
Journal of University of Zakho, Vol. 4(A), No.2, Pp 275-286, 2016

 275

ISSN: 2410-7549

Adaptive Load Balancing Scheme For Data Center Networks Using Software
Defined Network

Shavan K. Askar

Electrical and Computer Engineering Department, Collage of Engineering, University of Duhok, Kurdistan Region-Iraq.
(Accepted for publication: December 21, 2016)

Abstract:

A new adaptive load balancing scheme for data center networks is proposed in this paper by utilizing
the characteristics of Software Defined Networks. Mininet was utilized for the purpose of emulating and
evaluating the proposed design, Miniedit was utilized as a GUI tool. In order to obtain a similar
environment to the data center network, Fat-Tree topology was utilized. Different scenarios and traffic
distributions were applied in order to cover as much cases of the real traffic as possible. The suggested
design showed superiority over the traditional scheme in term of throughput and loss rate for all the
evaluated scenarios. Two scenarios were implemented; the proposed algorithm presented a loss-free
performance compared to 15% to 31% loss rate in the traditional scheme for the first scenario. The
proposed scheme showed up to 81% improvement in the loss rate in the second scenario. In term of
throughput, the proposed scheme maintained the same level of throughput in the first scenario compared
to an average of 5Mbps reduction in the throughput when using the traditional scheme. While in the
second scenario, the new scheme outperformed the traditional scheme by showing an improvement of up
to 16.6% in the throughput value.

Keywords: Software Defined Network; Data center; POX controller; Fat-Tree; Mininet; miniedit, Load
Balancing, Datacenter.

I. INTRODUCTION
Data Center Networks (DCN) witnessed an

unprecedented development over the past few
years in an attempt to accommodate the huge
increase and requirements’ change in the traffic.
To handle such big data, special consideration
has to be taken for traffic monitoring and
management because any disruption in the
service or presenting undesirable QoS
parameters would lead to massive revenue loss
(Yang et al., 2016; Shavan et al., 2011).

Traffic of networks is mainly comprises of
control plane traffic and data plane traffic. The
majority of load balancing schemes deal with the
data plane traffic as its percentage is far more
than the control plane traffic. In present, Data
centers deploy hierarchical network architecture
with multi-path characteristics such as Fat-Tree
topology. The existence of multi-path routes
facilitates having different routes to the same
destination and this will help having a better load
balancing options. Fat-Tree topology has been
implemented in many modern DCs such as
(Heller et al., 2010, Mohammad Al-Fares et al.,
2010). Figure 1 shows a Fat-Tree topology with
four pods.

Although there is more than one rout into a
particular destination in a Fat-Tree network,
however, the classical distance vector and link
state routing protocols cannot utilize this multi-
path property. Internet routing protocols usually

routes and forwards packets based on the
destination IP address. As a consequent, packets
with the same intended destination address will
be routed at the same path (Shubhi, 2015; James
and Keight, 2012).

Figure 1: 4-Pod Fat-Tree topology
Undoubtedly, there are some routing

protocols that have equal cost multipath (ECMP)
characteristic; however, they split traffic
statically depending on the information obtained
from a packet’s header. As a result, there will be
no consideration for traffic flow’s requirements
in term of QoS parameters; in addition, the status
of the overall network load is not taken into
consideration. In other words, those kinds of
ECMP algorithms are merely capable of
selecting among multiple paths that have equal
least cost (Heller et al., 2010; James and Keith,
2012).

The main difference between routing of DC
traffic and internet traffic is that; internet routing
protocols often emphasize on selecting the shortest

Aggregation
Layer

Edge Layer

Hosts

Core Layer

Journal of University of Zakho, Vol. 4(A), No.2, Pp 275-286, 2016

 276

ISSN: 2410-7549

path to reduce the delay. Whereas, DCs are
composed from servers that usually located in
close distances, therefore, the concerns is more
than just the latency, it is about balancing the huge
traffic. The pre-mentioned bandwidth balancing
function is not attainable in traditional DCNs
because of the nature of the traditional switches
utilized in those kinds of networks. The switches
that are deployed in traditional DCNs do not have a
global view on the entire network resources such
as the remaining link bandwidths and alternative
paths in a real time manner (Dan Li et al., 2015;
Liming and Gang, 2016; Feilong et al., 2016).

An adaptive load balancing DCN is proposed in
this paper by means of utilizing SDN switches and
controller. The main difference between the SDN
network structure and the traditional network is
that in SDN, the forwarding process is conducted
in a centralized manner by means of a controller
and forwarding switches and this is considered as
the main advantage for conducting an efficient load
balancing over the traditional DCNs. Figure 2
shows a simple architecture of the SDN network.
The SDN controller has a comprehensive overview
on the type of flows, links’ utilization, and the
available paths to the intended destination. These
kinds of information help in performing more
efficient load balancing algorithms than if it is
limited to distributed protocols for routing and
traffic monitoring as it is the case with the
traditional network architectures (Zhaogang et al.,
2016).

