FIA-CL DETERMINATION OF PARACETAMOL USING LUMINOL– KMNO₄–PB POST-CL SYSTEM, APPLYING MERGING ZONE PRINCIPLE

Lazgin A. Jamil¹, Azad T Faizullah² And Parween Hashem Saleem³

¹ Department of Chemistry, Faculty of Science, University of Zakho, Kurdistan – Region, Iraq.

² Department of Chemistry, Faculty of Science, University of salahidean, Kurdistan – Region, Iraq.

³ Department of Chemistry, Faculty of Science, University of Duhok, Kurdistan – Region, Iraq.

(Accepted for publication: June 9, 2013)

Abstract

This paper reports a new and simple flow injection analysis (FIA) with post- chemiluminescence system (PCL) for determination of paracetamol through merging zone principle. The method was based on the inhibition of luminol–KMnO₄–Pb post- chemiluminescence (PCL).Various parameters associated with this flow system were studied and essential optimizations were carried out. Calibration graph were constructed for determination of paracetamol in the range (5.0–30) μ g.ml⁻¹ with correlation coefficient (0.996). The method was applied successfully for the determination of paracetamol in commercial pharmaceutical products.

Keywords: - post-Chemiluminescence; flow injection analysis; paracetamol

Introduction

Paracetamol (PCT) is also known as acetaminophen (N-acetyl-p-aminophenol, 4-acetamidophenol) is a white or almost white crystalline powder, sparingly soluble in water, freely soluble in alcohol.

Paracetamol/ Acetaminophen

Paracetamol is part of the class of drugs known as aniline analgesics, it is the only such drug still in use today .Paracetamol was first marketed in the United States in 1953 by Sterling-Winthrop Co.,which promoted it as preferable antipyritic to aspirin since it was safe to take for children and people with ulcers. In 1963, paracetamol was added to the British Pharmacopoeia, and has gained popularity since then as an analgesic agent with few side-effects and little interaction with other pharmaceutical agents. Paracetamol is widely used for management of pain and fever (Florey 2003)

analytical methods such Various as spectrophotometry,(Sultan et al. 2004; Idris et al. 2005; Afkhami et al. 2006; Shrestha and Pradhananga 2009; Nagendra 2011) fluorimetry, (Tavallali and Hamid 2011) flow injection analysis,(Oliveira et al. 2010) chemiluminescence Flow-injection with system.(Koukli and Hadjiioannou 1989; Alapont et al. 1999; Easwaramoorthy et al. 2001; Hua et 2002: Esmail 2004: Jabbar al. 2006^{-1} Ruengsitagoon *et al.* 2006; Zhao *et al.* 2006; Shu-min *et al.* 2011; Shi-qian 2011) electrochemical analysis, mass spectrometry, gas chromatography, capillary electrophoresis and liquid chromatography were employed for the determination of paracetamol. All these methods were used for determination of paracetamol either alone or in combination with other drugs.(Idris *et al.* 2005)

Some of these methods are less convenient for the determination of paracetamol in pharmaceutical formulations because the methods are based on the hydrolysis of paracetamol sample to 4-aminophenol, which then produced a coloured complex compound by an appropriate reaction which are time-consuming.

A new method was developed for the determination of paracetamol in which both flow injection and CL analysis were combined. The method was based on the inhibition of luminol-permanganate-pb post- chemiluminescence (PCL) with paracetamol by merging zone principle.

Experimental

Apparatus

The flow injection chemiluminescence system used in this work is shown in Figure (1). It consists of a peristaltic pump (Watson marlow205u) with 8 channels and variable speed regulator up to (10) ml/min to deliver flow streams. The silicon rubber pump tubes with (0.8) mm i.d were used to transport the solutions in the flow system.

Two six -way injection valves (knauer D-14163 berlin Nr.81521) and (cotati. California Nr. 7125) with a sample loop of (40) μ l were used to inject luminol and KMnO₄ into the flowing carrier streams. A Y-shaped Perspex piece was used to mix two streams of reagents.

The streams of luminol, $KMnO_4$, $pb(CH_3COO)_2$ and analyte were mixed in a flow

cell positioned in front of the detector inside the spectrophotometer (spectronic CE303 GRATING spectrophotometer) the light source of which was blocked.

