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Abstract: 

In this paper, we suggest a new conjugate gradient method for unconstrained optimization by using 
homotopy theory. Our suggestion algorithm satisfies the conjugacy and descent conditions. Numerical 
result shows that our new algorithm is better than the standard CG algorithm with respect to the NOI and 
NOF. 
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1. Introduction 
he conjugate gradient (CG) method is one 
of the most popular and well known 
iterative techniques for solving sparse 

symmetric positive definite (SPD) system of 
linear equations. It was originally developed as a 
direct method, but became popular for its 
properties as an iterative method especially 
following the development of sophisticated 
precondition techniques. 
Method of linear conjugate gradient is iterative 
method to solve minimization problem, (࢞)ࢌܖܑܕ = ૚૛ ࢞ࡳࢀ࢞ + ࢞ࢀ࢈ +  (1.1) 	ࢉ

where b is an nx1 vector, c is a constant and 
G is an nxn	positive symmetric definite matrix, 
we can show that (1.1) is equivalent to a system 
of linear equations, ࢞ࡳ =  (1.2) ࢈

Then the unique solution of (1.1) is the same 
as the solution of (1.2).  

Consider the unconstrained minimization 
problem min  (1.3) (ݔ)݂

and the conjugate gradient method of the 
form: ࢑࢞ା૚ = ࢑࢞ + ା૚࢑ࢊ   (1.4)  ࢑ࢊ࢑ࢻ = ൜−࢑ࢍ																				࢑ࢍ−ା૚ + ࢑	࢘࢕ࢌ	࢑ࢊ࢑ࢼ = ૙࢘࢕ࢌ	࢑ ≥ ૙ൠ  (1.5)   

where	ݔ௞ ∈ ܴ௡  is the current iterative, ݀௞ is a 
decent direction of ݂(ݔ)ܽݐ	ݔ௞	 ݃௞ =  ௞ is a scalar. The scalarߚ	and   (௞ݔ)݂∇
chosen so that the methods (1.4) and (1.5) 
reduce to the linear conjugate gradient method 
when 	݂  is a strictly convex quadratic and when ߙ௞  is the exact one-dimensional minimizer. 
Various conjugate gradient methods have been 
proposed, and they mainly differ in the choice of 
the parameter ߚ௞ .Some formulas for ߚ௞, called 
the Fletcher-Reeves (FR)[3], Polak-Ribiere-
Polyak (PRP)[7], Hestenes-Stiefel (HS)[ 5] , 

Conjugate Descent(CD)[4] and	ߚ௞ [2] 
respectively, are given below: ࡾࡲ࢑ࢼ = ࡼࡾࡼ࢑ࢼ ૛  (1.6)‖࢑ࢍ‖/ା૚‖૛࢑ࢍ‖ = ࢀశ૚࢑ࢍ ࡿࡴ࢑ࢼ ష૚‖૛   (1.7)࢑ࢍ‖࢑࢟ = ࢀశ૚࢑ࢍ ࢑࢟ࢀ࢑ࢊ࢑࢟ ࡰ࡯࢑ࢼ (1.8)      = ࢑ࢍࢀ࢑ࢊశ૚‖૛࢑ࢍ‖ି ࢀ		శ૚࢑ࢍૄ=࢑ࢼ (1.9)  ࢀ		࢑ࢊ࢑࢟ ࢑࢟ (1-

૛	࢑ࢊ		ࢀ ૛‖࢑࢟‖శ૚࢑ࢍ )(
ࢀ		శ૚࢑ࢍ ࢀ		࢑ࢊ࢑࢟ ࢑࢟ ), (1.10) 

where ‖. ‖ denotes the Euclidean norm, μ is 
control parameter (μ ∈ (0,4)),	 and  ݕ௞ = ݃௞ାଵ	 	−	݃௞	 . The linear conjugate 
gradient methods generate a sequence of search 
directions (1.5) such that the following 
conjugacy condition holds: ࢑ࢊା૚ࢀ ࢑ࢊࡳ = ૙,    (1.11) 

where ܩ is the Hessian of the objective 
function. There is many conjugacy condition are 
suggested, for example: ࢑ࢊା૚ࢀ ࢑࢟ = ૙  (1.12) 

Extension of (1.12) has been studied by Dai 
Y.H. and Yuan Y. in [1], introduce the following 
conjugacy condition: ࢑ࢊା૚ࢀ ࢑࢟ = ࢀା૚࢑ࢍ࣎− ,	࢑࢜ ࣎ ≥ ૙  (1.13) 

The conjugate gradient method is a very 
efficient line search method for solving large 
unconstrained problems, due to its lower storage 
and simple computation. The conjugate gradient 
method is still the best choice for solving (1. 3). 

