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Abstract:

In this paper, Gray-Scott model has been solved numerically for finding an approximate solution by Successive
approximation method and Finite difference method. Example showed that Successive approximation method is much
faster and effective for this kind of problems than Finite difference method.
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1. Introduction:

Nonlinear first-order partial differential
equations arise in a variety of physical
theories, primarily in dynamics (to generate
canonical transformations), continuum mechanics
(to record conservation of mass, momentum,
energy, etc.) and optics (to describe wave fronts).
Although the strong nonlinearity generally
precludes our deriving any simple formulas for
solutions, we can, remarkably, often employ
calculus to glean fairly detailed information about
solutions (Lawrence, 2010).

The basic idea of the method of finite
difference is to cast the continuous problem
described by the PDE and auxiliary conditions
into a discrete problem that can be solved by
computer in finitely many steps. The discretization
is accomplished by restricting the problem to a set
of discrete points. By systematic procedure, we
then calculate the unknown function at those
discrete points. Consequently, a finite difference
technique yields a solution only at discrete points
in the domain of interest rather than, as we expect
for an analytical calculation, a formula or closed-
form solution valid at all points of the domain
(Logan, 1987).

Solution by the finite difference method,
although more general, will involve stability and
convergence problems, may require special
handling of boundary conditions, and may require
large computer storage and execution time. The
problem of numerical dispersion for finite
difference solutions is also difficult to overcome
(Guymon, 1970).

There is another approximation method for
solving integral equations and differential
equations. This method starts by using the

constant function as an approximation to a
solution. We substitute this approximation into the
right side of the given equation and use the result
as a next approximation to the solution. Then we
substitute this approximation into the right side of
the given equation to obtain what we hope is a still
better approximation and we continuing the
process. Our goal is to find a function with the
property that when it is substituted in the right side
of the given equation the result is the same
function. This procedure is known as successive
approximation method (Brauer & Nohel, 1973).

Mathematical Model:

A general class of nonlinear-diffusion system
is in the form

%:dlAu+alu +byv+ f(u,v)+g,(x)

% =d,Av+a,u+b,v— f(u,v)+g,(x)

with homogenous Dirchlet or Neumann
boundary condition on a bounded domain Q , n<3,
with locally Lipschitz continuous boundary. It is
well known that reaction and diffusion of
chemical or biochemical species can produce a
variety of spatial patterns. This class of reaction
diffusion systems includes some significant
pattern formation equations arising from the
modeling of kinetics of chemical or biochemical
reactions and from the biological pattern
formation theory.

In this group, the following four systems are
typically important and serve as mathematical
models in physical chemistry and in biology:
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Brusselator model:
a,=—(b+1),b =0, a,=b,b,=0, f=u2v, g =a,g,=0

where a and b are positive constants.
Gray-Scott model:

2
a=—F+k),b=0,a,=0,b,=-F, f=u"v, g=0,g,=
where F and k are positive constants.
Glycolysis model:
2
a=-1,b=k a,=0,b,=-k, f=u"v,g =p,g,=0
where £, p and § are positive constants.
Schnackenberg model:
2
a,=-k,b=a,=b=0, f=u"v, g =a,g,=b
where k, a and b are positive constants. (Saeed, 2006; Temam, 1997)
Then one obtains the following system of two nonlinearly coupled reaction-diffusion equations,

%:dlAu—(F+k)u+u2v , >0 xe Q)

%:dlAv+F(l—v)—u2v , >0 xeQ (1)
With initial and boundary conditions:
u(t,x)=v(t,x)=0, >0, x € 0Q
u(0,x) = uy(x), v(0,x) =vy(x), xe€Q Q2)
And with Neumann boundary conditions:
a—M:Q:O at x=0 and x=1L 3)
ox Ox

Where d,,d,,F ,k and L are positive constants (Temam, 1997).

