
Journal of University of Zakho, Vol.1, (A) No.2, Pp832-848, 2013

 832

IMPROVED APPROACH FOR UNBALANCED LOAD-DIVISION
OPERATIONS IMPLEMENTATION ON HYBRID PARALLEL PROCESSING

SYSTEMS

Subhi Rafeeq Mohammed Zebari1 and Ashur Sargon Yowakib2
1 Dept. IT, Akre Technical Inst., Duhok Polytechnic University, Duhok, Iraq.

2 Dept. Basic Science, Faculty of Agricultural and Forestry, University of Duhok, Duhok, Iraq.
(Accepted for publication: June 9, 2011)

ABSTRACT

The modern computer-systems designed according to multiprocessor configurations. Multiple processors enable
multiple threads to be executed simultaneously with the ability of executing the threads of the same process to be run
on different processors at the same time. This paper addresses the building of a software application to be
implemented on hybrid memory systems depending on client/server principles, the network can contain any number
of nodes; one of them is a client and the others are servers.

An improved approach was produced for problem subdivision based on an unbalanced load division case study
(Matrix multiplication). Many previous drawbacks overcame, such as matrix-size limitation, effect of multi-core with
distributed systems and forcing the processes and threads among multi-core system processors. Thus, the
communication-direction from client-side toward the servers-side and vice-versa became more powerful by binding
the activities of both Massage-Passing-Interface (MPI) with those of Open Multi-Processing (OpenMP). The proposed
algorithms are executed by Quasar Toolkit (QT) creator application using C++ and QT library. The application-
software is implemented to get high speed with as possible as minimum time and detect the effects of this system on
the CPU Execution time and CPU Usage, the results are very acceptable and the processing time is decreased by
5.4492 times comparing with those without using hybrid parallel processing.

KEYWORDS: Parallel Processing, Parallel Programming, Client/Server, Clustering, MPI, OpenMP, CPU Execution Time,
CPU Usage.

1. INTRODUCTION

The last decade has witnessed a dramatic
increase in computing, networking, and storage
technologies. Dynamically adaptive techniques
are being widely used to address the intrinsic
heterogeneity and high dynamism of the
phenomena modeled by these applications. The
increasing complexity, dynamism, and
heterogeneity of these applications coupled with
similarly complex and heterogeneous parallel
and distributed computing systems have led to
the development and deployment of advanced
computational infrastructures that provide
programming, execution, and runtime
management support for such large-scale
adaptive implementations [Manish 2010].

Today scientists who wish to write efficient
parallel software for high performance systems
have to face a highly hierarchical system design,
even (or especially) on “commodity” clusters.
Parallel programming models on hybrid
platforms are: Pure MPI, Hybrid master only,
Hybrid with overlap, Pure OpenMP on clusters,
and Mapping with fully hybrid MPI+OpenMP
[Georg 2009].

In message passing paradigm, several
separate processes used to complete the overall

computation. Many concurrent processes are
created, and all of the data involved in the
calculation is distributed among them using
different ways. There is no shared data; when a
process needs data held by another one, the
second process must send it to the first process.
An MPI message passing protocol describes the
internal methods and policies an MPI
implementation employs to accomplish message
delivery. There are two common message
passing protocols, eager and rendezvous. Eager
protocol is an asynchronous protocol that allows
a send operation to complete without
acknowledgement from a matching receives.
Rendezvous protocol is a synchronous protocol
which requires an acknowledgement from a
matching receive in order to complete the send
operation. Since MPI enables the programmer to
control both of data distribution and process
synchronization, problem decomposition and
inter process communication represent two
challenges in writing MPI parallel programs.
Unless they are coded carefully, program
performance will be negatively affected [Alaa
2011].

When running an OpenMP program on a
Non-Uniform Memory Access (NUMA) node,

Journal of University of Zakho, Vol.1, (A) No.2, Pp832-848, 2013

 833

data is normally distributed using “first touch”,
the data will reside in the memory of the socket
where the data is first used. The primary method
of parallelization in OpenMP is the
parallelization of loops. Loop iterations are
scheduled for execution among threads
according to the scheduling method specified in
the OpenMP program, static, dynamic or guided
(a “chunk-size” can be specified for each of
these options). When an OpenMP program is
executed on more than one socket, using
dynamic or guided schedule will lead to the data
distribution performance problem due to non-
local data accesses. When an OpenMP program
is executed on a single socket instead of on
multiple sockets, then the data distribution
performance problem goes away and one is free
to use any of the scheduling options without a
performance penalty due to non-local data
accesses [Glenn 2010].

Hybrid (MPI/OpenMP) programming is a
great way to take advantage from clusters of
Symmetric Multi-Processing (SMP)
architectures; using MPI across nodes and
OpenMP within nodes this will provide good
usage of shared memory system resource
(memory, latency, and bandwidth), reduce the
communication overhead by eliminating MPI
communication within node, OpenMP adds fine
granularity (larger message sizes) and allows
flexibility of dynamic load balancing, lower
memory latency and data movement within
node, automatic coherency at node, some
problems have two-level parallelism naturally,
some problems could only use restricted number
of MPI tasks, and could have better scalability
than both pure MPI and pure OpenMP [Byoung
2009].

In order to address the proposed algorithms
depended in this paper, it is recommended to
produce a review to the related works, which
are:

Wesley M. Eddy and Mark Allman 2000,
produced an experiment to show that it is
possible to use several computers in parallel to
solve the problems that take long periods of time
to complete on a single machine, and that by
using more computers the total calculation time
can be drastically reduced. Gregory O.
Khanlarov, etal. 2000, a new algorithm
addressed with two levels parallelization for
direct simulation to solve unsteady problems of
molecular gas-dynamics on shared and hybrid
memory multiprocessor computers.

