/D(P{D(A))—A and Gisa P]
-open  set Then G [
(P/D(A))—{x})#¢p. Let y € G
(P/D(A))—{x}) . Then, since y € P{D(A4)
andye G,GN (A-{y})#@.Letz e G ()
(A—{y}).Hencez#xforz e Aandx ¢ 4. So
G () (4- {x})# @ . Therefore,x € P/D(4).

(6) Letx € P/D(AUP/D(A)).1fx € 4, the
result is clear. So, letx € P{/D(AUPJD(A4))

containing  x.

—A. Then, for P/ -open set G containing x, G
N@AUP/DA)) —{x} # @. Thus, G N (4
—) # @ or G N(BDMA)-{x}) # .
Now, it follows similarly from the part (5) that G
N(@A-4{x}) # @. Hence, x € P/D(A4).
Therefore, in any case, P{D(AUP/D(A4)) <
4U P/D(4).

Definition 3.3: Let 4 be any subset of a
topological space (X, 7) and y be an operation on

PsO(X). The P -closure of 4 is defined as the
P/ -closed sets of X
containing 4 and it is denoted by P{CI(4).
Thatis, P/CI(A)=N{F:AcF,X —Fis P{

-open set in X }.

intersection of all

Some important properties of P -closure
operator will be given in the next lemma.
Lemma 3.4: The following statements are true
for any subsets 4 and B of a topological space
(X, 7) with an operation y on PsO(X).

1. P/Cl(¢)= @and P{CI(X )=X.
P/CI(A)is the smallest P -closed set
containing 4.

PJ/Cl(A4)is P} -closed set in X.

A c PsCl(A) < P{Cl(4).

Ais P -closed if and only if P{/CI(A)= A.
If P/CI(4)( P/{CI(B)= ¢,then 4 (B
= ¢ .

7. IfAc B, then P/Cl(4)c P/CI(B).

o o~ »

8. P/CI(ANB)c P/CI(4)N P{CI(B).
9. P/Cl(A)U P/CI(B)c P/CI(AUB).
10. P/CI(P/Cl(A))= P{CI(4).

Proof: Straightforward.

Theorem 35: Let 4 be any subset of a
topological space (X, 7) and y be an operation on

PsO(X). Then x € P/CI(A)if and only if 4 )
G # ¢ for every P/ -open set G of X containing

X.
Proof: Let x € P/Cl(A)and let 4 (1 G = ¢

for some P, -open set G of X containing x. Then
AcX —-Gand X — G is P/ -closed set in X. So
P/Cl(A)c X —G. Thus,x € X —G. This is a
contradiction. Hence 4 (1 G # @ for every Py -
open set G of X containing x.

Conversely, suppose that x ¢ PJ/CI(A4). So
there exists a Psy -closed set F such that 4 — F

and x ¢ F. Then X —F is a P/ -open set such
that x ¢ X —F and 4 NN (X-F) = ¢.

Contradiction of hypothesis. Therefore, x €

P/CI(4).

From Definition 3.1 and Theorem 3.5, we
have the following corollary.
Corollary 3.6: Let A be any subset of a
topological space (X, 7) and ¥ be an operation on

PsO(X). Then P/D(A)c P/CI(4).
Theorem 3.7. Let A be any subset of a
topological space (X, 7) and y be an operation on

PsO(X). Then A4 is P/ -closed if and only if 4
contains the set of its P -limit points.

Proof: Suppose that 4 is P -closed subset of a
space (X, 7)and letx ¢ 4,thenx € X — 4 and X
— A is P -open set in X such that 4 NX-A=

@ . This means that x ¢ PJ/D(A). Hence
P/D(A)c A.

Conversely, assume that 4 contains the set of its
P/ -limit points (That is, P/D(A4)< A). To

show that 4 is P/ -closed (or X — 4 is P -open)
set in X. Let x € X — A4, then x ¢ A. By
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assumption that there exists a P, -open set U, of
X containing x such that 4 Nu = @ . That is,
U,cX —4and hence X —4 = U U, .So

xe(X -4)
X -4 is a union of P/ -open sets and by
Theorem 24 (1), X - A is PJ -open.

Consequently, 4 is P -closed set in X.

Lemma 3.8: For any subset 4 of a topological
space (X, ) with an operation y on PsO(X). The
setA U P{D(A4)is P{ -closed in X.