Most chemical reactions can present rich phenomena in vessels, such as chemical oscillations, periodic
doubling, chemical waves, and chaos.

analysis of forced nonlinear oscillations plays an important role in understanding their dynamical
phenomena of electronic generators, mechanical, chemical and biological systems. Even small external
disturbances are likely to change behaviors of dynamical systems (Mingjing et al., 2008).

Reaction-diffusion (RD) systems arise frequently in the study of chemical and biological phenomena
and are naturally modeled by parabolic partial differential equations (PDEs). The dynamics of RD
systems has been the subject of intense research activity over the past decades. The reason is that RD
system exhibit very rich dynamic behavior including periodic and quasi-periodic solutions (Brauer &
Nohel, 1973; Shanthakumar, 1987).

In an experimental application of linear modal feedback control for suppressing chaotic temporal
fluctuation of spatiotemporal thermal pattern on a catalytic wafer was reported in (Chakravarti et al.,
1995).

Various orders are self-organized far from the chemical equilibrium. The theoretical procedures and
notions to describe the dynamics of patterns formation have been developed for the last three decades
(Nicolis & Prigogine, 1977). Attempts have also been made to understand morphological orders in
biology (Cross & Hohenberg, 1993). Clarification of the mechanisms of the formation of orders and the
relationship among them has been one of the fundamental problems in non-equilibrium statistical physics
(Murray, 2007).
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Finite Difference Approximations

Assume that the rectangle R ={(x,?):0<x<a, 0<¢<b}is subdivided into n-1 by m-1

rectangle with sides Ax =~/ and Af =k, as shown in Fig.(1). Start at the bottom row, where
t = t, = 0, and the solution is u(x,,t)=f(x,).

A method for computing the approximations to M(X, { ) at grid points in successive rows
{u(xp,tq) :p= 1,2,...,1’!}, for q= 2,3,...,m . The difference formulas used for approximation
u,(x,t),u (x,t)yand u_(x,t) are
u(x,t+k)—u(x,t)

u,(x,t) = P + O(k) 4)
ux(x,t):u(x+h’2_u(x’t)+0(h) 5)
u (x0) = u(x—h,t)—2u(;cl,2t)+u(x+h,t)+ oY) ©)

The grid spacing is uniform in every row: X, =X, +h and (X, =X, —h), and it is
uniform in every column: 7, =7, + k and (L =1, — k). Next, we drop the terms O(k),O(h) and

O(h*) (Leon & George, 1982; Mathews, 2004), and use the approximation u pg for u(x ¢ )in
equation (4-6) and substituted into equation (1) to obtain

By finite difference:
a_u — i,j+1 i,j (7)
Ot At
V.., —V. .
@ — i,j+1 i,j (8)
Ot At
Su _ iy =2, T,
— = 1,j ./2 Lj ( 9)
ox (Ax)
2 V., . =2v. . +vVv., .
a ‘2) — i-1,j 1,_/2 i+l,j (10)
ox (Ax)

The grid spacing is uniform in every row: X, , =X, +/ and (x,,=x, —h), and it is

uniform in every column: 7, =1, +k and (L, =1, — k ) (Mathews, 2004).
and substitute (7-10) in the Gray-Scott model (1.1) to get

u. .. —u. . u, . —2u. . +u. .
i+l Lo dl i-1.j 1,./2 i+l.j —(F + k)ui/ + (ui /)2Vi/‘
At (Ax) - - -
V.. =V, V... =2v. . +v, ..
i,j+1 Lo d2 i-1,j 1,./2 i+l,j + F(l —v. /) _ (ui /)2Vi }
At (Ax) b B -
d, At 2
U j —U; ; = (Alx)2 [ui—l,j - 2“1‘,_/ + ui+l,j] —AH(F + k)ui,j + At(ui,j) Vi