ROBERT GRANAT, etal. 2009, presented a
novel variant of the parallel QR algorithm for
solving dense non symmetric eigenvalue
problems on hybrid distributed high performance
computing (HPC) systems. Numan O. Yaseen
2010, addressed distributed memory system
depends on client/servers principles. He
improved an approach for problem subdivision
and design flexible algorithms to communicate
efficiently between client-side and servers-side
in the way to overcome the problems of
hardware networking components and message
passing problems. Farah H. Asaad 2011, built
an application algorithm for implementing the
principles of parallel processing using shared
memory system to reduce the execution time
gradually by increasing number of cores. Zryan
N. Rashid 2012, addressed distributed memory
system depending on client/servers principles.
His work addressed an improved approach for
problem subdivision and design flexible
algorithms to communicate efficiently between
client-side and servers-side in the way to
overcome the problems of hardware networking
components and message passing problems.

However, from the above survey it is clear
that there are two main trends of solving the
complex problems (either depending on
distributed-memory systems or on shared-
memory systems). There are few works trend
toward assembling these two approaches to get
the benefits of them and produce more powerful
systems having high ability to treat with heavy
loads like the first three survey works, in general
these works deal with approaches far from that
depended here. This paper trends to assemble the
two systems on one that is called hybrid-memory
system with clear algorithms and a famous
application (Matrix Algebra case-study) is
applied here to illustrate the advantages of this
approach from the two other types. All of the
above related works are important to this work,
but the last three works are more near to it and
especially the last one of them. An important
problem was overcame here which is the treating
with as big as possible of matrix-order in the
way to get algorithms more flexibility to handle
heavy loads, in this paper the matrix-order
increased up to (45,000), and the matrices
depended here are of square type that produce
the ability of manipulate (2,025,000,000
elements) for each matrix. Also, because of that
today's computers are of multi-core type, so, the
speed of processing will increase rapidly by
using many computers with many cores in each

Journal of University of Zakho, Vol.1, (A) No.2, Pp832-848, 2013

 834

one, hence all of these CPUs will participate
with the processing in parallel and consequently
providing more increased speed of processing.

2. HYBRID PARALLEL PROCESSING

A lot of research has been invested into the
implementation of distributed virtual shared
memory software which allows near-shared-
memory programming on distributed memory
parallel machines, notably clusters. Since 2006
Intel offers the “Cluster OpenMP” compiler add-
on, enabling the use of OpenMP (with minor
restrictions) across the nodes of a cluster.
Therefore, OpenMP has literally become a
possible programming model for those
machines. It is, to some extent, a hybrid model,
being identical to plain OpenMP inside a shared-
memory node but employing a sophisticated
protocol that keeps “shared” memory pages
coherent between nodes at explicit or automatic
OpenMP flush points. With Cluster OpenMP,
frequent page synchronization or erratic access
patterns to shared data must be avoided by all
means. If this is not possible, communication
can potentially become much more expensive
than with plain MPI [Georg 2009].

Client/Server network uses a network
operating system designed to manage the entire
network from a centralized point, which is the
server. Clients make requests of the server and
the server responds with the information or
access to a resource. Client/Server networks
have some definite advantages over peer-to-peer
networks. It is easier to find files and resources
because they are stored on the server. Also have
much tighter security. All usernames and
passwords are stored in the same database (on
the server), and individual users can’t use the
server as a workstation. The server holds the
database of user accounts, passwords, and access
rights [May 2009]. In cluster sampling, cluster is
a group of population elements, constitutes the
sampling unit, instead of a single element of the
population. The main reason for cluster sampling
is “cost efficiency” (economy and feasibility)
[Saifuddin 2009]. Clustering analysis has been
the most popular approach in point data analysis
in data-rich environments. It has been actively
used in extracting useful information from
geospatial point dataset. It answers where and
what objects are aggregated. However, it lacks
the ability to provide answers for why clusters
are there [Yang 2011].

3. PROPOSED ALGORITHMS AND
STRUCTURE OF HYBRID-MEMORY
PARALLEL-PROCESSING SYSTEM

In this paper, the structure of the depended
hybrid system consists of two parts (Hardware
and Software). In general, any hybrid parallel-
processing system is constructed on two main
sides (Client and Servers). In this paper; there is
no need to more than one computer at the Client-
Side, and two computers are depended to be at
servers-side, but these computers have different
properties in all their characteristics in order to
overcome the problem of adding more
computers, so any number of computers can be
added to the system at the servers-side.

3.1 Hardware part

Hybrid system can be seen as a group of
cooperating devices; it may be the one that is
responsible for coordinating the whole system
and ensuring it works as intended. Figure (1)
illustrates the hardware part which has been
selected and adopted according to the following
steps:
1. The hardware part constructed of client-side
and servers-side, the network that contains both
sides designed according to star topology.
2. In such work the properties of computers are
important; either these properties will be
deferent from one computer to another, or they
will be the same, which means having identical
computers. In fact, in real life providing similar
computer (with identical properties) cannot be
provided always. So, it has been in this work
relied on computers with different specifications
in terms of hardware.
3. Client-side has only one host, which controls
the sending of message-passing operations to
other side.
4. Client-host contains the main program that
can treat with all servers-hosts individually,
subgroups, or all of them.
5. The secondary storage of the client-host
contains the original data of related case-study
that must be sent to servers-side, and the
receiving results that calculated by the servers-
side.
6. Servers-side consists of (2) hosts connected in
a way to get a cluster of (1*8 + 1*2) processors.
7. Each server-host contains a program that has
the ability to receive data, make the required
processing, calculate the results, and send them
to the client-side.

