

journals.uoz.edu.krd

Available online at sjuoz.uoz.edu.krd

Vol. 5, No. 4, pp. 307 –312, Dec.-2017

p-ISSN: 2410-7549

e-ISSN: 24146943

 307

JAVA MESSAGE SERVICE BASED PERFORMANCE COMPARISON OF APACHE

ACTIVEMQ AND APACHE APOLLO BROKERS

Qusay I. Sarhan a ,* and Idrees S. Gawdan b

a Dept. of Computer Science, College of Science, University of Duhok, Kurdistan Region, Iraq – (qusay.sarhan@uod.ac).
b Dept. of Refrigeration & Air-Conditioning, Technical College of Engineering, Duhok Polytechnic University, Duhok,

Kurdistan Region-Iraq – (husseinidrees@yahoo.com)

Received: Aug. 2017 / Accepted: Dec., 2017 / Published: Dec., 2017 https://doi.org/10.25271/2017.5.4.376

ABSTRACT:

Software integration is a crucial aspect of collaborative software applications and systems. It enables a number of different software

applications, created by different developers, using different programming languages, and even located at different places to work

with each other collaboratively to achieve common goals. Nowadays, a number of techniques are available to enable software

integration. Messaging is the most prominent technique in this respect. In this paper, two leading open-source messaging brokers,

Apache ActiveMQ and Apache Apollo, have been experimentally compared with each other with regard to their messaging

capabilities (message sending and receiving throughputs). Both brokers support exchanging messages between heterogeneous and

distributed software applications using several messaging mechanisms including Java Message Service (henceforth JMS). A

number of experimental test scenarios have been conducted to obtain the comparison results that indicate the one-to-one JMS

messaging performance of each broker. Overall performance evaluation and analysis showed that Apache Apollo outperformed

Apache ActiveMQ in all test scenarios regarding message sending throughputs. Whereas, Apache ActiveMQ outperformed Apache

Apollo in most test scenarios regarding message receiving throughputs. Moreover, the evaluation methodology (test conditions,

test scenarios, and test metrics) proposed in this paper has been carefully chosen to be adopted by software developers to evaluate

other messaging brokers to determine the acceptable level of messaging capabilities in distributed environments of heterogeneous

software applications.

KEYWORDS: Performance comparison, Messaging broker, Java Message Service (JMS), Messaging throughputs, Test

methodology.

1. INTRODUCTION

Software applications that cover many aspects of our daily

life are heterogeneous. They are created by different

developers using different methods and tools. To provide a

collaborative environment that enables a number of

heterogeneous software applications to communicate with

each other and perform various day-to-day activities,

software integration is required. Currently, there are a dozen

of techniques that can be used to achieve software integration

(Hohpe & Woolf, 2003). Out of the available integration

techniques, messaging is the most prominent technique. It

allows two or more independent and different software

applications to collaborate with each other by sending and

receiving different types of messages via a messaging

broker/server (He & Xu, 2014). This process is performed by

using messaging frameworks, libraries, or services that

provide Application Programming Interfaces (APIs). Such

APIs can be utilized by different programming languages

under different names to enable software integration. In the

Java world for example, JMS is developed to provide an

ultimate flexible service for exchanging different types of

messages between collaborative Java-based software

applications (Richards et al., 2009). Heterogeneous Java-

based software applications for instance can create a message

exchange channel, create a queue as a message or data

repository, send messages to the created queue, retrieve

messages from the created queue, and many other operations

all via invoking a set of JMS APIs orderly (Hsiao el al.,

* Corresponding author

This is an open access under a CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/)

2003). Presently, there are a number of brokers that support

messaging using JMS to allow heterogeneous Java-based

software applications to interact with each other. Each broker has

its own set of features and specifications. However, performance

is considered to be the key factor for collaborative software

applications. Performance is very critical for software

applications that rely on the speed of the software integration or

collaboration process. Within this context, this paper

experimentally compared two well-known and open-source

messaging brokers that implement JMS specification: Apache

ActiveMQ (Apache ActiveMQ, 2017) and Apache Apollo

(Apache Apollo, 2017). Generally, there are many comparison

factors that can be considered when comparing different

messaging brokers. Throughput in terms of messaging

capabilities (message sending and receiving) is the most common

factor for comparing messaging brokers (Menth et al., 2006).

Thus, this study considered the throughput performance factor

alongside many directions. However, the results of this study

should help developers to select the broker that can meet the

performance needs of collaborative software applications in a

messaging environment.