Figure (2): SDN Architecture
As shown in Figure 2, SDN networks consist

of three main layers; data layer, control layer,

and application\management layer. The data
layer comprises of network devices such as
routers, OpenFlow switches, and wireless
devices. The operation of these devices differs
from their function at traditional networks; in
SDN, they are merely forwarding devices while
the intelligence unit that is responsible for
making decisions is located at the controller. The
case is different with traditional networks that
come with network devices with their software
or control unit built inside them. SDN allows
network administrators of configuring and
managing network’s traffic which contributes
into better utilization for network resources.
The concept of SDN was originally proposed by
Stanford University (Sixto, 2013). SDN
separates the control plane from the data plane
on its network devices; in addition, it allows
having an entire overview on the network
resources that supports making changes globally
not in a centralized manner as in traditional
networks. This new network technique is
implemented utilizing some open standards such
as OpenFlow. OpenFlow is one of the most
important protocols that are capable of
configuring, managing, and interoperating
between different network devices (ONF, 2015).
As shown in Figure 2, SDN networks consist of
two major elements which are namely; the
controller (control plane) and the forwarding
devices (data plane). The forwarding device
could be a switch or a router that is in charge of
forwarding packets only. On the other hand, the
controller is considered as brain of the network,
it is simply software operating on a specific
hardware platform. The controller is
communicated with the OpenFlow switches via a
secure channel that runs an OpenFlow protocol.
SDN controller inserts flow entries, modify flow
entries, query, and has an overview of the whole
network resources. OpenFlow forwarding
switches keep statistics of each flow and port
such as the total number of transferred bytes and
the duration time of each flow. The forwarding
switches and controller coordinate their work as
follows; if the path of the flow is already known
(not the first packet of the flow), then the
forwarding switch would not need to consult the
controller and it can forward packets on the fly.
However, for first packet case (the income
packet does not match any flow entries of the
Ternary Content Addressable Memory table), the
switch needs to consult the controller to find a
suitable outgoing port (Xuan-Nam et al., 2016;
Andreas et al., 2016; Ian et al., 2016).

Network
Application

Data Plane

Control Plane

Application & Management Plane

SDN Controller

Northbound APIs

Southbound APsI

Open Flow

Routers

Infrastructure
Elements

Monitoring

Routing

TE

QoS

Journal of University of Zakho, Vol. 4(A), No.2, Pp 275-286, 2016

 277

ISSN: 2410-7549

The proposed scheme aims at adaptively
balancing the load by means of re-routing into an
alternative path based on information obtained
from the SDN controller.

The rest of this paper is organized as follows;
Section II gives a description for the previous
research on providing load balancing schemes
for data centers and some of the early attempts
on using SDN for this purpose. Section III
describes the proposed adaptive load balancing
scheme using SDN architecture. Section IV
presents the obtained results and analyzes them.
Section V concludes the paper.

II. Related Work
Load balancing problem is one of the major

issues in DCs in their different shapes, whether
they are physical DCs or virtual DCs. DCs
usually allow multiple paths routing for the
purpose of improving the tolerance to faults in
addition to increasing network’s throughput by
means of sorting out the problem of congestion.
Layer 2 and Layer 3 are capable of running
multipath routing; however, each layer deploys it
based on its protocols. For instance, spanning
tree is utilized by Layer 2; therefore, only one
path would be available for a pair of sender
receiver nodes at a time. There are some
proposals to support multipath with Layer 2 such
as the one conducted by (Jayaram et al., 2010).
They proposed exploiting the redundant paths in
the network using an algorithm that calculates a
set of available paths and combines them into
another set of trees. On the other hand, at Layer
3, routers support ECMP by implementing static
load separation between the available flows.
Switches that have their ECMP property enabled
would have more than one path in each subnet.
Upon receiving an incoming packet, switches
utilize the hash function (interpreting packet
header) in order to select one of the available
paths for forwarding purpose. However, ECMP
does not take into consideration the flow
bandwidth when selecting paths which may
results in overloading links unnecessarily where
other links may already be available as it is
shown in Figure 3. In addition, ECMP has a
problem in its practical implementation because
the available paths for selection are either 8 or
16 paths which are much lower than the needed
paths for the purpose of providing bisection
bandwidth, in particular, when dealing with big
data as it is the case with DCNs.

Figure 3 depicts a scenario where ECMP is
utilized and where it can’t utilize network’s links

in an efficient way because of the phenomena
mentioned above, that is not counting for flow
bandwidth. One of the major drawbacks of
ECMP is that long flows may contend on the
same output port based on their hash values, this
would consequently lead into bottleneck (Wei et
al., 2016).

Figure (3): Scenario depicting ECMP problem
Figure 3 shows a scenario of Fat-Tree

topology in which all networks’ links are of 10
Gbps bandwidth. Flow 1 and Flow 2 sending
traffic with 10 Gbps each, because of the
hashing, they contend at the aggregation level
(encircled with red colour) for the same output
port that routes to the core level. This collision
results in halving the throughput of each of
them. The other collision is happened between
Flow 3 and Flow 4 at the core level. Obviously,
their throughput is halved as the link requires
carrying their overall traffic which is equal to
double of the link capacity. A Fat-Tree Topology
with four pods as depicted in Figure 3 should
allow for four different paths for each host,
however, an efficient algorithm that can utilize
this property is needed. This means that with an
existence of the right load balancing scheme, the
four flows would have transferred traffic in a
rate of 10Gbps instead of 5 Gbps. This could
have been happened if Flow 1 was directed into
Core 2 and Flow 3 into Core 4 (Wei et al., 2016;
Zhiyang et al., 2015).

A research is conducted in (Wang et al.,
2016) to improve the hash algorithm by
distributing the data flow. A detection algorithm
is utilized to find out the occupancy duration for
the purpose of identification weights of each
load and their dense points. Another research
was conducted in (George et al., 2003) in which
a shared memory for network data flow was
proposed by means of multiprocessor model.
Priority and weight schemes were deployed in
order to evenly distribute network flows to the
processor. However, in addition to the lack of an
overview of flow bandwidth, one of the
drawbacks of the abovementioned algorithms is
that their systems are closed. In addition, their

Flow 1

Flow 2

Flow 3

Flow 4

Core 1 Core 2 Core 3 Core 4

Journal of University of Zakho, Vol. 4(A), No.2, Pp 275-286, 2016

 278

ISSN: 2410-7549

software and hardware is tightly coupled,
therefore they are not suitable for the high
development growth of Internet.
III. ADAPTIVE LOAD BALANCING SCHEME

In addition to the above mentioned issues
with ECMP, traditional load balancing
techniques come with a dedicated hardware that
is in charge of conducting the function of load
balancing as depicted in Figure 4.