Proof: Letx ¢ 4 U P/D(A). Thenx ¢ 4 and
x ¢ P{D(A).Since x ¢ P/D(A), there exists
a P/-open set G, < X containing x which

contains no point of 4 other than x but x ¢ 4. So
G, contains no point of 4, which implies G, ¢ X

— A. Again, G, is a P{ -open set of each of its
points. But as G, does not contain any point of
A, no point of G, can be a P/ -limit point of 4.
Therefore, no point of G, can belong to
P/D(A). This implies that G, c X — P/D(A)
. Hence, it follows thatx e G, c X — 4 (1 X —
P/D(A)=X - (4 U P/D(A)). Therefore, 4
U P/D(A)is P] -closed.

P/ -limit points provide us with an easy

means to find the pS7 -closure of a set A.

Theorem 3.9: Let (X, 7) be a topological space
and y be an operation on PsO(X). Then

P/Cl(4)=4 U P/D(A)for any subset 4 of a
space X.
Proof: Since 4 < 4 U P/D(A4). Then by

Lemma 3.8, P/Cl(A)c4 U P/D(4).

On the other hand, since 4 < PJ{CI(A4)in
general and by Corollary 3.6, P/D(A4)c
P/CI(A). So we have 4 U P/D(4)c
PJCI(A4). Therefore, in both cases, we obtain
that P/CI(4)=4 U P/D(4).

Theorem 3.10: For any subsets 4, B of a
topological space (X, 7). If y is a Psregular
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operation on  PsO(X), thenP{Cl(4)U
P/CI(B)= P/CI(AUB).

Proof: It is enough to proof that P{CI(4 UB)
c P/CI(4)U PJ/CI(B)since the other part
follows directly from Lemma 3.4 (9). Let x ¢
P/CI(A)U PJ/CI(B). Then there exist two
P/ -open sets G and H containing x such that 4
(MG= @ and B (VH = ¢. Since yis a Ps
regular operation on PsO(X), then by Theorem
2.8, G 1 His P/ -open in X such that (G [ H)
N (@ UB) = @. Therefore, we have x ¢
P/CI(AUB)and hence P/CI(AUB)c
P/Cl(A)U P/CI(B).

Definition 3.11: A subset N of a topological
space (X, 7) is called a P -neighbourhood of a
point x € X, if there exists a P, -open set G in X
such thatx e G < N.

The following is a relation between Py -open set
and P, -neighbourhood of a point x € X.
Theorem 3.12: Let U < (X, 7) be a P, -open if
and only if it is a Py -neighbourhood of each of
its points.

Proof: Let U be any P -open set in (X, 7). Then
by Definition 3.11, it is clear that U is a Py -
neighbourhood of each of its points, since for
everyxe UxeUcUandUe P/O(X).
Conversely, suppose U is a P, -neighbourhood
of each of its points. Then for each x € U, there

exists a P{ -open set V, containing x such that ¥,

c U. Then U = UVX . Since each V, is Py -

xeU
open. It follows from Theorem 2.4 (1) that U is
P/ -open set in X.
Definition 3.13: Let A be any subset of a
topological space (X, 7) and y be an operation on
PsO(X). The P{ -interior of A4 is defined as the

union of all P -open sets of X contained in 4

and it is denoted by
P/Int(A). Thatis, P/Int(4)=U {G:Gisa
P/ -open setin Xand G < 4}.
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Some important properties of P -interior

operator will be given in Lemma 3.14.
Lemma 3.14: Let A and B be subset of a

topological space (X, 7) and y be an operation on
PsO(X). Then the following conditions hold:

1. P/Int(p)= ¢ and P{Int(X )=X.
P/Int(A)is the
contained in 4.
PJInt(A)is P{ -open setin X.

PJInt(A) < PsInt(A) < A.
A is P{ -open if and only if P{ Int(4)= A.
If 4 NB = ¢, then P/Int(4)
P/Int(B)=¢.
7. IfA < B, then P{Int(4A)c P/ Int(B).
8. P/Int(ANB)c P/Int(4)(\ P/Int(B).
9. P/Int(A)U P/Int(B)c P/Int(AUB).
10. P/ Int(P{Int(A))= P/Int(A4).
11. P/Int(X —A)=X - P{CI(4).

Proof: Straightforward.

largest P; -open set

o ok~ »w

P/ -limit points provide us to find the Py -

interior of a set 4.
Theorem 3.15: Let (X, 7) be a topological space
and y be an operation on PsO(X). Let 4 be a

subset of a space X. Then PJInt(4)= A4-
P/D(X -4).