Journal of University of Zakho, Vol.1, (A) No.2, Pp832-848, 2013

 835

8. Servers-side can store (the received data and
the determined results) on their secondary

storages, or sending them directly to client-side.

Figure (1): General Hardware-Structure of Depended Hybrid-Memory System

3.2 Software Part

The efficient use of a hybrid computer for the
solution of a wide variety of problems requires
that the computer hardware be complemented by
a comprehensive software package. Such
software ought to assist not only in the
preparation of programs, but also in their
execution as well. It is important that a widely-
understood high-level procedure-oriented
language be made available to users. Expansion
of a purely digital programming language into a
hybrid programming language may be
accomplished either by rewriting the processor
or by attaching a suitable subroutine library.

Client-side software:

Figure (2) represents the general structure of
Client-side-software, which is responsible for
the following tasks:
1. Detecting number of connected server-hosts at
servers-side.

2. Detecting number of connected server-LPs at
servers-side.
3. Deciding how many server-hosts will receive
the messages from the client-side.
4. Deciding how many server-LPs within each
server will receive the messages from the client-
side.
5. Deciding which LPs will receive the messages
from the client-side.
6. Sending control-messages to server-LPs.
7. Sending related data (as message-text or as
data-files) to server-hosts.
8. Monitoring all related server-LPs in case if
they send any results or any query-messages.
9. Responding the query-messages received
from other servers-side.
10. Receiving the calculated results by server-
LPs and accumulating them to get the final
results.
11. Making sure that all sending or receiving
messages and data are stored on the Client-side
secondary storages.

Client

Server 2

Server 1

CPU 0 CPU 1 CPU 2 CPU 3

CPU 4 CPU 5 CPU 6 CPU 7

CPU 0 CPU 1

 CPU 0

CPU 1

Journal of University of Zakho, Vol.1, (A) No.2, Pp832-848, 2013

 836

Figure (2): Flowchart of General structure of Client-side-Software

Servers-side Software:
Servers-side-software, as shown in Figure (3)

represents the programs that service the
commands issued from the main program (client
program). The software at each server-host is
responsible for the following tasks:
1. Detecting the connection status of the client-
host.
2. Deciding to work according to the number of
server-hosts sent by the client, taking into
consideration that it may be out of work for
certain numbers of server-hosts, for example; if
number of server-hosts is 1, then only server-
hosts (1 or 2) will work.
3. Receiving the control-messages from client-
host and guide the execution of the server-
program to apply the client-requirements.

4. Receiving the related data (as message-text or
as data-files) from client-host.
5. Monitoring client-host in case if it sends any
immediate command, message, or data.
6. Run the appropriate-subroutines according to
the requirements of client-host and calculate the
correct results, knowing that each server-host
will treat with that part of data that selected for it
by the client. And internally within each server-
host; the data will be divided among its LPs
according to the Client requirements.
7. Sending the calculated results to client-host,
knowing that these results will be arranged in a
form to be managed by the client-host in a
suitable manner.

No
Yes

Mark the selected server-hosts and LPs to participate with the task
i=i+1

Send the data messages to servers-side

Start

Prepare a specified load for each server and each LP

End

Select No. of server-hosts to participate with load-division

i=1

Select No. of LPs in server-host i to participate with load-division

i> No. of server-hosts?

Send the related control messages to servers-side using TCP Protocol

Journal of University of Zakho, Vol.1, (A) No.2, Pp832-848, 2013

 837

Each server-program contains all subroutines
of the same case study. This gives the server-
program the ability to treat with any selected
part of data and chose the appropriate subroutine
to calculate the required results.
3.3 Messages Transferred Between Client-side
and Servers-side

There are two types of messages related to
hybrid systems parallel processing approaches

which are (control- messages and data-
messages).
Data Messages

Data messages; issued by client-side and/or
servers-side. These messages carry specific data,
which help running processes at server-
processors if the messages are issued by client-
host. Also, may be representing specific results
if the messages issued by server-hosts as
illustrated in Figure (4).

Figure (3): Flowchart of General Structure of Servers-Side-Software

 Start

Receive control messages from client side

Prepare the selected servers & LPs to participate with problem-solving

Receive data messages from client-side

Orienting the specified data to each server &

Start processing in parallel and record the starting values of all related Timings

Calculate the results & record all elapsed Timings

Save all results & send them to client-side

End

Journal of University of Zakho, Vol.1, (A) No.2, Pp832-848, 2013

 838

Figure (4): Flowchart of Data-Messages

This work uses the following data messages:
1. Starting task time (issued by client).
2. Starting CPU time (issued by client).
3. Size of data-arrays that must be generated by
client used by server-hosts and server-LPs.
4. Names of files containing these data-arrays
stored in a shared-drive to be used by both
client-side and servers-side.
5. Starting running time (issued by each server-
host).
6. CPU time (issued by each server-LP).
7. Size of data-arrays that must be assigning by
servers after processing and used by client later
for rearrangement.
8. Names of files created by servers and
containing these data-arrays to be used by client-
side later for rearrangement.

9. Terminating CPU time (issued by each
server-LP).
10. Terminating running time (issued by each
server-host).
11. Consumed average CPU time (issued by
each server-host).
12. Consumed CPU time (issued by each server-
LP).
13. Consumed running time (calculated by each
server-host).
14. Average CPU usage percentage ratio
(calculated by each server-host).
15. CPU usage percentage ratio (calculated by
each server-LP).
16. Terminating CPU time (issued by client).
17. Terminating task time (issued by client).
18. Consumed CPU time (calculated by client).
19. Consumed task time (calculated by client).