A

2
Viia— Vi —(Ax)2 [Vi—l,j - 2Vi,j + Vi+1,_,~] + AtF(1- Vi,j) - At(ui,j) Vi,
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d,At d,At
Le‘[}ﬂl: ! 5 and r, = 2 > then
Ax) (Ax)
2
Uy jo =ty =KLy =20 g, 1= ACE + R)uy  + At )7,
2
Vigar ~Viy =BV =20 v 1 AF( -y, ) = At(u )7,
2
Ui = =28 = AF + k), ; +nluy w1+ At(u, )7 (11)
2

Vi =AtF + [1-2r, - AtF]Vi,j +7 [Vi—l,j + Vi+1,j] - At(ui,_/) Vij

From the boundary conditions we have

ou U, —u,_,

2o P ) Uy, =W = Uy =U,; (12)
Ox 2Ax ' ' ' '

And

ou Uy —U;;

& 2 0 Uppg,j = Uiy = Uy = U, 13
And also for v

oy V.=V,

G L Y A Vi =Vij =V, =Vy; (14)

ox 2Ax

And

oV Vi =V

D s V) Viay =Vij = Vi, =V, (15)

ox 2Ax ' ' ' '

And from the initial condition:

Uy = Uy = Uy =Uyy = Usy =Ugy = Uy = Uy = Uy = Uyg g = Uy = Up(X)

Vig = Vyy = Vs =V = Vs =V = Vo = Vs = Vo = Vi = Vg = Ve (X)

The result equation (11) is the finite difference method for the Gray-Scott model.

Successive Method (SAM)

The method of SAM provides a method that can, in principle, be used to solve any initial value
problem (Chakravarti, et al., 1995; Jerri, 1985; Otto & Denier, 2005)

w'=f(tu);  u(t,)=u, (16)
It starts by observing that any solution to (12) must also be a solution to
t
u(t)=u, + [ f(s,u(s))ds an
l

And then iteratively constructs a sequence of solutions that get closer and closer to the actual (exact )
solutions of (17). The SAM is based on the integral equation (17) as follows:

865



Journal of University of Zakho, Vol.1, (A) No.2, Pp 862-873 ,2013

uo(t) =U,

u,(t)=u, + jf(s,uo)ds
(1) = u, + [ £ (5.0, ())ds

t
u,(6) =1, + [ f(5,1,(5)ds
17
This process can be continued to obtain the n™ approximation,

u,(t)=u,+ jf(s,un_l (s))ds, n=1,2,...

Then determine whether un(x) approaches the solution #(X) as n increases. This will be done
by proving the following:

. The sequence {un(x) } converges to a limit #(x), that
limy, (x) = u(x) a<x<b.
n—»0
. The limiting function #(X) is a solution of (13) on the interval a <x<b.
. The solution #(x) of (13) is unique.

A proof of these results can be constructed along the lines of the corresponding proof for ordinary
differential equations (Coddington, 1961).
By integrating both sides from of (1) with respect to s, from 0 to t, we get:

u(tx)_u(ox)+dj ds — (F+k)juds+j(u v)ds

(18)
v(t, x) = v(0,x) + dzj—jds + Fj(l —v)ds —I(uzv)ds
o Ox 0 0
Using the initial conditions in (3) we get:
u(t,x) =u,(x)+d j M —(F +k) j u(s,x)ds + j [ (5,)v(s,x)]ds
(19)

o*v(s, x)d L Fr— FJ‘v(s X)ds — j'[uz(S,x)V(S,x)]dS

0

V(t,x) = v, (x)+d, j

The general form is:

u, (1,x) = uo(x)mjw

—(F+ k)j‘un_l (s,x)ds + j[uf_l (s,x)v,_,(s,x)]ds

b 0= v )+ ey [ 200 FJ v, (5. )ds ~ j[u,,l(sxw,,l(sx)] 20)
0

n=123,4,..