Figure (4): Traditional load balancer for DCN
When users try to access backend servers

shown in Figure 4, it would be the role of the
load balancer to check the list of backend servers
out and select an appropriate load balancing
algorithm for the purpose of distributing clients’
access into the available servers. Therefore, the
load balancer should keep track of all the
established sessions; in addition, all the packets
that have the same TCP\UDP addresses would
be forwarded into the backend servers no matter
to what flow they belong. In this case, the load
balancer should has\and executes network
address translation by updating the source; port
number, and the IP addresses of the outgoing
packets while conducting an opposite job when
receiving packets by matching the destination; IP
and port number addresses for the incoming
packets with its table (Senthil and Ranjani,
2015). The dedicated load balancer has more
drawbacks than the above-mentions ones; it is an
expensive solution, not a flexible technique,
undergoes from the problem of having single
point of failure, and leads to bottleneck for the
whole system (Senthil and Ranjani, 2015; Mao
and Shen, 2015).

A generic overview of the proposed adaptive
load balancing system is shown in Figure 5. The
main difference between the proposed system
and the traditional one is that there is no
dedicated hardware for the purpose of load
balancing. Instead of a dedicated load balancer
and traditional switches, the proposed scheme
utilizes OpenFlow switches that could be
programmed to work under any needed function
whether as a router, switch, or hub. OpenFlow
switches works under the supervision of a
controller that is connected to all the switches
and has an entire overview of the whole network
and its resources. The property of the controller
is exploited for the sake of having an efficient
load balancing scheme, this is conducted by
deploying the load balancing algorithm inside
the POX controller. The role of the controller of
a DCN is to manage requests received from
clients and forward them into a specific path to a
particular server based on the information of the
entire network that is already gathered by the
controller. SDN controller is capable to
adaptively add, delete, and modify entries of the
flow table of the OpenFlow switches for the sake
of balancing the load of the network.

Figure (5): Generic Architecture for the proposed
Adaptive SDN load balancing scheme.

The proposed architecture aims at adaptively
balancing the load of the DCN based on some

Users

Internet

Firewall

L2/3 Switch

Load Balancer

Web Servers

Application Servers

Database

Users

Internet

Firewall

SDN System

Web servers

Application servers

Database

SDN
Controller

OpenFlow
Switch

Journal of University of Zakho, Vol. 4(A), No.2, Pp 275-286, 2016

 279

ISSN: 2410-7549

triggering parameters that could be set either
manually (DCN administrator) or dynamically
based on service requirements, in both cases, the
network status plays a major role in initiation the
load balancing algorithm. To meet a reliable
evaluation for the proposed scheme, two aspects
have been taken into consideration. First, is to
utilize exactly the same network topology that is
deployed by DCNs that is, a Fat-Tree network
topology. Secondly, to utilize the most reliable
emulator for SDN networks, that is Mininet
emulator (Mininet, 2016; Faris and Shavan,
2015).

 The proposed DCN scenario is evaluated by
means of a Fat-Tree network with k=4, the
proposed architecture is emulated utilising
Mininet emulator as shown in Figure 6 that
represents a snapshot of the emulated network.
Fat-Tree topology is built with K ports switches
and it consists of K-pods. Each pod has two
layers, aggregation and edge as indicated in
Figure 1. The available paths between any two
hosts in a K-pods Fat-Tree network is (K/2)2

, this
means that there are four routing paths between
any two servers of the network shown in Figure
6. In addition, the entire K-pods should be
connected into (K/2)2 Core switches (4 core
switches) (Jun and Yuanyuan, 2016).

The proposed adaptive load balancing
algorithm is programmed inside a POX
controller that belongs to the SDN based DCN.
The triggering parameter for the proposed
algorithm is bandwidth and loss which are the
two most important factors when dealing with
DCNs. Accordingly, when a received throughput
is decreased under its expected value or in case
there is an increase in the loss value in one or
couple of the DCN links (throughput and loss
are interrelated and gives that same indication),
then the proposed algorithm takes action. The
pre-mentioned scenario is when there are already
established connections and there is an increase
in the traffic that leads to loss, however, if the
connections among servers and clients started
with high bandwidth requirements, then the
algorithm will find optimal path at the beginning
of creating the connections. The initiation starts
with the controller which has an entire overview
on the whole network resources as shown in red
lines in Figure 6. The controller exploits this
facility and finds alternative paths for the
reduced throughput traffic or for the traffic that
undergoes of high loss rate.

Figure (6): The emulated Fat-Tree DCN utilizing

Mininet Emulator.

Figure 7 shows a flow chart of the proposed
adaptive load balancing algorithm. Two cases
are considered; the first case where there is a
new joining client, whereas, the second case is
where there is an already established connection
between two pairs and there is a demand to
increase the throughput which may affect other
communication parties. It is assumed that the
proposed scheme collects the throughput
requirements for specific applications and keeps
that information in the controller. Once there is a
contention in one of the links, the throughput of
those applications may goes lower than their pre-
specified threshold value; therefore, the
algorithm will be initiated to conduct load
balancing in order to attain the original required
throughput. Because the Fat-Tree network
utilized in the proposal has 4 pods, there will be
four routes between any two hosts (servers).
Therefore, the controller will search for the rest
of the three ((K/2)2-1) alternative paths to find
out the best one as described in Figure 7. The
same scenario is applied when there is an
increase in a demand between two already
connected parties, this increase in demand will
be examined whether it would lead to reducing
the throughput below its threshold value or if it
cause any increase in the loss value. If any of the
two pre-mentioned cases are met, there will be a
need to change into another route.

Journal of University of Zakho, Vol. 4(A), No.2, Pp 275-286, 2016

 280

ISSN: 2410-7549

Figure (7): The proposed Algorithm
Upon changing the path, the controller

updates the OpenFlow forwarding table of the
OpenFlow switches. Simultaneously,
information about the remaining bandwidth of
the new and former links is sent to the controller
so that the controller is aware of the available
network resources in case of future reservation
for other parties. The controller exploits the
opportunity of having an overview of the entire
network; accordingly it performs two kinds of
tasks which are namely; network monitoring and
allocation of resources. Monitoring is conducted
by sending requests to all the switches in a
periodic manner. Up on receiving requests, an
analysis is conducted for the reply packets in
order to determine the best route to the intended
destination. Monitoring would not add much
overhead because the request and reply messages
are too small; the request packet length is 8
Bytes while the reply packet length is 104 Bytes
(Yi-Chih et al., 2015).

