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Abstract:

In this paper, we will use logistic mapping to find new conjugate gradient coefficients for

unconstrained optimization.
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1. Introduction
he conjugate gradient (CG) method is one
of the most popular and well known
iterative techniques for solving sparse
symmetric positive definite (SPD) system of
linear equations. It was originally developed as a
direct method, but became popular for its
properties as an iterative method especialy
following the development of sophisticated
precondition techniques.
There are Two Types of Conjugate Gradient (CG)
Methods
Type one: linear Conjugate Gradient Method:
Is called quadratic Conjugate Gradient and used
to Minimizer Quadratic Method. Type two:
nonlinear Conjugate Gradient Method: it is
called Non quadratic Conjugate Gradient used it
to minimizer general function or nonlinear
function

2. Classical Conjugate Gradient M ethod
Method of linear conjugate gradient is
iterative method to solve minimization problem,

min f(x) = %xTGx + bT + ¢(2.1)

Where b is nx1vector, cis constant and G is
an nxnpositive symmetric definite matrix, we
can show that (2.1) is equivalent to a system of
linear equations,

Gx = b,(2.2)

Then the unigue solution of (2.1) is the same
asthe solution of (2.2).

In this study we consider the unconstrained
minimization problem

min f(x) (2.3)
And the conjugate gradient method of the
form:
X1 = X + akgk(2-4) fork =0
—9k ork =
D1 = {_gk+1 + Brdifork > 0} (25)

Wherex,, € R"is the current iterative, d; isa
descent direction of f(x)atxy,gx = Vf(xy) is
step size obtained by aline search andg;

is a scalar. The scalar chosen so that the
methods (2.4) and (2.5) reduce to the linear
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conjugate gradient method when f is a strictly
convex quadratic and when «a, is the exact one-
dimensional minimizer. Various conjugate
gradient method have been proposed, and they
mainly differ in the choice of the parameter
Br.-some well-known formulas for gy, caled the
Fletcher-Reeves (FR)[
FLETCHER,R.&REEVES, C. (1964).], Polak-
Ribiere-Polyak

(PRP)[ POLAK,B.&RIBIERE, G. (1969).],
Hestenes-Stiefel (H9)[
HESTENESM.R&STIEFEL, E. L. (1952)]
andConjugate Descent(CD)[ FLETCHER, R.
(1987).] respectively, are given below:

=l greall?/lgell? (2.6)

PRP _ 9ks1(k+1—91)

B =g @0
HS _ 9kr1(kr1-9k)

Bi = di(Gr+r1~91) 28)
cp _ ~lgisal?
k™ aigr

Where ||. || denotes the Euclidean norm. The
conjugate gradient method is a very efficient line
search method for solving large unconstrained
problems, due to its lower storage and smple
computation. The conjugate gradient method is
still the best choice for solving (2. 3).

In practical computations, it is generaly
believed that the conjugate gradient method is
preferred to the relatively exact line searches. As
a result, in the conjugate gradient method, the
strong Wolfe conditions, namely,
fxe + ardy) — f(xi) < S gdi(2.9)
|g(xk + akdk)Tdk| < —Jgﬁdk(ZJ.O)

Where 0 < § < 0 < lare often on the line
search. However, recent studies show that one
can analyze the conjugate gradient method under
several practical line searches other than the
strong Wolfe line search, and good numerical
results can be obtained. For example, the
nonlinear conjugate gradient method converges
globally provided that the step size satisfies the

(2.9)
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standard Wolfe conditions [Wolfe P. (1969).],
namely (2.9s) and
g(xk + akdk)Tdk > Ggidk(211)

2.1 Classical Conjugate Gradient Algorithm
Step (1):Theinitia point xy ,

Step (2): gk =Vf(xp), ifgi =

0, Then stop
Setk = 0 , select
Else
Setdy = —gy

Step (3): Compute a;, to minimize f(xy.4+1)

Step (4): X1 = X + aydy

Step (5): Grs1 = Vf(Xr41), if grr1 = 0,Then
stop .

Step (6): compute 8, ,

Step (7): dpv1 = —Gks1 + Brdy.
Step (8): If k = n then go to step 2.
Else

k=k+1andgotostep 3.

3. New Conjugate Gradient method (B%°")

In this section, to find a new conjugate
gradient method we will use conjugate Gradient
coefficient of (Conjugate Descent)

~lgr+1ll?
B’ ==y G

and logistic mapping method which is used
extensively[LU Hui-juan, ZHANG Huo-ming,
MA Long-hua,(2005). Its equation is as follows:
Yi+1 = HYk(1 —vk) (3.2)
Whereu isacontrol parameter (ue(0,4)).
Now, from the equation (3.1) and the formula
(3.2), we have
Bk =uBk(1-Bx) (33
WhereYyg = Bg
Or

_ 2
ﬁ;:ew =pu ||dg£k;;|| (1+ ||tilkT+1|| )(3.4)

To achieve balance, we will multiply second
term of (3.4) by (k "kgk“)

Kkl

Bnew — ||21;c;1|| (1 +

(k dkgk+1) (”gk+1|| ) >(3.5)

lyxl?

