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Abstract:

In this paper, we suggest a new conjugate gradient method for unconstrained optimization by using
homotopy theory. Our suggestion algorithm satisfies the conjugacy and descent conditions. Numerical
result showsthat our new algorithm isbetter than the standard CG algorithm with respect to the NOI and

NOF.
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1. Introduction
he conjugate gradient (CG) method is one
of the most popular and well known
iterative techniques for solving sparse
symmetric positive definite (SPD) system of
linear equations. It was originally developed as a
direct method, but became popular for its
properties as an iterative method especialy
following the development of sophisticated
precondition techniques.
Method of linear conjugate gradient is iterative
method to solve minimization problem,

min f(x) = %xTGx +bTx+c¢ (1.1)

where b is an nx1 vector, ¢ is a constant and
G is an nxn positive symmetric definite matrix,
we can show that (1.1) is equivalent to a system
of linear equations,

Gx=b (12

Then the unigue solution of (1.1) is the same
asthe solution of (1.2).

Consider the unconstrained minimization
problem
min f(x) (1.3)

and the conjugate gradient method of the
form:

X1 = xk;’ aydy (1-4)f k=0
—9Jk ork=
yevr = {_gk+1 + Brdy for k > 0} (15)
wherex;,, € R™ isthe current iterative, d; isa
decent direction of f(x)at x;

g = Vf(x,) andp, isascalar. The scalar
chosen so that the methods (1.4) and (1.5)
reduce to the linear conjugate gradient method
when f isasdtrictly convex quadratic and when
a, is the exact one-dimensional minimizer.
Various conjugate gradient methods have been
proposed, and they mainly differ in the choice of
the parameter B, .Some formulas for gy, called
the Fletcher-Reeves (FR)[3], Polak-Ribiere-
Polyak (PRP)[7], Hestenes-Stiefel (HS)[ 5] ,
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Conjugate  Descent(CD)[4]
respectively, are given below:
Bi® = 1 gr+1l?/1lgll* (1.6)

andf,  [2]

T

PRP _ Ghks1Vk

B lgr-111? (1.7)
T

ﬁHS — g;c;lyk (18)

ﬁlCcD — M (1.9)

— 9k+1 J’k,

2d}
Bi=n (1 ’“‘”‘”)(”"+1 %), (1.10)

llyill?

where ||. || denotes the Euclldean norm, p is
control parameter (u € (0,4)), and

Yk = 9r+1 — 9gk- The linear conjugate
gradient methods generate a sequence of search
directions (1.5) such that the following
conjugacy condition holds:
di,.,Gd, =0, (111

where G is the Hessian of the objective
function. There is many conjugacy condition are
suggested, for example:
dir1yi =0 (L12)

Extension of (1.12) has been studied by Dai
Y.H.and Yuan Y. in[1], introduce the following
conjugacy condition:
dir1Vk = ~TGis1Vk, T2 0 (113)

The conjugate gradient method is a very
efficient line search method for solving large
unconstrained problems, due to its lower storage
and simple computation. The conjugate gradient
method is still the best choice for solving (1. 3).

In practical computations, it is generaly
believed that the conjugate gradient method is
preferred to the relatively exact line searches. As
a result, in the conjugate gradient method, the
standard Wolfe conditions [8], namely,

Oy + agdy) — f(xp) < Sapgidy (114
9(xp + ard)" = ogidy , (1.15)




Journal of University of Zakho, Vol. 4(A), No.2, Pp 248-252, 2016

ISSN: 2410-7549

where 0 < § < g < 1 are often on the line
search, and the strong Wolfe conditions, namely
(2.9) and
Xk + agdy| < —ogidy (1.16)

Algorithm 1.1: (Classical Conjugate Gradient
Algorithm [5])
Setk = 0, select
Step (1): theinitial point x, ,
Step (2) 1 gi = Vf(xp), if gr =
0, Then stop
else
set  dy=—g;
Step (3): Compute a;, to minimize f(x;41)
Step (4): Xp41 = X + agdy
Step (5) 1 Gir1 = Vf(Xk+1), if Gre1 = 0,Then
stop .

T
Step (6) : Compute B, , BHS = Lit1dk

diyi
Step (7): dgr1 = —Gps1 + Brdy -
Step (8): If k =n, then go to step 2.
else

k = k+1 and goto step 3.

This paper is organized as follows: In Sect.2,
we suggested the new (CG) algorithm and we
show that the our suggestion is satisfy the
conjugacy condition. In section 3, we prove the
descent condition of our method. In Section 4,
we show the numerical results of our new
agorithm. In section 5, we give the conclusions.