Figure (1): Schematic diagram of the FIA-CL manifold with merging zone principle used for the determination of pracetamol.

The chemiluminescent out-put was recorded by means of an x-t recorder (Type PM 825A PHILIPS — one line recorder) with various amplication factors and different chart speeds.

Reagents

Luminol solution (1.0X 10⁻³) mole.L⁻¹

Luminol (5-amino-2,3-dihydro-1,4phthalazinedione) solution was prepared by dissolving 0.1772 g of the solid (Surechem-LTD) in a little of 0.1 mole. L^{-1} sodium carbonate solution and the volume was completed to 1.0L in a volumetric flask with the same solution. The pH of this solution must be justified at (10 – 10.5).Other diluted solutions were prepared by serial dilutions using carbonate buffer solutions.

Potassium hydroxide solution (1.0) mole.L⁻¹

Potassium hydroxide solution was prepared by dissolving 56.11 g of potassium hydroxide (Riedel-Df Haen) in a little of water; the volume was completed to 1.0L in a volumetric flask.

Potassium permanganate solution (0.2) mole.L⁻¹

A (0.2) mole.L⁻¹ KMnO₄ solution was prepared by dissolving (31.608) g of potassium permanganate (Hoplins and Williams) in a little of water. The solution was boiled for (15) min., then cooled and the volume was completed to (1.0) L in a volumetric flask. This solution was standardized against (0.1) mole.L⁻¹ standard sodium oxalate solution.^(Vogel 1979)

Lead acetate solution (0.1) mole.L⁻¹

A (37.9) g of lead acetate (Alpha) dissolved in (500) ml of distilled deionized water and make up the volume to (1.0) L.

Paracetamol stock solution (100) mg.L⁻¹

Stock solutions of (100) mg.L⁻¹ paracetamol (S.D.I.) were prepared daily by dissolving (0.1) g of paracetamol in distilled deionzed water and diluting to (1.0) L, in a volumetric flask. Working standard solutions were prepared by serial dilution to obtain standard solutions for constructing calibration curves.

Solutions of interfering species (1) mg.L⁻¹:-

A stock solutions of each interfering species was prepared by dissolving (0.1) g of each interfering in (100) ml Distilled deionized water. Other solutions were prepared by the addition of different amounts of each interferent to a constant paracetamol concentration, and comparing the emission intensity with that form a sample with no interferent.

Sample preparation

Table (1) illustrates paracetamol contained in pharmaceutical formulations, which analyzed by the proposed FIA-CL method.

Tablet

Twenty tablets were weighed to obtain the average weight. They were grounded into fine powder and carefully mixed. A portion of powder, equivalent to one tablet (approximates mg of paracetamol), was accurately weighed, dissolved in distilled deionized water then transferred quantitatively to a (500) ml volumetric flask and the volume was completed with water to obtain a solution contain (1000) μ g.ml⁻¹ for tablets that contain (500) mg paracetamol and (900) μ g.ml⁻¹ for tablets that contain (450) mg paracetamol. From this solution, other dilute solutions are prepared by appropriate dilution.

General procedure

As shown in Figure (1), solutions (40) μ l of (5×10^{-4}) mol.L⁻¹ of KMnO₄ and (40) µl of (5×10^{-1}) ⁴) mol.L^{-I} of luminol were injected into carrier (15) μ g.ml⁻¹ of paracetamol and (0.06) mol.L⁻¹ KOH streams which merge according to merging zone principle, controlling exact time so that the center of each injected slugs will meet the other, at the end of the luminal-KMnO4 reaction later merges with another combined stream (8.0×10^{-3}) mol.L⁻¹ of Pb (II) in front of the detector to produce another post-CL signal. Paracetamol will react with KMnO₄ which leads to decrease the concentration of KMnO₄ in the flow stream and CL-intensity would decrease. The emission light was detected and the peak height of the signal recorded as a CL signal (mV).

Results and discussion

The FIA-CL configuration as shown in Figure (1) used for the determination of paracetamol. Reagent concentrations and manifold parameters were optimized for magnifying of paracetamol inhibition effect on the CL generated by luminol-KMnO₄-Pb(II) reaction.