In practical computations, it is generally 
believed that the conjugate gradient method is 
preferred to the relatively exact line searches. As 
a result, in the conjugate gradient method, the 
standard Wolfe conditions [8], namely, ࢑࢞)ࢌ + (࢑ࢊ࢑ࢻ − (࢑࢞)ࢌ ≤ ࢑࢞)ࢍ (1.14)    ࢑ࢊࢀ࢑ࢍ࢑ࢻࢾ + ࢀ(࢑ࢊ࢑ࢻ ≥  (1.15) , ࢑ࢊࢀ࢑ࢍ࣌

T
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where 0 < ߜ < ߪ < 1 are often on the line 
search, and the strong Wolfe conditions, namely 
(2.9) and |࢑࢞ + |࢑ࢊ࢑ࢻ ≤  (1.16)  ࢑ࢊࢀ࢑ࢍ࣌−

Algorithm 1.1: (Classical Conjugate Gradient 
Algorithm [૞]) 
Set	݇ = 0,  select                               
Step (1): the initial point ݔ଴	,       
Step (2) : ࢑ࢍ	 = સ(࢑࢞)ࢌ, ࢑ࢍ	ࢌ࢏ =૙,  Then stop                                    
            else 
             set       ࢑ࢊ = 	࢑ࢍ−  
Step (3): Compute ߙ௞ to minimize ݂(ݔ௞ାଵ)                                     
Step (4): ࢑࢞ା૚ = ࢑࢞ +   , ࢑ࢊ࢑ࢻ
Step (5) : ࢑ࢍା૚	 = સࢌ(࢑࢞ା૚), ା૚࢑ࢍ	ࢌ࢏ = ૙,Then 
stop . 

Step (6) : Compute ࢑ࢼ	 ࡿࡴ࢑ࢼ ,  = ࢀశ૚࢑ࢍ ࢑࢟ࢀ࢑ࢊ࢑࢟  

Step (7): ࢑ࢊା૚ = 	ା૚࢑ࢍ− +  . ࢑ࢊ࢑ࢼ
Step (8): If k = n, then go to step 2.  
                       else ࢑ = ࢑ + ૚		and go to step 3. 

This paper is organized as follows: In Sect.2, 
we suggested  the new (CG) algorithm and we 
show that the our suggestion is satisfy the 
conjugacy condition. In section 3, we prove  the 
descent condition of our method. In Section 4, 
we show the numerical results of our new 
algorithm. In section 5, we give the conclusions. 

2. New Conjugate Gradient method (࢝ࢋ࢔࢑ࢼ) 
In this section, we proposed a new conjugate 

gradient method by using homotopy theory with 
parameters (2.8) and (2.10),we can denote the 
parameters (2.8) and (2.10) as follows β୩ଵ	  and β୩ଶ  respectivly. The iterates	x଴, xଵ, xଶ, ….. of 
our suggestion (β୏୒୉୛) computed by (1.4), 
where step size α୩>0 is determined according to 
the Wolfe line search condition and the direction 	d୩ are computed by the rule 
ା૚࢑ࢊ  =  (2.1)  ࢑ࢊ࢝ࢋࡺࡷࢼ+ା૚࢑ࢍ−

We will combine two parameters (β୩ଵ		and	  β୩ଶ) by homotopy theory [6],  ࢃࡱࡺࡷࢼ = (૚ − ૚࢑ࢼ(࢑ࣂ +    ૛࢑ࢼ࢑ࣂ
Or ࢃࡱࡺࡷࢼ = (૚ − (࢑ࣂ ࢀశ૚࢑ࢍ ࢑࢟ࢀ࢑ࢊ࢑࢟ + ࣆ]࢑ࣂ ࢀ		శ૚࢑ࢍ ࢀ		࢑ࢊ࢑࢟ ࢑࢟ (૚ −૛	࢑ࢊ		ࢀ ૛‖࢑࢟‖శ૚࢑ࢍ ࢀ		శ૚࢑ࢍ)( ࢀ		࢑ࢊ࢑࢟ ࢑࢟ )]     (2.2) 

Where  θ୩ is scalar parameter satisfying    0 ≤ θ୩ ≤ 1 and we take μ = 1. 