IV. EMULATION AND RESULTS
This Section describes the emulation

environment, emulation tools, and the obtained
results. All experiments were conducted
utilizing HP ENVY dv6 PC with core i7 intel
(R) processor Core (TM) i7-3630QM CPU
2.40GHz, 6 GB RAM, and 64-bit Windows 8
operating system. Virtual Box Oracle VM
version 5.0.16 was utilized, in addition, the guest
OS of the VM was installed with Linux OS
Ubunto 14.04 32-bit and 1GB RAM. Mininet
2.2.1 emulator was installed on this VM, with
POX 2.0 controller. The emulated DCN is of
Fat-Tree type with four pods, 8 aggregation
OpenFlow switches, 8 edge OpenFlow switches,
4 core OpenFlow switches, and 16 hosts. In
order to obtain more realistic and reliable results;
small packets and relatively small link capacities
bandwidth were utilized because the
performance of Open Virtual Switch (OVS) and
OpenFlow controller created by Mininet is
effected by underlying OS, available processor
and the allocated memory (Alexander et al.,
2015). Accordingly, all link bandwidths have a
capacity of 10Mbps.

Traffic generation and throughput measurement
was conducted by means of Iperf tool which is a
network testing tool that can generate
Transmission Control Protocol (TCP) and User
Datagrams Protocol (UDP) packets in order to
measure the throughput of a network (Iperf, 2016).
For the purpose of evaluating the proposed
scheme, two scenarios were investigated. The first
scenario (Scenario A) is depicted in Figure 8 where
at the beginning, two hosts, namely H16 and H10
send traffic with a rate of 8Mbps (Flow 2 in red
colour) and 7Mbps (Flow 4 in blow colour) to
Hosts H8 and H1 respectively. Mininet was
utilized as an emulation tool for the purpose of
designing and evaluating the proposed scheme. In
addition, Mininet was used in order to feed the
network with traffic and measure the throughput
via the command Iperf. Mininet is programmed
using Python programming language.

Figure (8): Emulation of the first Scenario

Start

Yes

Established connection to
destination?

Increase loss or
throughput<threshold?

Yes

No

Client Request Access to
Servers

Join the
Connection

Free resources to
join?

Network
Monitoring

Find a route out of
((K/2)2-1) routes

No

Yes

No

Update OpenFlow
forwarding table

Send an update on
the remaining BW

to the controller

Join or establish a
connection

Increase demand or
new request?

No

Yes

Flow 1

Flow 2

Flow 3

Flow 4

Core 1 Core 2 Core 3 Core 4

H1 H2 H5 H7 H3 H4 H6 H8 H9 H16 H10 H12 H13

Journal of University of Zakho, Vol. 4(A), No.2, Pp 275-286, 2016

 281

ISSN: 2410-7549

The emulation period is 20 seconds where
loss, throughput, and delay are recorded every
second at the receiver. At time 0 Sec, H16 and
H10 start sending their traffic to their intended
destinations (H16-H8, H10-H1). At time 5 Sec,
Flow 3 starts when H5 start sending traffic of
5Mbps rate to H4. Relying on the hash way for
routing and load balancing, Flow 3 and Flow 4
contend for the same outgoing port and
accumulate an overall traffic of 12Mbps that
leads to reducing the throughput and increasing
the loss rate. At time 10Sec, H13 starts sending
traffic of 5Mbps rate (Flow 1 in Green colour) to
H12 that would apparently contends with Flow 2
and they together make traffic of 13Mbps.

Figure 9 shows the obtained results of

throughput when the traditional hashing method
is utilized, as it could be noticed, up to the fifth
Second of the emulation period, H16 and H10
were sending an average traffic rate of 8Mbps
and 7Mbps respectively. Then H5 joins with
5Mbps traffic rate so apart from its intended
receiver (H4), it affects H1 only because it
contends with the traffic sent by H10 at the core
level as depicted in Figure 8. Therefore, their
received throughputs are reduced as depicted in
Figure 9. At time 10 Seconds, H13 starts
transmitting traffic to H12 with 5Mbps rate.
Again, there will be a collision with the traffic of
Flow 2 but this time it will occurred at the
aggregation level. This leads to dropping the
throughput of hosts H12 and H8 as shown in
Figure 9.

Figure (9): Throughput versus emulation time for
Scenario A when utilizing traditional hash load

balancing technique.
When deploying the proposed adaptive load

balancing scheme to the same scenario and
traffic distribution, then neither the new joined
hosts nor the already transmitting hosts will be
affected as shown in Figure 10. The reason is

that the load balancer has a full overview over
the entire network and once it receives a packet
that belongs to a new flow, it allocates free
resources to it without undergoing any loss. The
controller inserts a new entry in the OpenFlow
forwarding tables to establish a connection of the
new joined server. However, the case may be
different in the Second Scenario when there is an
increase in demands for an already established
connection, in this case, there will be some affect
that lasts very short time as it will be depicted
later.

Figure (10): Throughput vs Emulation time for
Scenario A when utilizing the proposed adaptive load

balancing algorithm.

Figure 11 shows the loss results when

traditional technique is deployed; obviously
there is not any loss in the case of the proposed
adaptive load balancing method. As indicated in
Figure 11, the loss rate starts gradually for hosts
H1 and H4 at time 5 Seconds when H5 joins by
sending traffic via the network and cause
collision at the core level. However, hosts H8
and H12 start undergoing from loss at time 10
Seconds when H13 joins the network that leads
to congestion at the aggregation level as depicted
in Figure 8.

