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ABSTRACT

In this paper, we have developed an additional method using the Maximum {Supplies, Demands} and combining
both of them with the minimum cost to find an initial solution which is very close to the optimal or at most it is the

optimum solution.

The transportation algorithm follows the exact steps of the simplex method. However, instead of using the regular
simplex tableau, we take advantage of the special structure of the transportation model to organize the computation in

a more convenient form

There are several methods for finding the initial basic feasible solution (BFS) of Transportation Problem (TP).
But, there is no suitable answer to the question: Which method is the best one

1. Definition:

In general, a transportation problem is specified
by the following information:

* A set of m supply points form which a good is
shipped. Supply point i can supply at most
S; units.

* A set of n demand points to which the good is
shipped. Demand point j must receive at least d;
units of the shipped good.

* Each unit produced at supply point i and
shipped to demand point j incurs a variable cost
of Cij .

2. Formulating
Problems:

Let x;; = number of units shipped from supply
point i to demand point j then the general LP
representation of a transportation problem is

Transportation

min; Xjcy Xij
S.t.

ijij < Si (i=1,2,...,m)
Supply constraints

Zixl-]- > d]-(j=1,2,...,n)
Demand constraints

Xi; > 0

If a problem has the constraints given above
and is a maximization problem, it is still a
transportation problem. Finding BFS for
Transportation Problems for a balanced
transportation  problem, the general LP
representation may be written as:
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X.x.. = S; (i=

,m) Supply constraints
=d. (=

Ln 5emand constraints
xij >0

To find a BFS to a balanced transportation

problem, we need to make the following
important observations:
If a set of values for the x;;'s satisfies all but one
of the constraints of a balanced transportation
problem, the values for the x;;'s will
automatically satisfy the other constraint.

This observation shows that when we solve a
balanced transportation, we may omit from
consideration any one of the problem’s
constraints and solve a LP having m+n—1
constraints. We arbitrarily assume that the first
supply constraint is omitted from consideration.

In trying to find a bfs to the remaining
m + n — 1 constraints, you might think that any
collection of m + n — 1 variables would yield a
basic solution. But this is not the case:

If the m+n—1 variables yield a basic
solution, the cells corresponding to a set of
m + n — 1 variables contain no loop.

There are several methods that can be used to
find a BFS for a balanced transportation
problem: [5]

1. Northwest Corner method
2. Minimum Cost method
3. Vogel’s method
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3. Algorithm  of

Demands} method:

Step 1: Choose the maximum supply from the

sources i and maximum demand from the

destinations j. Break ties arbitrarily

Step 2: Identify the row or column with the

smallest shipping cost C;; (call it X;i) Then

assign x. . its largest possible value of Supply or
l . . .

demand. ]Break ties arbitrarily

Step 3: Cross out the row or column with zero

supply or demand to indicate that no further

assignment can be made in that row or column.

If both a row and a column net to zero

simultaneously, cross out one only, and leave a

zero supply (demand) in the uncrossed-out row

(column)

Step 4:

. If exactly one row or column with zero

supply or demand remains uncrossed out, stop.

Max  {Supplies,

Table (1.a) - Example 1

. If one row (column) with positive
supply (demand) remains uncrossed out,
determine the basic variables in the row
(column) by allocating the minimum cost. Stop.
. If all the uncrossed out rows and
columns have (remaining) zero supply and
demand, determine the zero basic variable by
allocating the minimum cost. Stop. Otherwise,
go to step 1

4. Example 1:

Three electric power fields with capacities of 70,
50, and 170 kWh supply electricity to five cities,
the maximum demands at the five cities are
estimated at 70,10,80,90, and 40 million kWh.
The price per million kilo watt per hour (kw/h)
at the five cities is given in the following table

(1.a).