Forn=1
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0’ uo(x)

u, (t,x)=uy,(x)+d I —(F+ k)j‘u0 (x)ds + j[ug (x)v,(x)]ds
0’u, )

=uy+d,——-t—(F+kuyt +ugvyt
ox

0’u,

Sou(t,x)=u, +[d, = —(F +k)u, +ul oVo It (21)

v, (t,x) = v, (x) + Ft +d, j 0(’“) ds — Fj vo (x)ds — j [u? (x)v, (x)lds
X

82\/
=v,+Ft+d,—t— Fvjt —ulv,t
ox’
2

v (tx)=v, +[F+d, aav —Fvy —ugv, It (22)
X
For n=2
[ 0%u,(s,x) i T
u,(t,x)=u,+d I—d —(F+k)J.ul(S,x)dS+J.[ul (s,x)v,(s,x)]ds
x 0 0
By eqs 4) and 5)

—(F +Kuy +ulvy]s)ds = (F + ) [ (u, +[d, aa &l
0 X

o‘u
tL,x)=u, +d u d, 0
, (,%) = u, j g +1 —

—(F +k)uy, +ulv,]s)ds + jufvl ds

2 2 2 2
:u0+d16—u2°t+d1[dlau° _(F+ k) + 2 L@} vo)] —(F +k)uyt — (F +k)[d, 0ty
ox ox* ox?
C(F 4+ k)uy +ulv, ]% + j (u?v,)ds . (23)
0
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2
j (u’v,)ds = j (u, +[d —(F +k)uy +ulvy1s)’ (v, +[F +d, aav — Fvy —ulv,1s)ds
X
82”0 2. 12 .2
—J.(u0 +2u0[d —(F +ku, +ujvyls +[d, e —(F+ku,+uyvy] s )(v,

2

+[F+d,—- vy — Fvy —ugv,s)ds
ox’

t 82 02

= [@dvy +2uyv,ld, ax” —(F + kg +ulv, s +v,[d, ax” —(F + Ky +ulv, s>

0
2 2 2

+u[F+d,—~ OV, — Fv, —ujv,ls +2u,[d, Oty L (F+kuy, +upv, [F+d, —~ OV, —Fv, —ujv,ls’
ox’ ox’ ox’

2 2
+[d, d u20 —(F + k), +ulv,'[F+d, —> 07y —Fv, —ugv, s’ )ds
ox ox’

2 2 2
j(u vy )ds = 2yt + 2u,v [d, S (F 4 kg + vy 1 v d, S~ (F 4 g +ulv, £
Ox 2 ox? 3
2 2 2 3

o o o
Sl lF 4 dy 0 B — v+ 2ugfd M (F oy + v, [F 4 dy S Fo, —ulv, [
ox’ 2 ox’ ox’ 3

a 02 4
11d, 5 (4 by +ulvg PLF +dy S22~ oy —utvg | (24)
ox? ox? 4

Substitute eq. (24) in (23) we get :

2 4 2 2 2
u(6,x) =, +d Moy +dd % a —(F+k) “°+‘iz(u )]t——(F+k)u0t
ox’ ox~ Ox
62 2 azu 2
—-(F+ k)[d —(F +k)u, +uv]—+uvt+2uv[d " —(F +k)u, +uv]—
X
o’u, o’v, 2, b o’u,
+v[d,—2L—(F +k)u, +ulv ] +u JF +d, = Fvy —uyv, =+ 2u,[d,—,
ox’ ox’ 2 ox
2 2
—(F +k)u, +ulv, 6v ]t +[d 6 —(F +k)u, +uv ]2[F+dzzvz°
X
t4
—Fv, —uv,]—
sy (8,x) =u, +[d 8 —(F+ku, +u;v,Jt+[d, 0 —(d, (Zuzo —(F+k)u, +u;v,)
ox’ X
82 azu 5 2 azvo
—(F+k)(d —(F+ku, +u;v,)+2u,v,(d, ——(F+k)u0 +u,v,)+u,(F+d, P
X
P ) t2 82 o’u, )
—Fv,—u,v,)]— +[v (d —(F+ku, +u;v,)’ +2u,(d, ——(F+k)u0 +u, v, (F
2 3 2 2 4
+d2(2;2°—Fv0—u02v0) ! +[d Ou —(F+ku, +uyv,] [F+d2%;2°—Fv0 —uévo]%
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For simplicity we assume that:

2
Ul=d, a—”; —(F +K)uy +ulv, (25)
Ox
82
V1=F+d, =% — Fv, —ulv, (26)
ox®
Then

2 3

2
w, (t,%) = uy +Ult +[d, aax—zUl —(F+k)UL+ 2u,v,Ul + ung]% v (U1 + 2u0U1V1]%

+(U1)? Vl% (27)

v,(t,x) =V, +Ft+d2J.Md FJ.V1 (s,x)ds — j[ul (s,x)v,(s,x)]ds

2
_v0+Ft+dj (v, +[F +d, —L o — Fv, —ulv,]s)ds - Fj(v0+[F+d O _py
Ox Ox

t

—ugv,1s)ds j
0
2 2 2 2 2

0 0 0

:v0+Ft+d2$‘;°t+d28x—2(F+d2$‘;°—Fv uv0)2 — Foyt— F[F +d, 22

t2 t
2 2

—Fvo—uovo]j—'([ulvlds

Then by eq. (24)

0%v, o’ o%v, t? o%v

v (t,x)=vy+Ft+d,— t+d, —(F+d,——Fv, - uovo) —Fvyt—F[F +d,
0x ? o ox 2

xZ
2 82 2 82

- Fv, —uévo]t——ugvot—Zuovo[dl —uzo—(F+k)uo +u§v0]t——vo[d1 —uzo—(F+k)uo

2 Ox 2 Ox

, Lt 0%, , ot o’u, ) 0%,
+ugvy " ——u [F+d,——Fvy—ugv,l——2u[d, — — (F + k)u, +u,v,][F +d, —
3 Ox 2 Ox ox
3 2 4
- Fv, —ugvo]%—[dl aax“o —(F+k)u, +u0v0] [F+d, 0 vz - Fv, - uévo]t—
2 2

2
+[F+d2%):2°—Fvo—ugvo]tJr[dzaaxz(Ferz ‘zxv" — Fvy—ulvy)— F(F +d, axv

2 2 2
- Fv, uovo) 2uyv, (d, a&’xu (F+k)u0+u0v0) uO(F+d aaxv - Fv, - uévo)]t—
3
~[vo(d, & C (F+kyuy +ulvy)? +2u,(d, Ouy —(F +k)uy +ulvy)(F +d, v Py —ulvy)]) -
ox? ox? 3
a uo 2 4

—[d,—- e —(F+ku,+u vo] [F+d, aaxv -Fv, - uévo]t—

Then by egs. (25) and (26)
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vy (%) = v + V1 +[d, %(Vl) CFV1=2ugvUl—uV1]
X

And by the same way for n=3,4,

Numerical Example
We solved the following example numerically to illustrate efficiency of the presented methods

Example:
=d,Au—(F +k)u+u’v

ou

2

%:dlAv+F(l—v)—u2v

We the initial conditions
Ux, 0)=Us +0.01 sin(zx/L)  for

V(x, 0)=Vs—0.12 sin(mx/ L)

U@, H=Us, UL, t)=Us
We will take

d1:d2:0.01

, >0 xeQ

, >0 xeQ

0<x<L

for 0<x<L
and V(0,0 ="7Vs,

, F=0.09 ,k=-0.004 ,U=0 , V=1

t* £

t4
3—mam%u%wa;4mfmz
(28)

V(L t)=Vs

Table 1 Comparison between the FDM and SAM for the values of concentration V.