Figure (11): Loss Rate versus emulation time for the

traditional scheme

T
hr

ou
gh

pu
t (

M
bp

s)

Time (Seconds)

Throughput vs Time (Traditional Scheme)

T
hr

ou
gh

pu
t (

M
bp

s)

Time (Seconds)

Throughput vs Time (SDN Load Balancing)

L
os

s
R

at
e

(%
)

Time (Seconds)

Loss Rate vs Time (Traditional Scheme)

Journal of University of Zakho, Vol. 4(A), No.2, Pp 275-286, 2016

 282

ISSN: 2410-7549

As mentioned earlier, the SDN controller can
fully control and prevent any loss in such a case
because H5 and H13 are new to the network and
their flow will be optimally allocated by the
controller, therefore, the loss rate is equal to 0%
for such a case when utilizing the proposed
adaptive load balancing scheme. Nevertheless,
there would be some loss if the connection is
already established as it will be explained in the
Second Scenario (Scenario B).

For the sake of simplicity for the reader, the
same topology and sender-receiver pairs that are
shown in Figure 12 are assumed for Second
Scenario. However, the starting sending rate is
way lower than the First Scenario, where, H16
and H13 send traffic rates of 5Mbps and 4Mbps
respectively, they utilize the same route to their
intended destinations, H8 and H12 respectively.
It is also assumed that H5 and H10 send traffic
with 2Mbps and 6Mbps rates to H1 and H4
respectively. The main difference between the
two scenarios is that in the second Scenario,
flows are already established; therefore, in case
that the demand for capacity goes beyond link’s
capacity, the controller will call the adaptive
load balancing algorithm to conduct load
balancing. Whereas, in the first scenario, the
flow were not established when it was required
to send traffic higher than link’s capacities.

Figure (12): Emulation of the Second Scenario

H5 (destination H4) increases its demand

from 2Mbps to 6Mbps at time 5Sec as shown in
Figure 13. For the case of the traditional scheme,
there will be a contention between Flow 3 and
Flow 4 which leads to degrading the throughput
and increasing the loss rate for H4 and H1 as
they share the same route as it is depicted in
Figure 13. The expected throughput of H4 is
supposed to be 6Mbps, however, as it is depicted
in Figure 13 (green colour), it does not exceed
the average of 4.3Mbps. In addition, the
contention affect H1 by reducing it is already

established connection’s throughput from 6Mbps
into around 5.5 Mbps as depicted in Figure 13
(blue colour). On the other hand, when utilizing
the adaptive load balancing scheme, the
contention triggers the proposed algorithm to
take an action as there is an increase in the loss
rate. The controller takes the initiation and
dictates OpenFlow switches to change their
forwarding table into a new route based on the
information that the controller has about the
entire network. Therefore, it re-route Flow 3 into
Path B as shown in Figure 12. In addition, H13
(destination H12) increases its sending rate from
4Mbps into 8Mbps at time 10Sec as depicted in
Figure 14; this would have consequences on
Flow 1 and Flow 2. The controller triggers the
adaptive load balancing algorithm to choose an
alternative path from the available three paths; it
selects Path A to forward the traffic of Flow 1 as
depicted in Figure 12. The algorithm re-routes
the traffic sent by H13 into Path A; similarly it
changes the route of the traffic sent by H5 into
Path B as depicted in Figure 12. As it is depicted
in Figure 14, the increase in demands would
have an effect for a very short time; afterwards,
the expected throughput is attained as depicted
in blue and red coloured curves of the same
Figure. Figure 14 shows that in the case of a
traditional scheme, the increase of Flow 1 will
have a devastating effect on Flow 2 as shown in
blue and green coloured curved.

Figure (13): Scenario B, throughput comparison
between the traditional scheme and the adaptive load

balancing scheme for for H1 and H4.

Figures 15 and 16 depict the loss rate versus
the emulation time for the second Scenario
(Scenario B). It could be noticed how the
throughput and loss values are degraded only for
very short times when utilizing the adaptive
scheme.

Flow 1

Flow 2

Flow 3

Flow 4

Core 1 Core 2 Core 3 Core 4

H1 H2 H5 H7 H3 H4 H6 H8 H9 H16 H10 H12 H13

Path A Path B

Throughput vs Time (H1 & H4)

Time (Seconds)

T
hr

ou
gh

pu
t (

M
bp

s)

Journal of University of Zakho, Vol. 4(A), No.2, Pp 275-286, 2016

 283

ISSN: 2410-7549

Figure (14): Scenario B, throughput comparison
between the traditional scheme and the adaptive load

balancing scheme for H8 and H12.

The results showed that the proposed

algorithm has considerable superiority over the
traditional load balancing algorithm and it

remarkably improves the performance of data
centre networks.

The summary of improvement is depicted in

Table 1 that records the average throughput,
average loss for the traditional and the proposed
algorithm. In addition, it shows the amount of
improvements, whereas, there was up to 81%
improvement in the loss rate. Throughput
improvements hit 16% on average (it is
calculated from the time of joining a new host
until the end of the simulation time), obviously,
this percentage could be increased remarkably
by increasing the emulation time as the
throughput of the proposed algorithm will reach
a maximum (expected).

Figure (16): Scenario B, loss rate comparison

between the traditional scheme and the adaptive load
balancing scheme for H1 and H4.

Table (1): Summary of loss and throughput results for Scenario B
 H1 H4 H8 H12

Avg. Loss Traditional 6.031 23.8270 14.5763 25.7851

Avg. Throughput
Traditional Mbps 5.58186 4.45845 4.19199 5.66897

Avg. Loss SDN (%) 1.87940 7.017 2.76798 10.6599

Avg. Throughput SDN
(Mbps) 5.82659 5.34617 4.77856 6.64272

Loss Improvement 68.84% 70.548% 81.010% 58.658%

Throughput Improvement 4.2003% 16.604% 12.275% 14.659%

T
hr

ou
gh

pu
t (

M
bp

s)

Time (Seconds)

Throughput vs Time (H8 & H12)

L
os

s
R

at
e

(%
)

Loss Rate vs Time

Time (Seconds)
Time (Seconds)

L
os

s
R

at
e

(%
)

Loss Rate vs Time

Figure (15): Scenario B, loss rate comparison
between the traditional scheme and the adaptive

load balancing scheme for H8 and H12.