City 1 City 2 City 3 City 4 City5  Supplies
Field 1 10 30 40 20 10 70
Field 2 12 25 30 10 60 50
Field 3 15 20 10 25 30 170
Demands 70 10 80 90 40 290

Max {supplies, demands} = 170

Min(Ci]-) = 10 at the cell x35 or at the shipment from field 3 to city 3

The required demand from the field 3 to city 3 = 80
After allocating the required supplies and demands we change the values of the supplies and the

demands accordingly.

Table (1.b) - Example 1

City 1 City 2 City 3 City 4 City5  Supplies
Field 1 10 30 40 20 10 70
Field 2 12 25 30 10 60 50
Field 3 15 20 ;g 25 30 90
Demands 70 10 0 90 40 210

Max {supplies, demands} = 90.

Break the tie arbiterily

Min(Ci]-) = 10 at the cell x,4 or at the shipment from field 2 to city 4
The required demand from the field 2 to city 4 = 50
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Table (1.c) - Example 1

City 1 City 2 City 3 City 4 City 5 Supplies
Field 1 10 30 40 20 10 70
. 10
Field 2 12 25 30 50 60 0
. 10
Field 3 15 20 80 25 30 90
Demands 70 10 0 40 40 160

Max {supplies, demands} = 90.
Min(Ci]-) = 15 at the cell x5, or at the shipment from field 3 to city 1
The required demand from the field 3 to city 1 = 70

Table (1.d) - Example 1

City 1 City 2 City 3 City 4 City 5 Supplies
Field 1 10 30 40 20 10 70
. 10
Field 2 12 25 30 50 60 0
. 15 10
Field 3 70 20 80 25 30 20
Demands 0 10 0 40 40 90

Max {supplies, demands} = 70.
Min(Ci]-) = 10 at the cell x5 or at the shipment from field 1 to city 5
The required demand from the field 1 to city 5 = 40

Table (1.e) - Example 1

City 1 City 2 City 3 City 4 City 5 Supplies
Field 1 10 30 40 20 10 30
40
Field 2 12 25 30 10 60 0
50
Field 3 15 20 10 25 30 20
70 80
Demands 0 10 0 40 0 50

Max {supplies, demands} = 40.
Min(Ci]-) = 20 at the cell x4 or at the shipment from field 1 to city 4
The required demand from the field 1to city 4 = 30

Table (1.f) - Example 1

City 1 City 2 City 3 City 4 City 5 Supplies
Field 1 10 30 40 20 10 0
30 40
Field 2 12 25 30 10 60 0
50
Field 3 15 20 10 25 30 20
70 80
Demands 0 10 0 10 0 20

Since we have left with one row which is field3, the supply will cover the demands for city 2 and city
4 accordingly, and this will complete the required demands.
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Table (1.g) - Example 1

City 1 City 2 City 3 City 4 City 5 Supplies
Field 1 10 30 40 20 10 0
30 40
Field 2 12 25 30 10 60 0
50
Field 3 15 20 10 25 30 0
70 10 80 10
Demands 0 0 0 0 0 0

Hence the initial basic feasible solution using the Maximum {Supplies, Demands} method is

Table (1.h) - Example 1

City 1 City 2 City 3 City 4 City 5 Supplies
Field 1 10 30 40 20 10 70
30 40
Field 2 12 25 30 10 60 50
50
Field 15 20 10 25 30 170
70 10 80 10
Demands 70 10 80 90 40 290
Cost = the optimal solution if it is not the optimal
30*%20+40*10+50*10+70*15+10*20+80*10+10 solution by itself as we have shown in our above
*25=3,800 example.

If we test the optimality of this initial basic
feasible solution problem using the Stepping
Stone Method [1], we will see that this solution
is an optimal solution.

CONCLUSION

Our method does not depend only on the
allocation as in the North West Corner Rule
Method (NWCR), also it does not depend on the
Least cost as in Least Cost Method (LCM) and
Vogel’s Approximation Method (VAM) but it
takes into account the maximum supplies and the
maximum demands and bound them together
with the related minimum available cost from
the sources and the demands respectively to
reach an initial solution which is more closer to
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