The remainder of this paper is organized in many sections as

follows. Section 2 presents the most related works available in

literature. In Section 3, a set of test conditions, test scenarios, test

metrics, and experimental setups used in this study have been

provided. Section 4 presents the results of comparing the brokers

with each other according to various test scenarios. Finally, some

conclusions including a comparison summary table of both

brokers and future works have been given in Section 5.

http://journals.uoz.edu.krd/
http://sjuoz.uoz.edu.krd/
https://doi.org/10.25271/2017.5.4.376
https://creativecommons.org/licenses/by-nc-sa/4.0/

Q. I. Sarhan and I. S. Gawdan / Science Journal of University of Zakho 5(4), 307-312, Dec.-2017

 308

2. RELATED WORKS

This section briefly presents the most relevant studies and

works that evaluate the performance of different messaging

brokers via JMS. The authors in (Tran et al., 2002) have

evaluated the messaging capabilities of IBM MQSerios v5.2

messaging broker using different evaluation metrics.

However, the study did not compare the broker with other

messaging brokers. In a technical report by (Crimson

Consulting Group, 2003), the brokers Sun Java Message

System Queue v3.5 and IBM Websphere MQ v5.3 have been

overviewed distinctly. Besides, they have been evaluated and

compared with each other using different performance

metrics and testing variables. In (Greenfield, 2004), the

brokers IBM MQ Series and TIBCO’s Rendezvous have

been evaluated via different test scenarios. Also, the study

shows the impact of using different Quality of Service (QoS)

attributes on the overall performance of each broker. In

(Ahuja & Mupparaju, 2014), the brokers Open MQ v4.1,

Apache Active MQ v4.1, and Mantaray MQ v2.0.1 have been

benchmarked, functionally compared, and qualitatively

studied. In (Klein et al., 2015), a comparative analysis of the

brokers Apache ActiveMQ v5.10.0 and OpenMQ v4.5.2 has

been conducted experimentally to determine the performance

of each broker.

It is worth mentioning that the authors of this paper have

faced a number of issues while studying the literature related

to the topic of this study. For example, some papers in the

literature have not presented distinctly how they conducted

their test methodologies. No enough details were provided on

how they measure the performance of a messaging broker or

on how they compared experimentally two or more

messaging brokers with each other. Many others have not

provided the specifications of their software and hardware

testing environments. Therefore, such papers have not been

included in this section.

Nevertheless, all the studies included in this paper were

useful in providing outstanding explanation of messaging

systems, brokers’ architectures, and Message Oriented

Middleware (MOM) based applications. Besides, they were

valuable in providing a general evaluation metrics for this

study.

To the best of our knowledge, no previous study in the

literature compared experimentally between Apache

ActiveMQ and Apache Apollo open-source brokers in terms

of messaging capabilities. Thus, this was the rationale behind

this study to be conducted.

3. TEST METHODOLOGY

In this paper, test methodology represents the conditions,

scenarios, metrics, and testbed setup that have been applied

and used to compare the performance of the brokers in terms

of messaging capabilities.

3.1 Test Conditions

All tests have been performed under the following

conditions:

 Both brokers have been tested with their default

configurations and settings.

 Every test scenario has been applied on both brokers with

the same scenario related parameters (e.g. message size).

 Test applications (to send/receive messages to/from

brokers) have been developed and executed on the same

computer to ensure using the same software and hardware

specifications.

 Before starting the test process and measurements, all user

applications (excluding test applications) have been closed.

 The used computer has not been connected to the Internet

during the test process and measurements.

 No message processing has been performed by the test

applications. Thus, allowing sending and receiving messages as

fast as possible in order to reach the highest level of messaging

capabilities.

 Multithreading technique has been used to depict

simultaneous test applications. Thus, each thread represents a

single test application.

 Every test scenario has been repeated 5 times (10 minutes for

each) and measurements have been averaged and rounded to

ensure accuracy.

 All test results have been recorded after establishing client-

broker connections, after creating messaging sessions, after

creating messaging queues, after creating message sending and

receiving objects, etc.

 The message size in each test scenario is the total length of

header, properties, and body (payload). Since the size of the first

two parts of each message is the same with all test scenarios,

only the length of each message body was variable. Thus, three

different message sizes have been used in each test scenario: 1

char (1 byte), 1000 char (1000 byte), and 10000 char (10000

byte).

 After finishing each test scenario (using a specific message

size), the created queue (or queues) is deleted with its all

messages and then the broker is restarted to ensure accuracy.

3.2 Test Scenarios

The messaging performance of both brokers is compared

experimentally via six different test scenarios, as follows:

 Scenario 1: In this scenario, one test application

continuously sends persistent text messages to a queue in the

broker for a period of 10 minutes. Figure 1 depicts this

scenario.

Figure 1. Representation of scenario 1

 Scenario 2: In this scenario, ten test applications

continuously and simultaneously send persistent text

messages to a queue in the broker for a period of 10 minutes.

Figure 2 depicts this scenario.