Proof: Let x € A— P/D(X —A), then x ¢
P/D(X —A)and hence there exists a Py -

open set G, containing x such that G, [ (X— 4)
= @ . Thatis,x € G, < 4 and hence 4 = U G,

x €A

. S0 A4 is a union of P/ -open sets and hence by

Theorem 2.4 (1), 4 is PJ-open set in X

containing x. Then by Lemma 3.14 (5), x
PlInt(4). Thus, A-P/D(X —-4)c
P/Int(A4).

On the other hand, if x € P{'Int(A) < A, then x
g P/D(X —A)since PJ{Int(A)is P -open
set and P/ Int(A)N (X—A4)= ¢.Sox e A-

P/D(X —A). This implies that PJInt(4)c
A— P/D(X —A). Therefore, in both cases, we
obtain that P Int(4)=4— P{D(X —A4).

Theorem 3.16:; If yis a Ps-regular operation on
PsO(X), then for any subsets 4, B of a space X,
we have P/Int(A)( P{Int(B)=
P/Int(ANB).

Proof: Follows directly from Theorem 3.10 and
using Lemma 3.14 (11).

Lemma 3.17: Let (X, 7) be a topological space
and y be a Ps-regular operation on PsO(X). Then

P/CI(A)NG < P/CI(ANG)holds for
every P/ -open set G and every subset 4 of X.

Proof: Suppose that x € P/CI(4) G for
every P/ -open set G, then x € P/CI(A)and x
€ G. Let U be any P, -open set of X containing
x. Since y is Pgregular on PsO(X). So by
Theorem 2.8, G [ U is P/ -open set containing
x. Since x € P{CI(A4), then by Theorem 3.5,
we have 4 () (G [ U) # ¢ . This means that (4
N G) U # ¢ . Therefore, again by Theorem
3.5, we obtain that x € PJCI(4G). Thus,

P/CI(4) N G < P/CI(ANG).

The proof of the following lemma is similar
to Lemma 3.17 and using Lemma 3.14 (11).
Lemma 3.18: Let (X, 7) be a topological space
and y be a Ps-regular operation on PsO(X). Then

P/Int(AUF)c P/Int(A)UF holds for
every P -closed set F and every subset 4 of X.

4. P/ -T, SPACESFORn € {0, 1,2} IN
TERMSOF P/ -OPEN SETS

In this section, we introduce some types of
P/ - separation axioms called Py -T, for n € {0,
1, 2} using P, -open set. Some basic properties

of these spaces are investigated.
Definition 4.1: A topological space (X, 7) with

an operation y on PsO(X) is called P{ -T, if for

each pair of distinct points x, y in X, there exists
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a P/ -open set G containing one of the points

but not the other.
Definition 4.2: A topological space (X, 7) with

an operation y on PsO(X) is called P] -T; if for
each pair of distinct points x, y in X, there exist
two P -open sets G and H such that x € G buty

g Gandy € Hbutx ¢ H.
Definition 4.3: A topological space (X, 7) with

an operation y on PsO(X) is called P] -T; if for
each pair of distinct points x, y in X, there exist
disjoint P -open sets G and H containing x and
y respectively.

Lemma 4.4: If (X, 7) is Py -T, space, then (X, 1)
is P} -T, ,forn=1,2.

Proof: Obvious.

Observe that the converse of Lemma 4.4 is not
true as shown by the following example.
Example 4.5: Suppose X ={a, b, ¢} and 7 be the

discrete topology on X. Define an operation y on
PsO(X) as follows:

1. Foreveryd e P/O(X)

47— A if ced
X if cgAd

Then the space (X, 7) is Py -T), but it is not Py -
T;.
2. ForeveryBe P/O(X)

B7— B if B= {a, b} or {a, c} or {b, c}
X otherwise

Then (X, 7) is PJ -T; space, but (X, 7) is not Py -

T>.

Theorem 4.6: Let (X, 7) be a topological space

and y be an operation on PsO(X). Then the
following properties are equivalent:

1. Xis PS]/—Tz.
2. Ifx € X, then there exists a P, -open set G

containing x such that y ¢ P/CI(G)for

each y € X such that x # y.
3. For each x € X, N{P/CI(G): G e

P{OX ,x)} = {x}.
Proof: (1) = (2) Let X be any P/ -T space. For

each x, y € X with x # y, then there exist two Py’

-open sets G and H containing x and y
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respectively such that G [} H= ¢ . This implies
that G ¢ X — H and hence P/CI({G})c X - H
since X —H is P{ -closed setin Xandy ¢ X —

H. Therefore, y ¢ P/CI(G).

(2) = (3) Obvious.