Journal of University of Zakho, Vol. 4(A), No.2, Pp 275-286, 2016

 284

ISSN: 2410-7549

V. CONCLUSION

This paper proposes a new mechanism to
conduct load balancing for data center networks
in order to improve their efficiency. To obtain
realistic and reliable results, specific kind of
network topology was chosen, the one that is
most utilized topology in data centers which is
called Fat-tree network topology. Fat-Tree
network topology was utilized with 4 pods, 8
edge OpenFlow Switches, 8 aggregation
OpenFlow switches, 16 hosts, 4 core OpenFlow
switches and a controller. The proposed
algorithm suggests utilizing SDN technique for
the purpose of load balancing in order to
maintain a minimum loss and maximum
throughput. For the evaluation purpose, the most
reliable SDN emulator was utilized which is
called Mininet emulator with Miniedit GUI tool.
Two scenarios were emulated; the scenarios
were chosen carefully in order to cover all the
expected cases and the result in both of them
was that the proposed scheme showed a
remarkable improvement over the traditional
scheme. Whereas, for the first scenario, the
proposed scheme showed 0% loss rate compared
to a loss rate that ranged from 15% to 34% when
using the traditional scheme, whereas in the
second scenario, the proposed scheme showed a
loss rate improvement that ranges between 58%
and 81% depending on the amount of contending
traffic and the additional traffic beyond links’
capacity.

In term of throughput, hosts utilizing the
proposed scheme maintained the same level of
throughput without any degradation when new
flows joined the network and added additional
traffic in the first scenario. On the other hand,
hosts that utilizing the traditional scheme
underwent from a remarkable reduction in their
throughput, the overall reduction in the
throughput hits more than 5Mbps, whereas for
the second scenario, the proposed scheme
outperforms the traditional mechanism, whereas
the improvement in throughput recorded
amounts that range between 4.2% and 16.6%.

In general, this paper suggests
utilizing\deploying SDN networks for designing
data center network in order to improve their
performance. Taken into consideration that
OpenFlow devices are already widly available in
the market and many data center networks are
using it as a network switching fabric, therefore,
the proposed scheme is ready for implementation
in such networks. In addition, the proposed

algorithm is simple to implement and support
more flexibility to the data center network.

REFERENCES
Alexander Craig, Biswajit Nandy, Ioannis

Lambadaris, “Load Balancing for Multicast
Traffic in SDN using Real-Time Link Cost
Modification, ” IEEE ICC-Next Generation
Network Symposium, 2015.

Andreas Blenk, Arsany Basta, Martin Reisslein,
Wolfgang Kellerer, “Survey on Network
Virtualization Hypervisors for Software Defined
Networking", IEEE Communications Surveys &
Tutorials, vol. 18, no. 1, pp. 655-685, Firstquarter
2016.

Dan Li, Yunfei Shang, Wu He, and Congjie Chen,
“Greening Data Center Network with Software
Defined Exclusive Routing”, IEEE Transaction on
Computers, Vol. 64, No. 9, pp. 2534-2544, 2015.

Faris Keti, and Shavan Askar “Emulation of Software
Defined Networks Using Mininet in Different
Simulation Environments. ” IEEE International
Conference on Intelligent Systems, Modelling and
Simulation, Malizia, 2015.

Feilong Tang, Laurence T. Yang, Cang Tang, Jie Li,
Minyi Guo, "A Dynamical and Load-Balanced
Flow Scheduling Approach for Big Data Centers
in Clouds”, IEEE Transactions on Cloud
Computing , Vol. 99, pp.1-14, 2016.

George Kornaros, T. Orphanoudakis and N. Zervos,
“An efficient implementation of fair load
balancing over multi-CPU SOC architectures”,
Symposium on Digital System Design, pp. 197-
203, Belek-Antalya, Turkey, 2003.

Heller Brandon, Srini Seetharaman, Priya
Mahadevan, Yiannis Yiakoumis, Puneet Sharma,
Sujata Banerjee, and Nick Mckeown, “Elastic
Tree: Saving Energy in Data Center Networks”,
Proceeding of the 7th USENIX Conference on
networked systems design and implementation,
San Jose, California, USA, 2010.

Ian F. Akyildiz, Ahyoung Lee, Pu Wang, Min Luo,
Wu Chou, "Research challenges for traffic
engineering in software defined networks", IEEE
Network, vol. 30, no. 3, pp. 52-58, May-June
2016.

Iperf, https://iperf.fr/. Accessed in August 2016
James F. Kurose, Keith W. Ross, “Computer

Networking: A Top-Down Approach”, 6th Edition,
Pearson, 2012.

Jayaram Mudigonda, Praveen Yalagandula,
Mohammad Al-Fres, Jeffrey Mogul, “SPAIN:
COTS data-center ethernet for multipathing over
arbitrary topologies”, 7th USENIX Symposium
on Networked Systems Design and
Implementation, 2010.

Jun Duan, Yuanyuan Yang, “Placement and
performance Analysis of Virtual Multicast

Journal of University of Zakho, Vol. 4(A), No.2, Pp 275-286, 2016

 285

ISSN: 2410-7549

Networks in Fat-Tree Data Center Networks”,
IEEE Transactions on Parallel and Distributed
Systems, Vol. 99 , No. 1, pp. 1-14, Janurary 2016.

Liming Wang, and Gang Lu, "The dynamic sub-
topology load balancing algorithm for data center
networks", International Conference on
Information Networking (ICOIN 2016), Kota
Kinabalu, pp. 268-273, 2016.

Mao Qilin and Shen Weikang, “A Load Balancing
Method Based on SDN, ” IEEE International
Conference on Measuring Technology and
Mechatronics Automation, China, 2015.