Chemical, Optimizations

Effect of potassium hydroxide concentration

The effect of potassium hydroxide concentration on the chemiluminescence intensity was investigated over the range of $(0.01 - 0.08) \text{ mol.L}^{-1}$. The optimum KOH concentration was $(0.06) \text{ mol.L}^{-1}$ provided the maximum signal-to-blank ratio as shown in Figure (2). Thus, $(0.06) \text{ mol.L}^{-1}$ were selected for further experiments.

Effect of KMnO₄ concentration

The influence of KMnO₄ at different concentrations from $(0.1 \times 10^{-4} - 8.0 \times 10^{-4})$ mol.L⁻¹ were tested as shown in Figure (3). The peak height increased gradually with raising KMnO₄ concentration up to (0.5×10^{-4}) mol.L⁻¹, above which CL intensity decreased sharply probably because the KMnO₄ color at high concentration will obscure the CL transient emission.

Effect of Luminol concentration

The effect of luminol concentration on the CL intensity was investigated in the concentration range of $(1.0 \times 10^{-4} - 1.5 \times 10^{-3})$ mol.L⁻¹ and the results are shown in Figure (4). The optimum concentration of luminol for determination of paracetamol was (1.0×10^{-3}) mol.L⁻¹ that exhibits maximum signal-to-blank ratio. Therefore, this concentration was selected for subsequent studies.

Effect of lead acetate concentration

The concentration of pb(II) is an important factor , because it is used as an enhancer in the reaction. The influence of pb(II)concentration on the CL intensity was initially examined from $(1.0 \times 10^{-3} - 1.0 \times 10^{-2})$ mol.L⁻¹ as shown in Figure (5). The result indicated that (8.0×10^{-3}) mol.L⁻¹ pb(II) gave the highest relative CL intensity and hence selected for subsequent studies.

Physical, optimizations

Effect of the length of mixing coil

The effect of length of mixing tubing over the range (0-60) cm on the CL intensity was investigated as shown in Figure (6). It was found that (40) cm of the mixing tubing afforded the best results as regards sensitivity and reproducibility. Too short or too long mixing tubing can result in the decrease of CL intensity. Too short tube means the first CL reaction did not complete and too long leads to excessive dispersion. Therefore, (40) cm of the mixing tubing that gave achieve adequate mixing of the reactants was chosen for the subsequent studies.

Effect of the flow-rate

Effect of flow rates in the range of (0.5-7) ml/min were examined using the optimized reactant concentrations as shown in Figure (7) the signal increased with increasing flow rate up to (5) mL/min, above which the signal decreased. The present CL reaction is very fast and the excited product at the entrance of the CL reaction flow cell needs rapid transport to the reaction coil of the cell for maximum light output to be monitored, while at the flow rate higher than 5 ml/min the reactants leaving the flow cell and CL performed outside the detector optical path. Therefore, (4) ml/min was selected as the best flow rate.

Effect of reagents volume

Effects of different injected volumes of luminol and KMnO₄ (20 – 60) μ l were studied using the optimized reactant concentrations and keep other physical variables constant. Figure (8) shows that the volume of (40) μ l exhibits a good results as far as smooth peaks taken into

consideration and without fluctuation in the signals happened beyond this volume.

Calibration graph

Under optimum experimental conditions mentioned in Table (2), the calibration graph of the relative CL-intensity versus concentrations of paracetamol was obtained. The calibration graph was constructed by plotting CL intensity represented by peak height (mV) against paracetamol concentration (μ g.ml⁻¹) as shown in Figure (9).

Statistical treatments of the calibration results including linear ranges, limits of detection, calibration equation and correlation coefficient for paracetamol are shown in Table (3).

To determine the accuracy and precision of the proposed method, four replicate determinations were made on the three different paracetamol concentrations of standard solutions. The accuracy was checked with a relative error (E %), while the precision of the method is checked with a relative standard deviation (RSD) of the same solutions. The results are shown in Table (4) which indicates good accuracy and precision.

Interferences

In order to assess analytical applicability of the method for paracetamol determination, the effect of some interfering substances which can be found in typical pharmaceutical preparations was tested by analyzing a standard solution of paracetamol (5) μ g to which increasing amounts of interfering ions were added. The tolerable concentration ratios with respect to (5) μ g of paracetamol for interference at (± 5) % level were listed in Table (5).