We note that if	θ୩ = 0, then β୏୒୉୛ = β୩ଵ   which 
is the parameter of HS and if θ୩ = 1, then β୏୒୉୛ = β୩ଶ		which is the parameter (1.10). 
To show that the our suggestion is satisfy the 
conjugacy condition, by substituting   (2.2) in 
(2.1) to obtain  ܓ܌ା૚=-ܓ܏ା૚ + ൤(૚ − ીܓ) ܂శ૚ܓ܏ ܓܡ܂ܓ܌ܓܡ + ીܓ[ૄ ܂		శ૚ܓ܏ ܂		ܓ܌ܓܡ ܓܡ (૚ −૛	ܓ܌		܂ ૛‖ܓܡ‖శ૚ܓ܏ ܂		శ૚ܓ܏)( ܂		ܓ܌ܓܡ ܓܡ )]					൨  (2.3)             ܓ܌

Multiply both sides of above equation by y୩ , to 
get ࢑ࢊା૚		ࢀ =࢑࢟ ࢀ		ା૚࢑ࢍ− +࢑࢟ ቈ(૚ − ࢀା૚࢑ࢍ(࢑ࣂ ࢑࢟ࢀ࢑ࢊ࢑࢟ + ࢀ		ା૚࢑ࢍࣆ]࢑ࣂ ࢀ		࢑ࢊ࢑࢟ ࢑࢟ (૚

− ૛	࢑ࢊ		ࢀ ૛‖࢑࢟‖ା૚࢑ࢍ ࢀ		ା૚࢑ࢍ)( ࢀ		࢑ࢊ࢑࢟ ࢑࢟ )]቉  ࢑࢟࢑ࢊ

This implies that  ܓ܌ା૚		܂ ܓܡ = ܂		ା૚ܓ܏− +ܓܡ ቈ(૚ − ીܓ܏(ܓା૚܂ +ܓܡ ીܓ܏ૄ]ܓା૚		܂ −૚)ܓܡ ૛	ܓ܌		܂ ૛‖ܓܡ‖ା૚ܓ܏ ܂		ା૚ܓ܏)( ܂		ܓ܌ܓܡ ܓܡ )]቉ 
Since μ = 1, so, we have ܓ܌ା૚		܂ ܓܡ = −ીܓ(૛	ܓ܌		܂ ૛‖ܓܡ‖శ૚ܓ܏ ܂		శ૚ܓ܏))( ܂		ܓ܌૛(ܓܡ ܓܡ )		   (2.4) 

Now, we know that v୩ = α୩d୩ , then, 	d୩ =ଵ஑ౡ v୩ 

So, (2.4) becomes  ܓ܌ା૚		܂ ܓܡ = −ીܓ ૚હܓ (૛	ܓܞ		܂ ૛‖ܓܡ‖శ૚ܓ܏ ܂		శ૚ܓ܏))( ܂		ܓ܌૛(ܓܡ ܓܡ )		       
Or 

܂		ା૚ܓ܌   ܓܡ = ܂		ܓܞ− ା૚ܓ܏ ૚હܓ ( ૛	ીܓܡ‖ܓ‖૛)((ܓ܏శ૚		܂ ܂		ܓ܌૛(ܓܡ ܓܡ )		  
(2.5) 

Since     
૚હܓ ( ૛	ીܓܡ‖ܓ‖૛)((ܓ܏శ૚		܂ ܂		ܓ܌૛(ܓܡ ܓܡ )		 > ૙     

Here , we suppose that   ૌ = ૚હܓ ( ૛	ીܓܡ‖ܓ‖૛)((ܓ܏శ૚		܂ ܂		ܓ܌૛(ܓܡ ܓܡ )		  
Then, (2.5) becomes  ܓ܌ା૚		܂ ܓܡ = −ૌܓܞ		܂   		ା૚ܓ܏

Theorem2.1: Assume that the sequence ሼݔ௞ሽ 
is generated by (1.4), then the modified CG-
method in from (2.2) is satisfied the descent 
condition, i.e.	݀௞ାଵ் ݃௞ାଵ ≤ 0 in both cases:  
exact and inexact line search.  
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Proof: From  (2.1) and (2.2) , we get ࢑ࢊା૚ = ା૚࢑ࢍ− + ൤(૚ − (࢑ࣂ ࢀశ૚࢑ࢍ ࢑࢟ࢀ࢑ࢊ࢑࢟ ૄ]࢑ࣂ+ ࢀ		శ૚࢑ࢍ ࢀ		࢑ࢊ࢑࢟ ࢑࢟ (૚ − ૛	࢑ࢊ		ࢀ ૛‖࢑࢟‖శ૚࢑ࢍ ࢀ		శ૚࢑ࢍ)( ࢀ		࢑ࢊ࢑࢟ ࢑࢟ )]					൨                      ࢑ࢊ