2. New Conjugate Gradient method (B3¢")

In this section, we proposed a new conjugate
gradient method by using homotopy theory with
parameters (2.8) and (2.10),we can denocte the
parameters (2.8) and (2.10) as follows B and
BZ respectivly. The iteratesx,, Xq,Xz, ..... Of
our suggestion (BREW) computed by (1.4),
where step size o, >0 is determined according to
the Wolfe line search condition and the direction
dy are computed by the rule
div1 = _gk+1+B%ewdk (21

We will combine two parameters (BL and
BZ) by homotopy theory [6],

BX™ = (1 - 6,)B} + 0,8

Or

ﬂNEW =(1-6 )gk+1}’k +0 [ gsilyzk (1-

2d} gri1 9k+1 Yk
2 JCary ) (22)

Where ek is scalar parameter satisfying

0<06r <1landwetakep = 1.

We note that if 8, = 0, then BREW = B which

is the parameter of HS and if 6, =1, then
NEW = B2 which is the parameter (1.10).

To show that the our suggestion is satisfy the

conjugacy condition, by substituting (2.2) in
(2.1) to obtain
dyi1=- ; ;
_ 8k+1Yk 8k+1 Yk _
Bicen + | (1 - 0, X 4 0, [ Ehpi e (1
ZdT T
hen @ty g (29

Multiply both sides of above equation by yy , to
get

d£+1 Yk
= —Gk+1 Yk ) )
Ik+1Yk Ik+1 Yk
+1(1—-6y) +6,[u 1
[ “dl Wk “dl
2 di 9r+1. Ire1 Vi ]
d
”yk”z )( d;{'y )] kYk
Thisimplies that
dE+1 Yk = _gE+1 Yk

+ [(1 — 00881k

+ ek[llgk+1 Yk(l
2 dk 8k+1 gk+1 YR)]]

)(
llyI% k Yk
Sinceu = 1, so, we have

2dy (8k y)
dice Yie = =B (= mH ()

Now, we know that vy =

1V
O(kk

S0, (2.4) becomes

(2.4)
akdk , then dk =

1 2vy
Q1 yie = —0y - (Ui Blaty (B Y0

ag  llykll? df yi
Or
20k  ( )2

di1 Yie = —Vif et o (o) (Bl 2 g';*fyyk“ )
(2.5)
S'nce (”ielk )((gk+1 YR) ) > 0

k
Here , We suppose that
2 0k (gk+1 Yk)

~ (nyknz)( )
Then, (2.5) becomes

T _ T
dgi1 Yk = — TV 8k+1

Theorem2.1: Assume that the sequence {x; }
is generated by (1.4), then the modified CG-
method in from (2.2) is satisfied the descent
condition, i.e.dy,;gxs1 <0 in both cases.
exact and inexact line search.
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Proof: From (2.1) and (2. 2) we get
div1=—Gr+1 + [(1 0 )gk+1yk +

2dj gri1y k1 Vi
0 yk+1 Yk 1 — 2% k+1 ] d
e @ T Cagy 01 |

Multiply both sides of above equation by
gk+1 » We have

dk+1gk+1 = _||gk+1||2 [(1 0 )gk+1yk

2dj gk+1)(gk+1 Yk

Ouln b2t (1 — 2k ey hpa gy g g,

di Yk
Implies that
d1gie = —lgiall + | (1 - 0 2% (af gy) +

yk+1 Yk 2 (df gis1)? (ka1 Yiey2
(O 2% (A i) — (Op) Uk Beay (hisiy

Smce u=1, then the above equation
becomes
d£+1gk+1 = _||gk+1||2 gk+1yk (d Ik+1) —
2 d?¥
0,.( ( |Tyf|’|c;1) )(9k+1 )’k)z (2 6)

The proof is complete if the step length oy is
chosen by an exact line search which requires

digr+1 = 0.

Now, if the step length ayis chosen by
inexact line search which requires di g1 # 0.

We know that, the first two terms of equation
(2.6) are less than or equal to zero because the
parameter of (HS) is satisfies the descent
condition and the third term clearly is less than
or equal to zero since 0 < 6y < 1, then,

T _

dyi19k+1 = —||gk+1||2 +
Ihi1Yk 2 (d, gr+1)>\ Ghs1 Yk
k+1 (d Ii+1) — 0 ( |ryk”;1 )( Zilyk )? <

0

Algorithm 2.1: (New Conjugate Gradient
M ethod)
Step (1) : Set k =0, select initial point X,
Step (2) : gx=Vf (x1), If g = 0,then stop.
Else
Setdy = —gx
Step (3): Compute ay, , to minimize f(x.1)-
Step (4): xXp41= xx+ agdy .,
Step 891 =V (e + 1) If lgrsalle <
1073, then stop.
Step (6): Compute B¢