Application

The procedure was applied successfully for the determination of paracetamol in commercial pharmaceutical products. For the aim of comparison, the samples were also analyzed by HPLC as reference method(Godse *et al.* 2009).

The results are summarized in Table (6). A good agreement between the results obtained by the proposed method and reference method was observed.

The results of proposed method and reference method are compared using the F-test and t-test. The student t-test and F-test show that there is no significant difference between the two methods with regard to accuracy and precision (t-calculated=0.72 < t-table = 2.31 and F-calculated = 3.52 < F-table = 5.05 with a confidence limit of 95 %).

Accuracy

The accuracy of the proposed method was checked with a recovery R (%) of various amounts of paracetamol added to the respective pharmaceuticals. The results of the study are compiled in Table (8) which shows good accuracy.

Suggested mechanisim

The luminol-permanganate CL system emits weak CL in alkaline solution. as shown in this equation(Pan *et al.* 2007).

Nickel, mercury(II), lead, aluminum, alkaline earth metals and isoniazid can be detected by this post-CL phenomenon(Du J and Lu J. 2004 ,).

Potassium permanganate was firstly reduced by luminol to potassium manganate in alkaline medium, while luminol is oxidized to the excited species (3-aminophtalate ion). When the excited species returned to ground state and lost its energy by the emission of CL, the first CL signal occurred. By adding of lead ion the reaction between potassium manganate and 3aminophtalate ion (that returned to ground state) activated to produce MnO₂ and excited species (3-aminophtalate ion) that returned to ground state and lost its energy by the emission of the second CL.

The CL intensity of the luminol–KMnO₄–Pb reaction is higher than that of the luminol–KMnO₄ reaction, so that the diverse effect of paracetamol will be more significant in this case.

Oxidation of paracetamol by permanganate in aqueous-neutral media is very fast at room temperature. Upon mixing aqueous solutions of permanganate and paracetamol, a readily distinguishable brown color appears due-to formation of water-soluble colloidal MnO₂.(Kumar and Khan 2006)

When paracetamol was present in the luminol– $KMnO_4$ system catalyzed by pb, the CL intensity decreased dramatically. The inhibition effect depends on the concentration of paracetamol.General equation of the total reactions can be illustrated as bellow:-

 $MnO_4^- + Pb^{+2} + Luminol$ paracetamol Quenching the Light

Conclusion

The results presented in this work demonstrate that the coupling of luminol–KMnO₄-pb(II) post CL reaction monitored by an FIA method with merging zone principle is a very suitable approach to determine paracetamol residues at trace levels in pharmaceuticals, being a fast and cheap alternative.

The proposed method offers several advantages which are associated with the use of both FIA technique (low reagent consumption, high throughput and ease automation) and CL detection (high sensitivity, wide dynamic range and simple instrumentation).

In the present work, chemiluminescence generated by the reaction of luminol with $KMnO_4$ in basic media could be significantly enhanced by pb(II). This enhanced chemiluminescence was strongly inhibited in the presence of paracetamol. Based on these observations, a new flow-injection CL method was successfully proposed for the determination of paracetamol, in the range of 5-30 μ g.ml⁻¹ with detection limits of (0.982) μ g.mL⁻¹.

Luminol reacts with potassium permanganate to produce light emission in basic solution. Therefore, the alkalinity of the reaction medium is controlled by adjusting the KOH concentration in the luminol solution to improve the sensitivity of reaction.

The decrease in the signals at higher permanganate concentration is certainly due to the excess of permanganate, which overcasts the emitted light.

Luminol concentration plays a critical role in the CL reaction. Luminol was not only the reducing agent for the reduction of KMnO₄, but also the CL agent in the system. Both the CL signal and the blank signal increased as the luminol concentration increased. Hence, its concentration should be carefully optimized to ensure that the system was in good stability. In the present work, (1×10^{-3}) mol.L⁻¹ luminal gave the maximum blank to signal ratio above this concentration the CL intensity decreased due to the self quenching of luminol molecules.

The concentration of pb(II) was an important factor, because it was used as an enhancer in the reaction.