Multiply both sides of above equation by g୩ାଵ , we have ࢑ࢊା૚ࢀ ା૚࢑ࢍ = ା૚‖૛࢑ࢍ‖− + ൤(૚ − (࢑ࣂ ࢀశ૚࢑ࢍ ࢑࢟ࢀ࢑ࢊ࢑࢟ ૄ]࢑ࣂ+ ࢀ		శ૚࢑ࢍ ࢀ		࢑ࢊ࢑࢟ ࢑࢟ (૚ − ૛	࢑ࢊ		ࢀ ૛‖࢑࢟‖శ૚࢑ࢍ ࢀ		శ૚࢑ࢍ)( ࢀ		࢑ࢊ࢑࢟ ࢑࢟ )]൨ ࢀ		࢑ࢊ      ା૚࢑ࢍ

Implies that         ࢑ࢊା૚ࢀ ା૚࢑ࢍ = ା૚‖૛࢑ࢍ‖− + ൤(૚ − (࢑ࣂ ࢀశ૚࢑ࢍ ࢑࢟ࢀ࢑ࢊ࢑࢟ ࢀ		࢑ࢊ) (ା૚࢑ࢍ ૄ࢑ࣂ)]+ ࢀ		శ૚࢑ࢍ ࢀ		࢑ࢊ࢑࢟ ࢑࢟ ࢀ		࢑ࢊ) (ା૚࢑ࢍ − ࢀ		࢑ࢊ)	૛)(ૄ࢑ࣂ) ૛‖࢑࢟‖శ૚)૛࢑ࢍ ࢀ		శ૚࢑ࢍ)( ࢀ		࢑ࢊ࢑࢟ ࢑࢟ )૛]൨   
Since   μ = 1, then the above equation 

becomes  ࢑ࢊା૚ࢀ ା૚࢑ࢍ = ା૚‖૛࢑ࢍ‖− + ࢀశ૚࢑ࢍ ࢑࢟ࢀ࢑ࢊ࢑࢟ ࢀ		࢑ࢊ) (ା૚࢑ࢍ ࢀ		࢑ࢊ)	૛)࢑ࣂ− ૛‖࢑࢟‖శ૚)૛࢑ࢍ ࢀ		శ૚࢑ࢍ)( ࢀ		࢑ࢊ࢑࢟ ࢑࢟ )૛  (2.6) 

The proof is complete if the step length α୩	is 
chosen by an exact line search which requires ݀௞்݃௞ାଵ = 0. 

Now, if the step length α୩is chosen by 
inexact line search which requires d୩୘g୩ାଵ	 ≠ 0. 

We know that, the first two terms of equation 
(2.6) are less than or equal to zero because the 
parameter of (HS) is satisfies the descent 
condition and the third term clearly is less than 
or equal to zero since 0 < θ୩ < 1, then,  ࢑ࢊା૚ࢀ ା૚࢑ࢍ = ା૚‖૛࢑ࢍ‖− ࢀశ૚࢑ࢍ+ ࢑࢟ࢀ࢑ࢊ࢑࢟ ࢀ		࢑ࢊ) (ା૚࢑ࢍ − ࢀ		࢑ࢊ)	૛)࢑ࣂ ૛‖࢑࢟‖శ૚)૛࢑ࢍ ࢀ		శ૚࢑ࢍ)( ࢀ		࢑ࢊ࢑࢟ ࢑࢟ )૛ ≤૙  
 
 

Algorithm 2.1: (New Conjugate Gradient 
Method) 
Step (1) : Set k =0, select initial point xk.  
Step (2) :	݃௞= સࢌ	(࢑࢞), ࢑ࢍ	ࢌࡵ = ૙	,  .݌݋ݐݏ	ℎ݁݊ݐ

 Else 
 Set ࢑ࢊ = 	࢑ࢍ− . 