 CPU usage percentage ratio (calculated by each
server-LP)

Consumed running time (calculated by each server-host)

End

 Average CPU usage percentage ratio (calculated by
each server-host)

 Terminating CPU-time (issued by client)

 Terminating task-time (issued by client)

 Consumed CPU-time (calculated by client)

 Consumed task-time (calculated by client)

 Consumed average CPU-time (issued by each server-
host)

 Size of data-arrays that must be assigning by servers
after processing and used by client later for rearrangement

 Terminating running-time (issued by each server-host)

 Consumed CPU-time (issued by each server-LP)

Connection status occurs between client-side and servers-side

Starting task-time (issued by client)

Starting CPU-time (issued by client)

Starting running time (issued by each server-host)

Starting CPU time (issued by each server-LP)

Start

 Terminating CPU-time (issued by each server-LP)

 Consumed CPU-time (issued by each server-LP)

Size of data-arrays that must be generated by client used by

server-hosts and server-LPs

Names of files containing these data-
arrays stored in a shared-drive to be

Names of files created by servers and
containing these data-arrays to be use

Journal of University of Zakho, Vol.1, (A) No.2, Pp832-848, 2013

 839

Control Messages:

Control messages issued by client-host and
sent to server-hosts and in turn to their LPs.
These messages control the management of the
processing overall the network and monitor the
performance of the hosts especially servers-hosts
and their LPs as shown in Figure (5). The
current study uses the following control
messages:

1. Connection status of each server-host,
whether it is ready or not.
2. Selecting number of server-hosts to participate
in the task.
3. Selecting number of server-LPs of each
selected server to participate in the task.
4. Selecting and/or deselecting any server-host
or any server-LP to be ready for communication
with client-side.
5. Sending the starting-signal and/or
termination-signal to any selected server.

Figure (5): Flowchart of Control-Messages

1. CASE STUDY: (UNBALANCED LOAD-DIVISION) MATRIX MULTIPLICATION

Using one client and two servers, server-1 has 8 LPs and server-2 has 2 LPs. There are 10 square

matrices must be multiplied by other 10 matrices to obtain 10 resultant matrices. These operations will
be repeated for different orders to illustrate the effects of hybrid parallel processing approach with
increasing the load. Tables (1 and 2) represent distribution of the load using (one server and two
servers) respectively.

 Select and/or deselect any server-host or any server-LP to be ready for communication with client-side

Connection status of each server-host, either it is ready or not

Send a message for each unready server-host to open its embedded connection link

Select number of server-hosts to participate in the task. i=1

Selecting number of server-LPs of server i to participate in the task. i=i+1

 Send a control message to connect the selected servers to be able for receiving data

Start

End

 Acknowledgment from the selected servers

 Send the starting-signal and/or terminate-signal to any selected server & LP

Return termination signals from the selected servers & LPs

 Tear-down signal from client to terminate the connections

i>No. of selected servers? No

Yes

Journal of University of Zakho, Vol.1, (A) No.2, Pp832-848, 2013

 840

[E1], [E2],..., [E10]
[F1], [F2],..., [F10]
[M1], [M2],..., [M10]
[Mi]= [Ei]*[Fi]
i=1, 2, ..., 10
Table (1): Ten matrices on server-1

Table (2): Eight matrices on server-1 and two matrices on server-2

Server 1
No. of LP(s)

LP
0

LP
1

LP
2

LP
3

LP
4

LP
5

LP
6

LP
7

Server 2
No. of
LP(s)

LP
0

LP
1

1 8 1 2
2 4 4 2 1 1
4 2 2 2 2 2 1 1
8 1 1 1 1 1 1 1 1 2 1 1

4.1 RESULTS OF IMPLEMENTING A
CASE-STUDY ON THE PROPOSED
HYBRID-MEMORY SYSTEM

Depending on the proposed algorithms
explained in section 6; a general case study
adopted here which deals with unbalanced load-
division related with matrix-multiplication
operations.

First stage includes information about;
number of servers, number of processors, Start
and End times for (Real-Consumed-CPU, total
execution which called Thread-Total-Execution)
with their (Average and Maximum) values,
CPUs usages, Client-Waiting-time, and Starting
of Matrix-Creation.

In this paper there are three hosts used which
are (Client-host: Core 2 Duo with 2 CPUs,
server1-host: Core i7 with 8 CPUs, and server2-
host: Core 2 Duo with 2 CPUs). Hence, the case
study will be applied on these three hosts. The
system-information detected from this system
shown in Figure (6) which was taken during the
running as print-screen image. The properties of
these hosts can be summarized as follows:

1. Client-Host: Core 2 Duo with 2 CPUs:
frequency of each CPU=2.00 GHz, RAM=2 GB.

2. Server1-Host: Core i7 with 8 CPUs:
frequency of each CPU=1.6 GHz, RAM=4 GB.

3. Server2-Host: Core 2 Duo with 2 CPUs:
frequency of each CPU=2.2 GHz, RAM=2 GB.

At starting, the user must enter the order of

the matrices that will be created by the program
and filled with random values of elements. Then,
number of servers will be selected, and number
of CPUs for each server must be selected. The
system is error handling for values related with
number of servers and CPUs. The system will
start processing by selecting Start option, then
the values related with timings and CPU-usage
(explained above) will be appeared and recorded
in suitable tables to be manipulated and plotted
later.