Flow rate is a critical parameter in the flowinjection-based CL detection system. It influences the degree of diffusing and mixing of the reactants, determines the time that is taken from the final mixing point of the reagents (sixway valve) to the point that CL signal is detected (flow cell), and consequently influences the CL signal.

Figure (2): Effect of KOH concentration on the luminol-KMnO₄-Pb post CL-intensity in presence of 15 μ g.ml⁻¹ paracetamol

Figure (3): Effect of KMnO₄ concentration on the luminol-KMnO₄-Pb post CL-intensity in presence of 15 μ g.ml⁻¹ paracetamol

Figure (4): The effect of luminal concentration on the luminol-KMnO₄-Pb post CL-intensity in presence of 15 μ g.ml⁻¹ paracetamol

Figure (6): Effect of mixing coil on the luminol-KMnO₄-Pb post CL-intensity in presence of 15 μ g.ml⁻¹ paracetamol

Figure (7): Effect of flow-rate on the luminol-KMnO₄-Pb post CL-intensity in presence of 15 µg.ml⁻¹ paracetamol

Figure (8): Effect of reagents volume on the luminol–KMnO₄–Pb post CL-intensity in presence of 15 μ g.ml⁻¹ paracetamol

Figure (9): Calibration graph for the determination of paracetamol

Trade name	company	company composition	
Panda	loswo modical	Paracetamol	500
Fanua	JUSWe medical	caffiene	65
myogesic	Dar al dawa, naur-	Paracetamol	450
myogesic	jordan	Orphenadrine citrate	35
Kanawah tablots	Kanawah syria	Paracetamol	450
Kanawan-lablets	Kallawali-Sylla -	Orphenadrine citrate	35
		Paracetamol	500
Reltef- tablets	China-mehcco pharmaceuticals and - chemicals	Diclofenac sodium	50
		Chlorophenir amine malate	4
	-	Magnesium trisilicate	100
paracetamol	troge	Paracetamol	500

Table (1): the trade name and composition of paracetamol contained in pharmaceutical

Table (2): Summary of optimum chemical and physical conditions for the determination of paracetamol.

Parameters	Optimum value		
KOH concentration	0.06 mol.L^{-1}		
KMnO ₄ concentration	$0.5 \times 10^{-4} \text{ mol.L}^{-1}$		
Luminal concentration	$1.0 \times 10^{-3} \text{ mol.L}^{-1}$		
Pb(II)	8 × 10 ⁻³		
length of mixing coil	40 cm		
Flow-rate	4 ml/min		
reagents volume	40 µl		

Compound	Linear rang (µg.ml ⁻¹)	Correlation coefficient	Linear regression equation Y= -14.85x + 478.5		Detection limit (µg.ml ⁻¹)
Paracetamol	5-30	0.996			0.982
Table (4): Accuracy a	and precision of the pre	sent method			
Compound	Conc. Of paracetamol (µg.ml ⁻¹)	Mean (mV)	E (%)	SD	RSD%
	5	395	1.25	9.1	2.3
paracetamol	10	317	- 2.4	6.48	2.0
—	20	191 25	_ 1 92	4 77	24

 Table (5) shows maximum tolerable concentrations of the various compounds.

Interference	Maximum	Paracetam	- Recoverv%	
Interference	interference (µg.ml ⁻¹)	added	found	
Caffine	20	5	4.75	95
Orphenadrine citrate	10	5	4.68	93.75
diclofenac	10	5	4.81	96.25
Chlorophenir amine malate	10	5	4.75	95
Magnesium trisilicate	10	5	4.93	98.75

Table (6): Results of analysis of commercial drug formulations containing paracetamol by the proposed method.

Trade name	Labeled amount	Proposed method	Reference method	%Е
Panda Joswe medical	500	494.9	495	-0.02
myogesic Dar al dawa, naur-jordan	450	453	442	2.4
Kanawah-tablets Kanawah-syria	450	437	445	-1.79
Reltef- tablets China-mehcco pharmaceuticals and chemicals	500	486	493	-1.4
Paracetamol Troge	500	511	499	2.4