Wherek > 0.

3.1 Algorithm of New Conjugate Gradient
Method
Step (1): Set k =0, select initial point X,
Step (2):9x=Vf(xy), Ifgyx = 0, thenstop.
Else
Setdy = —9k
Step (3): Compute a; , to minimize f(Xg41)-
Step (4):Xg+1= Xt agdy, .,

Step (5 Gr+1 =V e+ 1), If g1 =
0, thenstop.
Step (6) : Compute B
—||gk+1||2(
Wh new 1
e Bi K digk +
dk9k+1 lgr+1ll® )
(k Iyl ) ( digk)

Step (7) :dyr1 = —Grr1 + B di
Step (8) : If k=nthen go to step 2

ese

k=k+1 and go to step 3.

Theorem 3.1: Assume that the sequence {xy}
is generated by the from  (Xg41 = xx + agdy),
then the modified CG-method in from (3.6) is
satisfied the descent condition, i.e.df, ;gr.1 < 0
in both cases: exact and inexact line search.

Pr oof

The proof is done induction, the result clearly
holds for k=0
godo = —ll go I’< 0,

Now, we prove the current search direction in
descent direction at the iteration ( k+1 ) , we
have
dii19ke1 =N i 17 + BRV A Gir1
By (3.5) , we get

d£+1gk+1 = -
lgrs1ll?
2
—un——-»1
Il grsq Il gTdk (
dkgk+1 ||gk+1||
+ (k d
Implies that
I II?
dii1@ier = =N Greer 12— p=0 = digi —

(lgr+11)? (dEgi+1)2
nk (9 di)21yrlI? (36)

We know that, the first two terms of equation
(2.6) are less than or equa to zero because, the
formula of Conjugate Descent is satisfies the
descent condition, i.e.

gr+all?

= dr <0
gldk k9k+1

—Il Greva 17—
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The proof is complete if the step length dyis
chosen by an exact line search which requires
dEgk+1 = 0.

Now, if the step length dy is chosen by an
exact line search which requires di g, # 0.

We know that

(lgr+1l)?,
2 2
Il yi 1%, (gkdy) and(d}gy.1) are positive
So we have

o (g l®)2(digu1)2 0
(ghdi2lyrl?  —
Finally, we have

grs1ll?
gidk
g+l 2(digr+1)2
(97412 |l yi 112

d£+1gk+1 = —ll Gr+1 12— u lecgk+1

Then the proof is complete

4. Numerical Results

This section is devoted to test the
implementation of new method. We compare the
modified method with Conjugate Descent, the
comparative tests involve Well-known nonlinear
problems (standard test function) with different
dimensions 4<n<5000, all programs are written
in FORTRAN95 language and for all cases the
stopping condition is |lggs+1lle < 1075 the
results given in table (1) specifically quote the
number of function NOF and the number of
iteration NOI Experimentalresults in table (1)
confirm that the new CG is superior to standard
CG method with respect to the NOI and NOF,
especially for the test function Mile and G
central.

<0
Table (1): Comparative Performance of TheTwo Algorithm (New Conjugate Gradient Method and Conjugate
Descent)
Test fun N Conjugate descent New algorithm
NOI NOF NOI NOF
Cubic 4 13 38 13 37
50 14 40 14 39
100 14 40 14 39
500 15 44 15 43
1000 15 44 15 43
5000 15 44 15 43
Powell 4 32 81 30 74
50 35 97 30 74
100 35 97 30 74
500 35 97 30 74
1000 35 97 30 74
5000 35 97 30 74
Powell 4 13 57 13 31
50 13 57 13 31
100 13 57 13 31
500 13 57 14 34
1000 13 57 14 34
5000 13 57 14 34
Wood 4 28 65 27 62
50 28 65 27 62
100 28 65 27 62
500 29 68 27 62
1000 29 68 27 62
5000 29 68 30 68
G-central 4 12 67 17 114
50 17 131 17 114
100 18 142 18 127
500 23 210 21 169
1000 23 210 21 169
5000 28 278 24 214
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Rosen 4 30 85 29 80
50 30 85 30 82
100 30 85 30 82
500 30 85 30 82
1000 30 85 30 82
5000 30 85 30 82
Mile 4 51 172 48 144
50 68 246 54 174
100 68 246 55 176
500 68 246 61 208
1000 68 246 62 210
5000 74 284 68 244
Total 1240 4545 1157 3486

Table (2): Comparing the Rate of Improvement between the New Algorithm and the Standard Algorithm(CD)

TOOLS Standard Algorithm(CD) New Algorithm
NOI 100% 93.3%
NOF 100% 76.69%
5. Conclusion Fletcher, R. (1987). Practicd Methods of

Our method has been analyzed, implemented
and tested to some extent, while numerical tests
were carried out, on low and high dimensionality
problems, and comparisons were made amongst
different non-quadratic and quadratic models
with exact and inexact line search. The general
conclusion that can be drawn from the tests on
the gradient model isthat.
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