This case study depends on multiplying two
square matrices using one client and two servers,
server-1 has 8 LPs and server-2 has 2 LPs. There
are 10 square matrices with different options of
orders (1000, 10000, 20000 and 45000)
elements.

Depending on maximum matrix-order
(45,000*45,000): there will be need to treat with
(2,025,000,000 elements) for each matrix and
(20 * 2,025,000,000 = 40,500,000,000 elements)

Server 1
No. of
LP(s)

LP
0

LP
1

LP
2

LP
3

LP
4

LP
5

LP
6

LP
7

1 10
2 5 5
3 3 3 4
4 2 2 3 3
5 2 2 2 2 2
6 1 1 2 2 2 2
7 1 1 1 1 2 2 2
8 1 1 1 1 1 1 2 2

Journal of University of Zakho, Vol.1, (A) No.2, Pp832-848, 2013

 841

for all of 20 matrices, adding to them the results
of the calculated matrices which are 10 matrices
and equal (10 * 2,025,000,000 = 20,250,000,000
elements), and as overall there will be
(40,500,000,000 + 20,250,000,000 =
60,750,000,000 elements). While for minimum
matrix-order (1,000*1,000) as overall there will
be (30,000,000 elements).

The results are divided into two main
categories (using one-server and using two-
servers). These categories can be subdivided into
two main groups appeared in Tables (3 to 18)
and plotted as shown in Figures (7 to 14).

The first group is related with the average
values of consumed CPU-time values for all
participated LPs at servers-side, which are
acceptable values to be depended. These values

are illustrated in Tables (3 to 10), Tables (3 to 6)
represent the results when using only one-server
while Tables (7 to 10) represent the results when
using two-servers. These results are plotted as
shown in Figures (7 to 9) for one-server and
Figures (10 to 12) for two-servers.

The second group is related with maximum
consumed CPU-time values for servers-side.
This is an additional assessment of performance
of this work in the view of the latest returning
results by the servers-side which represents the
longest values of consumed CPU-times for all
servers as acceptable values to be depended;
these values are illustrated in Tables (11 to 18),
the results of only order=45000 been selected to
be plot as shown in Figure (13) for one-server
and Figure (14) for two-servers.

Figure (6): The GUI of the System during program running, two servers when 4-CPUs of server1 and 2-CPUs of server2
participate with solving the problem with Order of 20000.

Journal of University of Zakho, Vol.1, (A) No.2, Pp832-848, 2013

 842

Table (3): Average Values of Order 1000(Server: Core i7) Table (4): Average Values of Order 10000(Server:
Core i7)

Number
of

CPU's

Thread Total
Execution

Time (Second)

Real Consumed
CPU Time
(Second)

CPU
Usage %

1 CPU 0.125 0.125 100

2 CPUs 0.117 0.117 100

3 CPUs 0.078 0.078 100

4 CPUs 0.074 0.074 100

5 CPUs 0.063 0.063 100

6 CPUs 0.058 0.058 100

7 CPUs 0.052 0.052 100

8 CPUs 0.032 0.030 96

Table (5): Average Values of Order 20000(Server: Core i7) Table (6): Average Values of Order 45000(Server: Core i7)

Table (7): Average Values of Order 1000 Table (8): Average Values of Order 10000
 (Servers: Core i7 & Core 2 Duo) (Servers: Core i7 & Core 2 Duo)

Core i7
Core 2
Duo

Thread
Total

Execution
Time

(Second)

Real
Consumed
CPU Time
(Second)

CPU
Usage

%

1 CPU 1 CPU 0.070 0.070 100
2 CPUs 2 CPUs 0.051 0.051 100
4 CPUs 2 CPUs 0.047 0.047 100
8CPUs 2 CPUs 0.030 0.029 96.8

Table (9): Average Values of Order 20000 Table (10): Average Values of Order 45000

(Servers: Core i7 & Core 2 Duo) (Servers: Core i7 & Core 2 Duo)

Core i7
Core 2
Duo

Thread
Total

Execution
Time

(Second)

Real
Consumed
CPU Time
(Second)

CPU
Usage

%

1 CPU 1 CPU 509.485 509.391 99.5

2 CPUs 2 CPUs 433.144 433.107 99.25
4 CPUs 2 CPUs 303.467 303.293 99.3333
8CPUs 2 CPUs 210.175 210.096 99.1

Figure (7): Average of Real consumed CPU time of Order 1000 (Server: Core i7)

Average of Real Consumed CPU Time

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14

0 2 4 6 8 10

No. of CPUs

T
im

e(
S
ec

.)

Order 1000

Number
of

CPU's

Thread Total
Execution

Time (Second)

Real Consumed
CPU Time
(Second)

CPU
Usage %

1 CPU 113.359 113.350 100

2 CPUs 95.067 95.060 99.5

3 CPUs 56.577 56.571 100

4 CPUs 50.879 50.876 99.75

5 CPUs 43.599 43.593 99.6

6 CPUs 40.753 40.745 99.6667

7 CPUs 31.927 31.918 99.5714

8 CPUs 30.253 30.249 99.875

Number
of

CPU's

Thread Total
Execution

Time (Second)

Real Consumed
CPU Time
(Second)

CPU
Usage %

1 CPU 14718.485 14717.431 99

2 CPUs 12485.178 12484.753 99

3 CPUs 7157.054 7156.776 99
4 CPUs 6053.696 6053.167 99

5 CPUs 5246.346 5245.987 99

6 CPUs 4723.912 4723.238 99

7 CPUs 3740.553 3738.349 99

8 CPUs 3547.192 3541.042 99

Number
of

CPU's

Thread Total
Execution

Time (Second)