Trade name	Proposed method (μ g.ml ⁻¹) (d_2)	Reference method (µg.ml ⁻¹) (d ₁)	$dj = d_{1^-} d_2$	$(d_j-d^-)^2$
Panda Joswe medical	4.94	4.95	-0.01	17.64x10 ⁻⁴
myogesic Dar al dawa, naur-jordan	5.03	4.91	0.12	77.44×10^{-4}
Kanawah-tablets Kanawah-syria	4.86	4.94	-0.08	12.54×10^{-3}
Reltef- tablets China-mehcco pharmaceuticals and chemicals	4.86	4.93	-0.07	10.40×10^{-3}
Paracetamol Troge	5.11	4.99	0.12	77.44×10^{-4}
			<u>∑</u> 0.016	<u>∑</u> 0.0401

Table (7): Statistical analysis of (5.0) μ g.ml⁻¹ of paracetamol using proposed method and reference method.

S_d=0.1

$d^{-} = (1/n) \sum dj = 0.032$

 d_1 and d_2 = value obtained by analyzing the analyte by the reference and Proposed method respectively.

 d_i = sample mean of differences

Table (8): Recovery experiments for paracetamol added to sample solutions of commercial formulations.

Trade name Initially present (μg.ml ⁻¹)		Added (µg.ml ^{−1})	Found (µg.ml ⁻¹)	Recovery (%)
Danda		3	13.25	101.9
Fallua Joswo modical	10	5	15.38	102.5
JUSWE MEdical		10	20.21	101.05
muagasia		3	12.58	96.7
Dar al dawa, paur iordan	10	5	14.71	98.06
Dai al uawa, naui-joituan		10	19.98	99.9
Kanawah tahlata		3	12.49	96.07
Kanawan-lablels	10	5	14.26	95.06
Kallawali-Sylla		10	19.56	98.02
Reltef- tablets		3	13.70	105.3
China-mehcco pharmaceuticals	10	5	14.93	99.5
and chemicals		10	20.32	101.6
Baraaatamal		3	12.47	95.92
trago	10	5	14.93	99.53
uoge		10	20.55	102.75

References

- Afkhami, A. (2006). "Spectrophotometric Determination of Salicylamide and Paracetamol in Biological Samples and Pharmaceutical Formulations by a Differential Kinetic Method "<u>Acta Chim. Slov.</u> 53: 357– 362.
- Alapont, A. G. (1999). "Indirect determination of paracetamol in pharmaceutical formulations by inhibition of the system luminol-H2O2-

Fe(CN)3-(6) chemiluminescence." J. Pharm. Biomed. Anal., 21(2): 311-317.

- Du J and Lu J. (2004 ,). "Hydrazine-induced postchemiluminescence phenomenon of permanganate-luminol reaction and its applications ,." <u>Luminescence</u>, 19 ,(6 ,): 328-332 .
- Easwaramoorthy, D. (2001). "Chemiluminescence detection of paracetamol by a luminolpermanganate based reaction." <u>Anal. Chim.</u> <u>Acta</u> 439: 95-100.

- Esmail, W. A. (2004). Flow injection chemiluminsecence for the determination of some nitrogen containing compounds, . <u>Department of chemistry</u>, University of Salahaddin. Ph.D.: 124.
- Florey, K. (2003). "Analytical profilesof drug substances." Elsevier 8: 424-451.
- Godse, V. P. (2009). "Reverse Phase HPLC Method for Determination of Aceclofenac and Paracetamol in Tablet Dosage Form." <u>Asian J.</u> <u>Research Chem.</u> 2(1): 37-40.
- Hua, C. (2002). "Determination of paeacetamol by flow injection chemiluminescence analysis." <u>Chinese J. Analyt. Chem 11</u>.
- Idris, A. M. (2005). "Sequential injection spectrophotometric kinetic method for the determination of Paracetamol in dosage forms "<u>J. Flow Injection Anal.</u> 22(2): 123–128.
- Jabbar, H. S. (2006). Flow injection analysis with chemiluminescence and spectrophotometric detection for determination of some pharmacetucal formulations. <u>Department of</u> <u>chemistry</u> University of Salahaddin. M.Sc.thesis: 52
- Koukli, I. I. and Hadjiioannou, T. P. (1989). "Continuous-flow chemiluminescence determination of acetaminophen by reduction of cerium(IV)." Analyst 114: 711-714.
- Kumar, P. and Khan, Z. (2006). "Unusual stabilization of water-soluble colloidal MnO2 during the oxidation of paracetamol by MnO4-"<u>Polym Sci</u> 284(10): 1155-1162.
- Nagendra, P. (2011). "Spectrophotometric Estimation of Paracetamol in Bulk and Pharmaceutical Formulations." <u>E-Journal of Chemistry</u> 8(1): 149-152.
- Oliveira, M. C. Q. (2010). "Flow injection analysis of paracetamol using a biomimetic sensor as a

sensitive and selective amperometric detector." <u>Anal. Methods 2(5): 507-512</u>.