Step (3): Compute ߙ௞ , to minimize ࢌ(࢑࢞ା૚). 
Step (4):		࢑࢞ା૚= ࢑ࢊ࢑ࢻ +࢑࢞ .,  
Step (5):࢑ࢍା૚ = ࢑࢞)ࢌࢺ + ૚	), ା૚‖ஶ࢑ࢍ‖	ࢌࡵ ≤૚૙ି૞,  .݌݋ݐݏ	ℎ݁݊ݐ
Step (6): Compute  ߚ௞௡௘௪ 

Where ࢃࡱࡺࡷࢼ = (૚ − (࢑ࣂ ࢀశ૚࢑ࢍ ࢑࢟ࢀ࢑ࢊ࢑࢟ ૄ]࢑ࣂ+ ࢀ		శ૚࢑ࢍ ࢀ		࢑ࢊ࢑࢟ ࢑࢟ (૚ − ૛	࢑ࢊ		ࢀ ૛‖࢑࢟‖శ૚࢑ࢍ ࢀ		శ૚࢑ࢍ)( ࢀ		࢑ࢊ࢑࢟ ࢑࢟ )]   
                ૙ < ࢑ࣂ < ૚    and ૄ = ૚	.         

Step (7):࢑ࢊା૚	 = 	ା૚࢑ࢍ−	 +  ࢑ࢊ		࢝ࢋ࢔࢑ࢼ
Step (8): If k=n then go to step 2 , where n is 
natural number 
               else 
              k=k+1 and go to step 3. 
3.  Numerical Results 

This section is devoted to test the 
implementation of new method. We compare the 
our method with Conjugate Gradient (HS), the 
comparative tests involve well-known nonlinear 
problems (standard test function) with different 
dimensions	4 ≤ n ≤ 5000, all programs are 
written in FORTRAN95 language and for all 
cases the stopping condition is 

 ‖g୩ାଵ‖ஶ ≤ 10ିହ the results given in Table 
1 specifically quote the number of function NOF 
and the nuber of iteration NOI Experimental 
results in Table 1 confirm that the new CG is 
superior to standard CG method with respect to 
the NOI and NOF. 

Table (1): Comparative Performance of the Two Algorithms (New Conjugate Gradient Method and HS) 
Test 

functions 
N Algorithm of HS New algorithm 

NOI NOF NOI NOF 

Powell 
 

4 
10 
50 

100 
500 
1000 
5000 

38 
38 
38 
40 
41 
41 
41 

108 
108 
108 
122 
124 
124 
124 

32 
32 
35 
35 
38 
38 
38 

85 
85 
102 
102 
121 
121 
121 



Journal of University of Zakho, Vol. 4(A), No.2, Pp 248-252, 2016   
 

 251

7549-2410 ISSN: 

Powell 3 
 

4 
10 
50 

100 
500 
1000 
5000 

16 
16 
16 
16 
16 
16 
16 

36 
36 
36 
36 
36 
36 
36 

14 
14 
15 
15 
15 
15 
15 

31 
31 
33 
33 
33 
33 
33 

Wood 4 
10 
50 

100 
500 
1000 
5000 

30 
30 
30 
30 
30 
30 
30 

68 
68 
68 
68 
68 
68 
68 

26 
26 
26 
26 
26 
27 
27 

60 
60 
60 
60 
60 
62 
62 

Non 
diagonal 

4 
10 
50 

100 
500 
1000 
5000 

24 
26 
29 
29 
- 

29 
30 

64 
72 
79 
79 
- 

79 
81 

24 
24 
29 
30 
30 
30 
30 

63 
69 
79 
81 
80 
80 
80 

Mile 4 
10 
50 

100 
500 
1000 
5000 

28 
31 
31 
33 
40 
46 
54 

85 
102 
102 
114 
146 
176 
211 

28 
28 
28 
31 
31 
31 
31 

87 
87 
87 
104 
104 
104 
104 

G-Central 100 
500 
1000 
5000 

32 
32 
32 
32 

184 
184 
184 
184 

32 
32 
32 
32 

182 
182 
182 
182 

Total  1217 3832 1068 3325 

Note: The fail result in standard CG is considered a twice value of new CG results. 
Table (2): Percentage of Improving the New Formula 

 HS New Algorithm 

NOI 100% 87.7567789647 % 

NOF 100% 86.7693110647 % 

3. Conclusion 
Our method has been analyzed, implemented 

and tested to some extent, while numerical tests 
were carried out, on low and high dimensionality 
problems, and comparisons were made amongst 
different non-quadratic and quadratic models with 
inexact line search.  
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