(3) = (1) Let x, y € X with x # y. By hypothesis
there exists a P, -open set G containing x such
that y ¢ G and hence y ¢ P/CI(G). Theny e
X - P/CI(G)and X — P/CI(G)is P/ -open
set. S0 G (1 X — P/CI(G)= ¢ . Therefore, X is
P/ -T; space.

Theorem 4.7: For a topological space (X, 7) with

an operation y on PsO(X). Then the following
conditions are true:

1. Xis P/-T; if and only if every singleton
setin X'is Py -closed.
2. Xis P/-T, if and only if P{/CI({x})+#

P/CI({y}), for every pair of distinct

points x, y of X.
Proof: (1) Necessary Part. Suppose the space X

be P/ -T,. Let x € X. Then for any pointy € X
such that x # y, there exists a P, -open set G

such thaty € Gbutx ¢ G. Thus,y e G X —
{x}. This implies that X — {x} = U {G:y e X —

{x}}. Since the union of P -open sets is Py -
open. Then X — {x} is P, -open set in X. Hence
{x} is Py -closed set in X.

Sufficient Part. Suppose every singleton set in
X is P/ -closed. Let x, y € X such that x # y.
This implies that x € X — {y}. By hypothesis, we
get X — {y} is a P -open set contains x but not
y. Similarly X — {x} is a P -open set contains y
but not x. Therefore, a space X is PS7 -T;.

(2) Necessary Part. Let X be a P -T) space and
x, y be any two distinct points of X. Then there

exists a Py -open set G containing x or y (say X,

but not ). So X — G is a P{ -closed set, which
does not contain x, but contains y. Since
P/CI({y})is the smallest P -closed set

containing y, P/CI({y})c X -G, and so x ¢



Journal of University of Zakho, Vol. 4(A), No.2, Pp 236-243, 2016

ISSN: 2410-7549

PICI({y}).

F{CI({y}).
Sufficient Part. Suppose for any x, y € X with x

#y, P/CI({x})# P{CI({y}). Now, letz € X
such thatz € P/CI({x}),butz ¢ P/CI({y})
. Now, we claim that x € P/CI({y}). For, if x
e P/CI({y}), then {x}c P/CI({y}), which
implies that P{CI ({x })c P/CI({y }). This is
contradiction to the fact that z ¢ P{/CI({y}).

PICI({x })#

Therefore,

Hence x belongs to the PJ-open set X —
PJ/CI({y}) to which y does not belong. It gives
that X'is P/ -T) space.

See Definition 4.8 in (An et al.,, 2008)
introduced the concept of pre -7 n spaces,
where n € {0, 1, 2} and y, : PO(X) » P(X) is an
operation on PO(X), using the notion of pre y,-
open sets. So by applying Theorem 2.6 (2), we

obtain the following lemma.
Lemma 4.8: Let (X, 7) be a semi-T; space. Then

(X, 7) is P/ -T, if and only if it is pre y-T ,;,

where n € {0, 1, 2}, yis an operation on PsO(X)
and y, is an operation on PO(X).
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eSS By

5 . . 8, . v Buun Bk L, .
aey LS 13 (g pAYB Py Gy 56 S e S ) phed oS s (oS S (D 5 ileyl
795 Geliaansl Sokia ang ald W13 Py Sy 5658 a5 ek ae 55 (B ULy @ ol
PsO(X) yud 7 5 S Ul yS & (s S5 banelay Sosin (it [ 55b0u3) 0L &1 iy g S 7o

OSSSdasa P Gy oS e Sy

: yaFeked!

Olsladl) b Pg el o & gaiol) ol Ole goall o i o Akanll p3gis @k 52 Coomdl 1 s Byl
Lorgladl ailasdl jam Lwydg ¢ PS7 Lodl e i gadad) OLle gl ej.@.o.c L3, kol odon pldsuwly e g 5
i gdoll isgemally PsO(X) o p iden) plusianty ol Olgs jam o @il o3 U3 I BLo) gy dilased!

'PS}/ Ja.o.:j\o.p
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