Mininet. http://mininet.org. Accessed in August 2016
Mohammad Al-Fares, Sivasankar Radhakrishnan,

Barath Raghavan, Nelson Huang, Amin Vahdat,
“Hedera: Dynamic Flow Scheduling for Data
Center Networks”, Networked Systems Design
and Implementation (NSDI 2010) Symposium on
Networked Systems Design and Implementation,
San Jose, California, USA, 2010.
ONF TS-025, “OpenFlow Switch Specification”,

Open Networking Foundation, Version 1.5.1, March
2015.
Senthil Ganesh N, and Ranjani S., “Dynamic Load

Balancing using Software Defined Networks”,
International Journal of Computer Applications
(0975-8887), 2015.

Shavan Askar, Georgios Zervas, David K. Hunter,
Dimitra Simeonidou, “A Novel Ingress Node
Desgin for Video Streaming over Optical Burst
Switching Networks”, Optics Express Journal,
Vol. 19, No. 26, B191-B196, 2011.

Shavan Askar, Georgios Zervas, David K. Hunter,
Dimitra Simeonidou, “Evaluation of Classified
Cloning Scheme with Self-similar Traffic”, 3rd
International Conference on Computer Science
and Electronic Engineering (CEEC 2011), pp. 23-
28, 2011.

Shavan Askar, Georgios Zervas, David K. Hunter,
Dimitra Simeonidou, “Service Differentiation for
Video Applications over OBS Networks”, 16th
European Conference on Networks and Optical
Communications (NOC 11), pp.200-203,
Newcastle upon Tyne, UK, 2011.

Shubhi Prashant Shukla, “Comparative Analysis of
Distance Vector Routing & Link State Protocols”,
International Journal of Innovative Research in
Computer and Communication Engineering, Vol.
3, No. 10, pp. 9533-9539, October 2015.

Sixto Ortiz, “Software-defined networking: On the
verge of a breakthrough?”, IEEE Computer
Society, Vol. 46, No. 7, pp. 10-12, July 2013.

Wang Yong, T. Xiaoling, H. Qian and K. Yuwen, “A
Dynamic Load Balancing Method of Cloud-
Center Based on SDN”. in China
Communications, vol. 13, no. 2, pp. 130-137, Feb.
2016.

Wei Wang, Yi Sun, Kave Salamatian, and
Zhongcheng Li, “Adaptive Path Isolation for
Elephant and Mice Flows by Exploiting Path
Diversity in Datacenters”, IEEE Transaction on
Network and Service Management, Vol. 13, No.
1, pp. 5-18, March 2016.

Xuan-Nam Nguyen, Damien Saucez, Chadi Barakat,
and Thierry Turletti, "Rules Placement Problem in
OpenFlow Networks: A Survey," IEEE
Communications Surveys & Tutorials, Vol. 18,
No. 2, pp. 1273-1286, Secondquarter 2016.

Yang Peng, Kai Chen, Guohui Wang, “Towards
Comprehensive Traffic Forecasting in Cloud
Computing: Design and Application”, IEEE/ACM
Transactions on Networking, Vol. 24, No. 4, pp.
2210-2222, August 2016.

Yi-chih Lei, Kuochen Wang, Yi-Huai Hsu ,
“Multipath Routing in SDN-based Data Center
Networks, ” IEEE European Conference on
Networks and Communications , Paris, 2015.

Zhaogang Shu; Jiafu Wan, Jiaxiang Lin, “Traffic
Engineering in Software-Defined-Networking:
Measurement and Management”, IEEE Access,
Vol. 4, pp. 3246-3256, 2016.

Zhiyang Guo, and Yuanyuan Yang, “On Nonblocking
Multicast Fat-Tree Data Center Networks with
Server Redundancy”, IEEE Transactions on
Computers, Vol. 64, No. 4, pp. 1058-1073, April
2015.

Journal of University of Zakho, Vol. 4(A), No.2, Pp 275-286, 2016

 286

ISSN: 2410-7549

@@
ZŽôåïÜíÙŽïÜ@bïmŠíØ@@

@l@õˆìó÷@ŽíØ@N@a‡ŽõåïÜíØóÄ@ŽôÄ†@†@@ç‹ØŠbïå“Žq@ómbè@Šónäó@bma†@íi@ôïîb−Ží @bî@@ Žôïäa‹ @bä‡äbä@óÐ@óè@@bî@ Žôîíä@bØóÙŽîŠ
ŽõŠó ó÷@ôÄ@íi@çbåîŠbÙi@óïmbè@bî@oŽåïåïà@N†‹îínÐí@bÙî‹i@ç‹Øóbåïi@óåŽïmbè@oïî@μîŠím@@μŽîŠbnØŠóØ@ˆ@ôåm‹ Šòì@bÑà@bÙŽîŠ@@ŽíØ

@Ûòì@çbåŽï÷ŠbÙi@óïmbè@bî@oŽî‡ïåïà@bòìŠóè@@Nôäaî†@bäbäa†@bäìí›Ñî†@ì@ôä‹Ùíî†ì‹rîŠ@Žíiˆ@@õˆìó÷@ôuI@Žõàb÷M@íîMõb÷@@íi@NH
@pbÐ@I@Žônïäåøî@aŠím@ôî@bma†@ŽõŠónäó@@íi@ÄóéØòì@bØóèóåîˆ@bäbåî@óÑn‡i–@õ‹m@M@çbåŽï÷ŠbØ@l@óïmbè@H@ôuíÜírïm@Žôåîaî†@ìó÷@N

@ óïmbè@@ôîýˆ@ õˆ@ ìó÷@ ŽíØ@ @ Bæ’†a‹m@ B@ bî@ @ ŽíÙäb÷@ ÚïþØ@ ŽôáïÙ@ ŠójàaŠói@ BäbàŠíÐq@ pìó÷B@ @ @ póØ†Šbî†@ @ çbåŽï÷ŠbÙi
@l@óåïmbè@oŽî@íîŠbåï@ìì†@Nç‡äbäóÄóè@óåïmbè@oŽî@bîíîŠbåï@ôàóè@bäìíš@o†@ađ‰ŽîŠ@bòìŠóè@ì@L@ ŽôïmaŒóÜ@ì@L@ ŽôäbåïàóèŠói