- Pan, J. (2007). "Effect of pH on the characteristics of potassium permanganate–luminol CL reaction in the presence of trace aluminum(III) and its analytical application." <u>Talanta</u> 71(5): 1861– 1866.
- Ruengsitagoon, W. (2006). "Flow injection chemiluminescence determination of paracetamol." <u>Talanta</u> 69(4): 976.
- Shi-qian, W. (2011). "Reversed Flow Injection Inhibition Chemiluminescence System for the Determination of Paracetamol." Journal of Jiangxi Normal University, 3: 15.
- Shrestha, B. R. and Pradhananga, R. R. (2009). "Spectrophotometric Method for the Determination of Paracetamol." J. Nepal Chem. Soc 24: 39.
- Shu-min, W. (2011). "Flow injection chemiluminescence determination of paracetamol with chromium(VI)-H202luminol system." Chinese J. Anal. Lab. 4: 32.
- Sultan, S. M. (2004). "Sequential Injection Spectrophotometric Method for the Assay of Paracetamol in Drug Formulations " <u>J. Flow</u> <u>Injection Anal.</u> 21(1).
- Tavallali, H. and Hamid, Y. (2011). "Spectrofluorometric determination of Paracetamol in pharmaceutical formulations." of Asian Journal Biochemical and Pharmaceutical Research (AJPCR) 1(2): 2231.
- Vogel, A. (1979). London.
- Zhao, S. (2006). "Detection of paracetamol by capillary electrophoresis with chemiluminsecence detection." <u>Anal. Chim.</u> <u>Acta</u> 559 195.

خەملاندنا باراسيتامول بشيكارىيا بريسكەي كيمياي بريْبازا دەرزى ليْدانا روويشتۇ'

پوخته

Pb بريتيه ژريّكهكا نوى بۆ خەملاندنا پاراسيتامول لسەر بنەمايى بەربەستكرنا لومينول – پرمانگەنيّت – Pb بەريقەدارا پيّشكەوتوو دگەل پاراسيتامول لسەر بناغى دەۋەرا تيّكەلچويى. دۋى كارى دا CL دەركەفت بريّكا كارليّكەرا لومينول دگەل KMnO4 دناۋەندا تفت دا ئەوا برەنگەكى ديار گەشەدكەت بتيكرنا (P(II).

ئەف گەشەكرنا CL گەلەك بھينز دئينتە بەربەستكرن بھەبونا پاراسيتامول. لسەر ڤان بنەمايا ريْكەكا نوى يا كوتانا رويشتووى -CL بسەركەفتيانە ھاتە راسپاردن بۆ خەملاندنا پاراسيتامول، بخيچەكا راست دمەوداى (5 – 30 مايكروگرام/مل) وھوكارى بەراوردكرنى (0.996) و سنورى ديتنى (0.982 مايكروگرام/مل).

تقدير الباراسيتامول بتقنية الحقن الجرياني العكسي مع البريق الكيميائي باستعمال نظام لومينول- برمنغنات - Pb الملخص

استخدمت طريقة تقنية بسيطة للتدفق الجرياني العكسي مع البريق الكيميائي لتقدير الباراسيتامول . تعتمد الطريقة على قياس انخفاض شدة البريق الكيميائي الناتج من تفاعل اللومينول-برمنجنات البوتاسيوم – خلات الرصاص بواسطة الباراسيتامول حيث ان مقدار الأنخفاض في شدة البريق الكيميائي يتناسب طرديا مع زيادة تركيز الباراسيتامول. تم ضبط الظروف المثلى للتفاعل ومناقشة الية التفاعل. المنحني القياسي تتراوح بين 5 – 30 ميكروغرام/مل مع معامل الارتباط 0.996 . كما كان حد الكشف