Figure 2. Representation of scenario 2

 Scenario 3: In this scenario, ten test applications

continuously and simultaneously send persistent text

Q. I. Sarhan and I. S. Gawdan / Science Journal of University of Zakho 5(4), 307-312, Dec.-2017

 309

messages to ten queues in the broker for a period of 10

minutes. Figure 3 depicts this scenario.

Figure 3. Representation of scenario 3

 Scenario 4: In this scenario, one test application

continuously reads persistent text messages from a

queue in the broker for a period of 10 minutes. Figure 4

depicts this scenario.

Figure 4. Representation of scenario 4

 Scenario 5: In this scenario, ten test applications

continuously and simultaneously read persistent text

messages from a queue in the broker for a period of 10

minutes. Figure 5 depicts this scenario.

Figure 5. Representation of scenario 5

 Scenario 6: In this scenario, ten test applications

continuously and simultaneously read persistent text

messages from ten queues in the broker for a period of

10 minutes. Figure 6 depicts this scenario.

Figure 6. Representation of scenario 6

It is worth mentioning that the aforementioned test scenarios

have been carefully chosen to cover different aspects of each

broker’s overall performance.

3.3 Test Metrics

Two dominant metrics have been used to evaluate and compare

the performance of each broker, as follows:

 Message sending (storing) throughput: It represents the

average number of messages that can be sent (stored) in a

specific period of time. This metric has been measured in

scenarios 1, 2 and 3 respectively.

 Message receiving (retrieving) throughput: It represents

the average number of messages that can be retrieved in a

specific period of time. This metric has been measured in

scenarios 4, 5, and 6 respectively.

3.4 Testbed Setup

The test environment of this study has been setup with software

and hardware which their specifications are presented in Table 1

and 2 respectively.

Table 1. Software specifications

 Software Version

Test applications
Java JDK 1.8.0_91

NetBeans IDE 8.2

JMS Brokers
Apache ActiveMQ 5.13.1

Apache Apollo 1.7.1

JMS specification JMS API 1.1

Web Browser Mozilla Firefox 50.1.0

Operating System Microsoft Windows
7 Home Basic

(64-bit)

Table 2. Hardware specifications

 Hardware Detail

Computer

System

Laptop Model ASUS K34S Series

CPU Type Intel Core i5-2450M

CPU Speed 2.5 GHz

CPU Cores 4

RAM 6 GB

Rating (Windows

Experience Index)
4.5

4. EXPERIMENTAL RESULTS AND DISCUSSIONS

This section presents the obtained results of the experimental

messaging performance analysis of the brokers via six test

scenarios as shown in Figures 7-15.

Q. I. Sarhan and I. S. Gawdan / Science Journal of University of Zakho 5(4), 307-312, Dec.-2017

 310

Figure 7. Scenario 1 results chart

Figure 8. Scenario 2 results chart

Figure 9. Scenario 3 results chart

Figure 10. Scenario 4 (Apache ActiveMQ) results chart

Figure 11. Scenario 4 (Apache Apollo) results chart

Figure 12. Scenario 5 (Apache ActiveMQ) results chart

36
18

25

31
44

69

14
28

11

33
43

26
9

33
18

02
9

22
72

82
0

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

1 1000 10000

N
o

. o
f

M
es

sa
ge

 S
to

ri
n

g
R

eq
u

es
ts

Message Size (byte)

Handled By Apache ActiveMQ

Handled By Apache Apollo

38
99

53

56
50

91

29
96

23

81
80

00
7

69
11

32
3

29
30

46
8

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

1 1000 10000

N
o

. o
f

M
es

sa
ge

 S
to

ri
n

g
R

eq
u

es
ts

Message Size (byte)

Handled By Apache ActiveMQ

Handled By Apache Apollo

38
55

81

55
09

91

30
38

65

72
75

97
5

45
95

36
2

25
43

49
2

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

1 1000 10000

N
o

. o
f

M
es

sa
ge

 S
to

ri
n

g
R

eq
u

es
ts

Message Size (byte)

Handled By Apache ActiveMQ

Handled By Apache Apollo

15
01

39
09

38
92

93

72
91

122
28

70
5

38
92

93

72
91

1

12
78

52
04

0 0

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

1 1000 10000

N
o

. o
f

M
es

sa
ge

 R
et

ri
ev

in
g

R
eq

u
es

ts

Message Size (byte)