Real Consumed
CPU Time
(Second)

CPU
Usage %

 1 CPU 1058.618 1058.608 99

2 CPUs 923.795 923.790 100
3 CPUs 522.237 522.229 99.3333
4 CPUs 477.931 477.905 99.5

5 CPUs 401.167 401.144 99.4

6 CPUs 376.213 376.189 99.1667

7 CPUs 290.140 290.095 99.4286

8 CPUs 272.356 272.287 99

Core i7
Core 2

Duo

Thread
Total

Execution
Time

(Second)

Real
Consumed
CPU Time
(Second)

CPU
Usage

%

1 CPU 1 CPU 56.995 56.990 100
2 CPUs 2 CPUs 47.382 47.320 99
4 CPUs 2 CPUs 33.073 33.070 99.8333
8CPUs 2 CPUs 23.539 23.526 99.5

Core i7
Core 2

Duo

Thread
Total

Execution
Time

(Second)

Real
Consumed
CPU Time
(Second)

CPU
Usage

%

1 CPU 1 CPU 6985.378 6984.444 99

2 CPUs 2 CPUs 5676.693 5676.044 99

4 CPUs 2 CPUs 3952.135 3951.574 99
8CPUs 2 CPUs 2705.737 2700.848 99

Journal of University of Zakho, Vol.1, (A) No.2, Pp832-848, 2013

 843

Figure (8): Average of Real consumed CPU time of Orders 10000, 20000 (Server: Core i7)

Figure (9): Average of Real consumed CPU time of Order 45000 (Server: Core i7)

Figure (10): Average of Real consumed CPU time of Order 1000 (Servers: Core i7 & Core 2 Duo)

Figure (11): Average of Real consumed CPU time of Orders 10000, 20000 (Servers: Core i7 & Core 2 Duo)

Average of Real Consumed CPU Time

0

200

400
600

800

1000

1200

0 2 4 6 8 10

No. of CPUs

T
im

e(
S
e
c.

)

Order 10000

Order 20000

Average of Real Consumed CPU Time

0

5000

10000

15000

20000

0 2 4 6 8 10

No. of CPUs

T
im

e(
S
ec

.)

Order 45000

Average of Real Consumed CPU Time

0

0.02

0.04

0.06

0.08

0 2 4 6 8 10 12

No. of CPUs

T
im

e
(S

ec
.)

Order 1000

Average of Real Consumed CPU Time

0
100

200

300

400

500

600

0 2 4 6 8 10 12

No. of CPUs

T
im

e(
S
ec

.)

Order 10000

Order 20000

Journal of University of Zakho, Vol.1, (A) No.2, Pp832-848, 2013

 844

Figure (12): Average of Real consumed CPU time of Order 450000 (Servers: Core i7 & Core 2 Duo)

 Table (11): Maximum Values of Order 1000 Table (12): Maximum Values of Order 10000
 (Server: Core i7) (Server: Core i7)

 Table (13): Maximum Values of Order 20000(Server: Core i7) Table (14): Maximum Values of Order 45000(Server: Core i7)

Table (15): Maximum Values of Order 1000(Servers: Core i7 & Core 2 Duo)

Core i7 Core 2 Duo
Client waiting
Time (Second)

Thread Total Execution
Time (Second)

Real Consumed CPU
Time (Second)

CPU Usage %

1 CPU 1 CPU 0.125 0.109 0.109 100
2 CPUs 2 CPUs 0.094 0.093 0.093 100
4 CPUs 2 CPUs 0.079 0.078 0.078 100
8CPUs 2 CPUs 0.074 0.047 0.047 100

Table (16): Maximum Values of Order 10000(Servers: Core i7 & Core 2 Duo)

Core i7 Core 2 Duo
Client waiting
Time (Second)

Thread Total Execution
Time (Second)

Real Consumed CPU
Time (Second)

CPU Usage %

1 CPU 1 CPU 84.375 84.365 84.360 100
2 CPUs 2 CPUs 85.609 83.195 83.165 99
4 CPUs 2 CPUs 45.813 45.786 45.780 100
8CPUs 2 CPUs 30.016 29.984 29.906 100

Average of Real Consumed CPU Time

0

2000

4000

6000

8000

0 2 4 6 8 10 12

No. of CPUs

T
im

e(
S
ec

.)

Order 45000

Number
of

CPU's

Client
waiting
Time

(Second)

Thread
Total

Execution
Time

(Second)

Real
Consumed
CPU Time
(Second)

CPU
Usage

%

1 CPU 0.125 0.125 0.125 100

2 CPUs 0.125 0.125 0.125 100
3 CPUs 0.110 0.093 0.093 100

4 CPUs 0.094 0.078 0.078 100

5 CPUs 0.094 0.065 0.065 100

6 CPUs 0.088 0.063 0.063 100

7 CPUs 0.083 0.062 0.062 100

8 CPUs 0.078 0.047 0.047 100

Number
of

CPU's

Client
waiting
Time

(Second)

Thread
Total

Execution
Time

(Second)

Real
Consumed
CPU Time
(Second)

CPU
Usage

%

1 CPU 113.375 113.351 113.350 100

2 CPUs 99.344 99.326 99.311 100

3 CPUs 67.391 67.376 67.376 100

4 CPUs 70.375 57.501 57.500 100

5 CPUs 64.625 51.948 51.933 100

6 CPUs 47.531 47.502 47.500 100

7 CPUs 42.063 42.042 42.012 100

8 CPUs 39.594 39.562 39.560 100

Number
of

CPU's

Client
waiting

Time
(Second)