t=1 t=2 t=3

X SAM FDM SAM FDM SAM FDM

0 1.0000 1.0000 1.0001 1.0000 1.0003 1.0000
0.1 10015 1.0014 1.0015 1.0014 1.0017 1.0013
0.2 10028 1.0027 1.0027 1.0026 1.0028 1.0024
03 10039 1.0039 1.0037 1.0035 1.0036 1.0032
04 10048 1.0048 1.0044 1.0043 1.0040 1.0038
05 10055 1.0055 1.0049 1.0048 1.0042 1.0041
06 1.0061 1.0061 1.0052 1.0052 1.0042 1.0043
0.7 10065 1.0065 1.0053 1.0054 1.0041 1.0044
0.8 1.0068 1.0068 1.0054 1.0056 1.0040 1.0044
09 10069 1.0070 1.0054 1.0056 1.0038 1.0044
1.0 1.0070 1.0070 1.0054 1.0057 1.0038 1.0044
1.1 10069 1.0070 1.0054 1.0056 1.0038 1.0044
1.2 10068 1.0068 1.0054 1.0056 1.0040 1.0044
1.3 10065 1.0065 1.0053 1.0054 1.0041 1.0044
14 10061 1.0061 1.0052 1.0052 1.0042 1.0043
1.5 1.0055 1.0055 1.0049 1.0048 1.0042 1.0041
16 1.0048 1.0048 1.0044 1.0043 1.0040 1.0038
1.7 10039 1.0039 1.0037 1.0035 1.0036 1.0032
1.8 1.0028 1.0027 1.0027 1.0026 1.0028 1.0024
19 10015 1.0014 1.0015 1.0014 1.0017 1.0013
2.0 1.0000 1.0000 1.0001 1.0000 1.0003 1.0000
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Table 2 Comparison between the FDM and SAM for the values of concentration U.

t=1 t=2 t=3

SAM FDM SAM FDM SAM FDM

0 0.0003 0 0.0012 0 0.0025 0

0.1 -0.0162 -0.0163 -0.0136 -0.0139 -0.0113  -0.0119

0.2 -0.0318 -0.0317 -0.0271 -0.0271 -0.0236  -0.0230

0.3 -0.0461 -0.0461 -0.0392 -0.0390 -0.0340 -0.0331

04 -0.0589 -0.0589 -0.0497 -0.0495 -0.0424 -0.0419

0.5 -0.0701 -0.0700 -0.0585 -0.0585 -0.0486  -0.0493

0.6 -0.0793 -0.0793 -0.0656 -0.0659 -0.0527  -0.0553

0.7 -0.0867 -0.0867 -0.0709 -0.0716 -0.0551  -0.0600

0.8 -0.0920 -0.0920 -0.0746 -0.0757 -0.0561 -0.0633

0.9 -0.0952 -0.0952 -0.0768 -0.0782 -0.0565 -0.0653

1.0 -0.0962 -0.0962 -0.0775 -0.0790 -0.0565 -0.0659

1.1 -0.0952 -0.0952 -0.0768 -0.0782 -0.0565 -0.0653

1.2 -0.0920 -0.0920 -0.0746 -0.0757 -0.0561 -0.0633

1.3 -0.0867 -0.0867 -0.0709 -0.0716 -0.0551  -0.0600

14 -0.0793 -0.0793 -0.0656 -0.0659 -0.0527  -0.0553

1.5 -0.0701 -0.0700 -0.0585 -0.0585 -0.0486  -0.0493

1.6 -0.0589 -0.0589 -0.0497 -0.0495 -0.0424 -0.0419

1.7 -0.0461 -0.0461 -0.0392 -0.0390 -0.0340 -0.0331

1.8 -0.0318 -0.0317 -0.0271 -0.0271 -0.0236  -0.0230

1.9 -0.0162 -0.0163 -0.0136 -0.0139 -0.0113  -0.0119

2.0 0.0003 -0.0000 0.0012 -0.0000 0.0025 -0.0000
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1015~
1014

roms o - =
\1\ : ;

Fig.1 FDM for the values of concentration V
with 0<x<2 and 0<t<3

Fig.3 FDM for the values of concentration U
with 0<x<2 and 0<t<3

Conclusion:

We saw that Successive approximation method
is more accurate than finite difference method for
solving Gray-Scott model especially when we
increase t as shown in figure 1-4 and tables 1-2.
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