ïå“ïŽq@ óïmbè@ bÙîŠ@ìó÷@ Z@çbåïŽîŠbØ@ŠójàaŠói@çìíš@oò†@Žïè@ @ Žôi@ @pò†@ ãb−ó÷@ ŽôØóäbàŠíÐq@ç‹ØŠb15@ bm@E31@a‰ŽîŠ@ ˆ@E
@ˆ@pò†‡àb−ó÷@’bi@ç‹ØŠbïå“ïŽq@óïmbè@bÙîŠ@ìó÷@NŽôÙŽï÷@ŽôîíîŠbåï@ß@çbåŽï÷ŠbÙi@ónŽïè†@Bæ’†a‹m@B@ŽôáŽïÙ@@Žôàò†@†@Žôäìíš@oò†

@ónïèó †@íØ@a‰îŠ@l@Žôäìíu@oò†@a‰îŠ81ŽôîíîŠbåï@ß@E@@ç‹ØŠbïå“Žïq@óïmbè@báîŠíÜb÷@ìó÷@LŽôäbåïàóèŠói@@pòŠbió@N@Žõìì†
IŽôÙîïä@bäìíjáïØ@@@ŠójàaŠói@a†@ ŽôÙï÷@ôîíîŠbåï@ß@oaŠbq@ ŽôäbåïàóèŠói@ađ‰îŠ5@†@@ ŽôäbåïàóèŠói@ Žôî@a†@ ŽôØóØ‹š@Šóè@oi@bïà@@H
’bi@ÛóäbåïàóèŠói@a†@õìì†@ŽôîíîŠbåï@†@LóÅî†@Ûóîý@ˆ@@@Næ’†a‹m@ŽôáïÙ@ŽíØ@ç‹ØŠbïå“ïq@óïmbè@ŽôáïÙ@bÙîŠ@l@póØ†Šbî†@

@ôÙîä@@õˆó÷16.6@@Næ’†a‹m@ŽôáïÙ@ŠóÜ@póØ†Šbàím@@
ŽôåïÜíÙŽïÜ@þïÝØ@@@Lp‡îa@ ôåïà@ L@oŽïä@ ôåïà@ L@õ‹m@pbÐ@ aŠím@ L@ Š@ ßìåØ@Øíi@ LŠónäó@ bma†@ L@ ôàa‹ ì‹q@ båbïä@ aŠím@ @ Z

NŽôïäa‹ @@bä†bäóÐóè@@
@@
@@

ïÑïïÙnÜa@Þá¨a@óäŒaíà@óÕî‹ bïª‹i@óÐ‹É¾a@pbÙj“Üa@ãa‡ƒndi@pbäbïjÜa@Øa‹¾@ó@@

Zó–þ©a@@
@˜÷b—‚@ ãa‡ƒndi@szjÜa@ a‰è@À@oyÔa@pbäbïjÜa@ Øa‹¾@ ò‡î‡u@ óïÑïïÙm@ Þ¼@ óäŒaíà@ óÕî‹ @pbÙj“Üa@@ Nbïª‹i@ óÐ‹É¾a
‹Üa@ã‡ƒn¾a@óéuaíØ@ã‡ƒna@p†a@ïà@LÕ¾a@âïá—nÜa@âïïÕmì@òbØb«@‹ÍÜ@oïåïåïà@ãa‡ƒna@óøïi@ßb—zna@‹ÍÜ@Nóïàí

@æà@æÙ¿@†‡È@Øa@óïÍm@‹ÍÜ@óÑÝn¬@ßb¼a@ÊîŒímì@pbèíîŠbåï@Öïjm@@Noà‡ƒna@@ñ‹m@pbÐ@óïåi@LpbäbïjÜa@Ø‹¾@óéib“à
@ÞÙÜ@ ‹÷b©aì@ óïubnäýa@ óïybä@ æà@ ñ‡ïÝÕnÜa@ ëÅä@ ôÝÈ@ @ bÔíÑnà@ aöa†a@ õ‡ia@ Õ¾a@ âïá—nÜa@ NóïÕïÕ¨a@ ßb¼ŁÜ@ pýbányýa

Üa@l@óäŠbÕà@ ‹÷b‚@óîa@æà@ðÜb‚@ öa†a@p‹éÄa@ óyÕ¾a@ óÕî‹Üa@ ZμïÑÝn¬@μïèíîŠbåï@Öïjm@@ NóáïÕ¾a@pbèíîŠbåï15@¶a@E
31@¶a@Þ—m@‹÷b©a@ójä@À@μ¥@p‹éÄa@óyÕ¾a@ óÕî‹Üa@ Nßìýa@íîŠbåïÝÜ@ óî‡ïÝÕnÜa@ óÕî‹Üa@ßbáÉna@‡åÈ@‹÷b©a@æà@E
81àa@NðäbrÜa@íîŠbåïÜa@À@E@óäŠbÕà@ßìýa@íîŠbåïÜa@À@óïubnäýa@õínà@Ñä@ôÝÈ@oÅÐby@óyÕ¾a@óÕî‹Üa@Lóïubnäýa@óïybä@æà@b

@ß‡É·@ÞïÝÕni5@@óÕî‹Üa@ôÝÈ@oÔíÑm@ò‡î‡§a@óÕî‹Üa@LðäbrÜa@íîŠbåïÜa@À@báåïi@Nóî‡ïÝÕnÜa@óÕî‹ÝÜ@óïubnäýa@À@óïäbrÜa@À@oi@bÙïà
î‡ïÝÕnÜa@¶a@Þ—î@μ¥@ŠbéÄdi@ó16.6@Nóïubnäýa@óáïÔ@À@E@@

óïybnÑ¾a@pbáÝÙÜaNÞá¨a@óäŒaíà@Lp‡îa@ïà@Loïä@ïà@Lñ‹m@pbÐ@óÙj’@LØíi@‹ï¾a@LpbäbïjÜa@Ø‹à@Lbïª‹i@óÐ‹É¾a@óÙj“Üa@Z

@@