Thread
Total

Execution
Time

(Second)

Real
Consumed
CPU Time
(Second)

CPU
Usage

%

1 CPU 14718.657 14718.485 14717.431 99

2 CPUs 13032.422 13032.328 13031.856 99

3 CPUs 8339.187 8338.449 8337.786 99

4 CPUs 6849.469 6849.348 6849.256 99

5 CPUs 6349.313 6349.149 6348.368 99

6 CPUs 5551.062 5550.957 5550.438 99

7 CPUs 4951.937 4951.885 4951.207 99

8 CPUs 4716.141 4716.091 4714.694 99

Number
of

CPU's

Client
waiting

Time
(Second)

Thread
Total

Execution
Time

(Second)

Real
Consumed
CPU Time
(Second)

CPU
Usage

%

1 CPU 1058.625 1058.618 1058.608 99

2 CPUs 964.266 964.253 964.250 100

3 CPUs 625.890 625.873 625.861 100

4 CPUs 538.532 538.513 538.485 100

5 CPUs 486.984 486.979 486.970 100

6 CPUs 439.719 439.702 439.674 100

7 CPUs 385.656 385.638 385.632 100

8 CPUs 355.734 355.712 355.683 99

Journal of University of Zakho, Vol.1, (A) No.2, Pp832-848, 2013

 845

Table (17): Maximum Values of Order 20000(Servers: Core i7 & Core 2 Duo)

Core i7 Core 2 Duo
Client waiting
Time (Second)

Thread Total Execution
Time (Second)

Real Consumed CPU
Time (Second)

CPU Usage %

1 CPU 1 CPU 761.875 761.859 761.850 100
2 CPUs 2 CPUs 759.594 759.581 759.569 100
4 CPUs 2 CPUs 434.563 434.539 433.933 100
8CPUs 2 CPUs 273.469 273.453 273.377 100

Table (18): Maximum Values of Order 45000(Servers: Core i7 & Core 2 Duo)

Core i7 Core 2 Duo
Client waiting
Time (Second)

Thread Total Execution
Time (Second)

Real Consumed
CPU Time
(Second)

CPU Usage %

1 CPU 1 CPU 10938.813 10937.990 10937.480 99
2 CPUs 2 CPUs 10242.625 10242.547 10242.402 99
4 CPUs 2 CPUs 5684.750 5684.252 5684.100 99
8CPUs 2 CPUs 3510.797 3510.794 3504.079 99

Figure (13): Maximum of Real consumed CPU time of Order 45000 (Server: Core i7)

Figure (14): Maximum of Real consumed CPU time of Order 45000 (Servers: Core i7 & Core 2 Duo)

4.2 Discussion

There are results of both (Average and
Maximum)-values of Real Consumed CPU for
servers-side. Figures (7 to 9 and 10 to 12)
illustrate the effects of parallel processing
approach on the average values of real
consumed CPU time when using a hybrid
memory system. According to the principles of
the parallel processing, the elapsed execution
time must be reduced with increasing number of
participated CPUs for solving the same problem.
This is appeared clearly as shown in the figures,
it is shown that the average consumed CPU time
in the case of one-server and one-CPU have the
greatest value (14717.431 seconds), and when

using two-servers with 10-CPUs have the
smallest value (2700.848 seconds). It is clear
that the speed of processing increased by
(5.4492) times. This is depending on using only
two servers and one of them has only 2-CPUs,
and this ratio will be increased more when using
more than two servers with many-CPUs.

This arrangement of curves (three figures for
each timing type) was dependent because of the
high-gap of obtained-results among the four
orders. These implemented results are in
agreement with the principles of parallel
processing approaches. So, results of order
(1000) plotted on separate figure, results of both
orders (10,000 and 20,000) plotted on another

Maximum of Real Consumed CPU Time

0

5000

10000

15000

20000

0 2 4 6 8 10

No. of CPUs

T
im

e(
S
ec

.)

Order 45000

Maximum of Real Consumed CPU Time

0
2000

4000

6000

8000
10000

12000

0 2 4 6 8 10 12

No. of CPUs

T
im

e(
S
ec

.)

Order 45000

Journal of University of Zakho, Vol.1, (A) No.2, Pp832-848, 2013

 846

figure, and finally results of order (45,000) on
separate figure.

As explained above, Figures (13 and 14)
illustrate the effects of parallel processing
approach on the maximum values of real
consumed CPU time when using a hybrid
memory system. Depending on these results the
speed of processing increased by (4.2001) times.

In order to make a comparison between the
results of this paper with those of the previous
works, there is no exactly such case study has
been applied by other previous work using
hybrid parallel processing systems. So, the
comparison can be applied between the results
obtained by one-server using only one-CPU and
those of all-servers using all-CPUs as explained
above.

5.CONCLUSIONS

The most important points concluded from
this paper can be summarized as follows:

This paper produced a complete system with
its algorithms for parallel processing operations
using hybrid memory system approach.

Depending on most related programming
functions that treat directly with CPU, additional
enhancements occurred with the proposed
algorithms related with; overcoming the
limitation of data-size of used matrices with the
case study which reached to (45000*45000), and
overcoming the problems of servers-side running
program complexities to be run automatically
which will be more useful and less delay.

Capability of determining and calculating the
related timing-values of (program execution and
CPU usage) for both (average and maximum)
values in high precise.

This application software is implemented
successfully on various multi-core systems (such
as those having: 2 and 8 cores). And can be
implemented on the network with any number of
server-hosts, so that each of these hosts has
many LPs which provide a very high speed of
processing in a parallel manner.