Where NEW — (1 0 )gk+1yk +
T
0, (Lt Vi g 2 di ity Iiks1 Vi
e O T Cagy, )

0<0,<1 andp=1.
Step (7):dis1 = —Grrr + B d
Step (8): If k=n then go to step 2 , where n is
natural number
else
k=k+1 and go to step 3.
3. Numerical Results

This section is devoted to test the
implementation of new method. We compare the
our method with Conjugate Gradient (HS), the
comparative tests involve well-known nonlinear
problems (standard test function) with different
dimensions4 < n < 5000, al programs are
written in FORTRAN95 language and for all
cases the stopping condition is

llgks+1lle < 107> the results given in Table
1 specifically quote the number of function NOF
and the nuber of iteration NOI Experimental
results in Table 1 confirm that the new CG is
superior to standard CG method with respect to
the NOI and NOF.

Table (1): Comparative Performance of the Two Algorithms (New Conjugate Gradient Method and HS)

Test N Algorithm of HS New algorithm
functions
NOI NOF NOI NOF
Powell 4 38 108 32 85
10 38 108 32 85
50 38 108 35 102
100 40 122 35 102
500 41 124 38 121
1000 41 124 38 121
5000 41 124 38 121
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Powell 3 4 16 36 14 31
10 16 36 14 31
50 16 36 15 33
100 16 36 15 33
500 16 36 15 33
1000 16 36 15 33
5000 16 36 15 33
Wood 4 30 68 26 60
10 30 68 26 60
50 30 68 26 60
100 30 68 26 60
500 30 68 26 60
1000 30 68 27 62
5000 30 68 27 62
Non 4 24 64 24 63
diagonal 10 26 72 24 69
50 29 79 29 79
100 29 79 30 81
500 - - 30 80
1000 29 79 30 80
5000 30 81 30 80
Mile 4 28 85 28 87
10 31 102 28 87
50 31 102 28 87
100 33 114 31 104
500 40 146 31 104
1000 46 176 31 104
5000 54 211 31 104
G-Central 100 32 184 32 182
500 32 184 32 182
1000 32 184 32 182
5000 32 184 32 182
Total 1217 3832 1068 3325

Note: Thefail result in standard CG is considered a twice value of new CG results.
Table (2): Percentage of Improving the New Formula

HS New Algorithm
NOI 100% 87.7567789647 %
NOF 100% 86.7693110647 %

3. Conclusion

Our method has been analyzed, implemented
and tested to some extent, while numerical tests
were carried out, on low and high dimensionality
problems, and comparisons were made amongst
different non-quadratic and quadratic models with
inexact line search.

4. References

Dai Y.H. and Yuan Y, (2001), New conjugacy
conditions and related nonlinear conjugate gradient
methods, Appl. Math. Optima. 43, 87-101.

Fletcher, R.,(1987). Practical Methods of
Optimization, Vol |: Unconstrained Optimization.
New York: Wiley.

Fletcher, R. and Reeves, C. (1964), Function
minimization by conjugate gradients. J. Comput., 7,
149-154.

Hestenes, M.R. and Stiefel, E. L. ,(1952), Method
of conjugate gradient for solving linear systems. J.
Res. Natl.Bur. Stand., 49, 409-432.

Omar D. H., (2013), Numerical Methods for
Unconstrained Optimization Algorithms with
Chaos Theory , University of
Zakho, Kurdistan Region — Iraq.

Polak,E. and Ribiere, G., (1969), Note surla
convergence des methods' de directions conjugu” ees.
Rev. Fr.Imform. Rech. Op-er., 16, 35-43.

Watson L. T. and Haftka, (1988), Modern
Homotopy Methods in Optimization, TR 88-51,
Virginia Polytechnic Ingtitute and state University ,
Blacksburg, November 14, VA 24061.

Wolfe P., (1969), Convergence conditions for
ascent method, SIAM Rev. 11, pp.226-235.

251



Journal of University of Zakho, Vol. 4(A), No.2, Pp 248-252, 2016 ISSN: 2410-7549

(e SH WS

UK S & Koy Ty ot UK I w5 ey S et w S8 B
5 by S0 o g0yl mldal | s A8 Lo oy O S ,Liid asla Ly, SJu i (homotopy theory,
NOF s NOI 455,48 5 CG glob Loy, S5 § 8 iy

t el

(homotopy theory) alususl; sudll jill Joaddt <Y 3141 W S 8y b 1581 (Lol N § ¢
o) z3gedl e Juadl ga A BUAYI 0L B I i) MEN B iy B b s 388 Al Bl
NOF ; NOI ¢ K i.dy CG

252