One of the important concluded points here is
the ability to forcing the threads into the system
in parallel to more than one host and more than
one LP at servers-side.

6. References
Alaa Ismail El-Nashar, "To Parallelize or Not to

Parallelize, Speed Up Issue", International
Journal of Distributed and Parallel Systems
(IJDPS) Vol.2, No.2, 2011.

Byoung-Do Kim and John Cazes, "Hybrid

Programming on Multi-core, Multi-socket
Cluster System", The University of Texas at
Austin, Texas advanced computing center,
2009.

Farah H. Asaad, "Shared Memory Performance

Analysis on Parallel Processing Applications",
MSc Thesis, University of Zakho, Dec. 2011.

Georg Hager, ET.Al, "Communication

Characteristics and Hybrid MPI/ OpenMP
Parallel Programming on Clusters of Multi-
core SMP Nodes", Cray User Group
Proceedings, 2009.

Glenn Luecke, ET.Al, "Performance Analysis of Pure

MPI versus MPI+OpenMP for Jacobi
Iteration and a 3D FFT on the Cray XT5",
Cray User Group Proceedings, 2010.

Gregory O. Khanlarov, ET. Al, "Parallel DSMC on

Shared and Hybrid Memory Multiprocessor
Computers", Springer-Verlag Berlin
Heidelberg, 2000.

Manish Parashar and Xiaolin Li, "Advanced

Computational Infrastructures for Parallel and
Distributed Adaptive Applications", John
Wiley & Sons, Inc, 2010.

May P. Zaw and Su Myat M. Soe, "Design and

Implementation of Client Server Network
Management System for Ethernet LAN",
World Academy of Science, Engineering and
Technology 48, 2008.

Numan O. Yaseen, " Diagnostic Approach for

Improving the Implementation of Parallel
Processing Operations ", MSc Thesis,
University of Zakho, October 2010.

Robert Granat, ET.Al, "A Novel Parallel QR

Algorithm for Hybrid Distributed Memory
HPC (High Performance Computing)
Systems", Department of Computing Science,
UMEA University, Sweden, 2009.

Saifuddin Ahmed, "Cluster Sampling", the Johns

Hopkins University, 2009.

Journal of University of Zakho, Vol.1, (A) No.2, Pp832-848, 2013

 847

Wesley M. Eddy and Mark Allman, "Advantages of
Parallel Processing and the Effects of
Communications Time", NASA Glenn
Research Center Report Number CR-209455,
2000.

Yang Qu, ET.Al, "Cluster Polygonization and

Qualitative Cluster Reasoning: Overview",
International Journal of Advancements in

Computing Technology, Volume 3, Number 3,
April, 2011.

Zryan N. Rashid, "Client/Servers Clustering Effects

on CPU Execution-Time, CPU Usage and
CPU Idle Depending on Activities of Parallel-
Processing-Technique Operations", MSc
Thesis, University of Sulaimani, Jan. 2012.

 الحمل الغير متوازن على أنظمة المعالجة المتوازية الهجينة-أسـلوب محسـن لتنفيذ عمليات تقسـيم
 الخلاصة

المعالجات المتعددة تمكن الخيوط المتعددة من أن تنفذ . يتم تصميم أنظمة الكمبيوتر الحديثة وفقا لتكوينات متعددة المعالجات
يتناول هذا البحث . لنفس العملية ليتم تشغيلها على معالجات مختلفة في نفس الوقتفي وقت واحد مع قدرة تنفيذ الخيوط التابعة

الخادم، ويمكن أن تحتوي الشبكة /تطبيقية التي سيتم تنفيذها على أنظمة هجينة الذاكرة اعتمادا على مبادئ العميل-بناء برمجيات
 .على أي عدد من العقد، واحدة منهم هي العميل والبقية هي الخوادم

تم التغلب . وذلك بتقسيم المشكلة على أساس تجزأة الحمل الغير متوازنة) ضرب المصفوفات(تم تقديم أسلوب محسن لدراسة حالة
على كثير من العيوب السابقة، مثل تقييد حجم المصفوفة، تأثير متعددة النوى مع الأنظمة الموزعة وإجبار العمليات والخيوط من

الاتصال من جانب العميل تجاه الخوادم والعكس بالعكس أكثر قوة -وهكذا، أصبح أتجاه. دة النواةمتعد بين معالجات الأنظمه
يتم تنفيذ خوارزميات هذه). OpenMP(المفتوحة -المعالجات-متعددمع تلك) MPI(الأشارة -تمرير-عن طريق ربط واجهة

ومكتبة C++لمستحدث باستخدام مكتبة وتطبيق ا) Quasar Toolkit)QTالتطبيقية عن طريق المولد -البرمجيات
QT . للحصول على سرعة عالية مع الحد الأدنى من الوقت، والكشف عن آثار هذا النظام على التطبيقية -البرمجياتويتم تنفيذ

قدار ، النتائج هي مقبولة جداً وتم تقليل زمن المعالجة بم CPU) أستغلال(وزمن تنفيد وحدة المعالجة المركزية ومدى استخدام
 .مقارنة مع تلك النتائج في حالة عدم أعتماد المعالجة المتوازية الهجينةمرة 5.4492

Journal of University of Zakho, Vol.1, (A) No.2, Pp832-848, 2013

 848





      

               
 CPU         

       client/server      
clientserver 

Matrix multiplication
               

  Matrix           
CPUclientserver

   Quasar Toolkit (QT)   
C++QT

             
    CPU     CPU      

     5.4492      