Sent

Handled

Not Handled

10
59

81
00

37
14

06

68
87

6

89
55

12
5

37
14

06

68
87

616
42

97
5

0 0

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

1 1000 10000

N
o

. o
f

M
es

sa
ge

 R
et

ri
ev

in
g

R
eq

u
es

ts

Message Size (byte)
Sent

Handled

Not Handled

15
86

44
93

40
88

66

71
21

7

13
52

65
8

40
88

66

71
21

7

14
51

18
34

0 0

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

1 1000 10000

N
o

. o
f

M
es

sa
ge

 R
et

ri
ev

in
g

R
eq

u
es

ts

Message Size (byte)

sent

Handled

Not Handled

Q. I. Sarhan and I. S. Gawdan / Science Journal of University of Zakho 5(4), 307-312, Dec.-2017

 311

Figure 13. Scenario 5 (Apache Apollo) results chart

Figure 14. Scenario 6 (Apache ActiveMQ) results chart

Figure 15. Scenario 6 (Apache Apollo) results chart

Figures 7-9 show that in the scenarios 1, 2, and 3; each broker

handled all message sending (storing) requests sent to it across

the entire message sizes. Thus, handling rate was 100% of each

broker. But within the duration of each scenario, Apache Apollo

handled more requests in all the aforementioned scenarios

compared to Apache ActiveMQ.

Figures 10-15 show that the results of scenarios 4, 5, and 6 are

classified into three different facets, as follows:

a- The total number of messages retrieving requests sent

to each broker in order to be handled.

b- The number of messages retrieving requests that each

broker handled successfully.

c- The number of messages retrieving requests that have

not been handled by each broker, this number is simply

calculated by subtracting (b) from (a).

Analyzing the results of scenarios 4, 5, and 6 shows that Apache

Apollo handles small-size messages (1 byte) retrieving requests

better than ActiveMQ. On the other hand, Apache ActiveMQ

handles large-size messages (1000 byte and 10000 byte)

retrieving requests better than Apache Apollo. Tables 3 and 4

summarize the results of all test scenarios used in this study.

Table 3. Apache ActiveMQ vs. Apache Apollo: Message Sending (Storing) Requests

Scenario Message Size (byte)
Handling Message Sending (Storing) Requests

Superior Broker Superior Rate

Apache ActiveMQ Apache Apollo

Scenario 1

1 100% 100% Apache Apollo 89%.

1000 100% 100% Apache Apollo 91%.

10000 100% 100% Apache Apollo 94%.

Scenario 2

1 100% 100% Apache Apollo 95%.

1000 100% 100% Apache Apollo 92%.

10000 100% 100% Apache Apollo 90%.

Scenario 3

1 100% 100% Apache Apollo 95%.

1000 100% 100% Apache Apollo 88%.

10000 100% 100% Apache Apollo 88%.

10
61

12
87

27
27

29

56
29

1

79
43

26
1

27
27

29

56
29

126
68

02
6

0 0

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

1 1000 10000N
o

. o
f

M
es

sa
ge

 R
et

ri
ev

in
g

R
eq

u
es

ts

Message Size (byte)

Sent

Handled

Not Handled

14
73

37
33

39
13

52

69
57

7

70
58

37

39
13

52

69
57

7

14
02

78
96

0 0

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

1 1000 10000

N
o

. o
f

M
es

sa
ge

 R
et

ri
ev

in
g

R
eq

u
es

ts

Message Size (byte)
Sent

Handled

Not Handled

69
24

74
1

29
12

46

62
21

3

30
36

03
9

29
12

46

62
21

3

38
88

70
2

0 0

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

1 1000 10000

N
o

. o
f

M
es

sa
ge

 R
et

ri
ev

in
g

R
eq

u
es

ts

Message Size (byte)

Sent

Handled

Not Handled

Q. I. Sarhan and I. S. Gawdan / Science Journal of University of Zakho 5(4), 307-312, Dec.-2017

 312

Table 4. Apache ActiveMQ vs. Apache Apollo: Message Retrieving Requests

Scenario Message Size (byte)
Handling Message Sending (Storing) Requests

Superior Broker Superior Rate
Apache ActiveMQ Apache Apollo

Scenario 1

1 100% 100% Apache Apollo 89%.

1000 100% 100% Apache Apollo 91%.

10000 100% 100% Apache Apollo 94%.

Scenario 2

1 100% 100% Apache Apollo 95%.

1000 100% 100% Apache Apollo 92%.

10000 100% 100% Apache Apollo 90%.

Scenario 3

1 100% 100% Apache Apollo 95%.

1000 100% 100% Apache Apollo 88%.

10000 100% 100% Apache Apollo 88%.

5. CONCLUSIONS AND FUTURE WORKS

5.1 Conclusions

This paper presented an experimental approach to evaluate the

performance of two leading open-source JMS messaging

brokers, namely Apache ActiveMQ and Apache Apollo in

terms of one-to-one messaging capabilities. Six experimental

test scenarios have been conducted to achieve the

aforementioned goal. Overall performance evaluation and

analysis showed that Apache Apollo outperformed Apache

ActiveMQ in test scenarios 1, 2, and 3 across the entire

different message sizes. Also, Apache Apollo outperformed

Apache ActiveMQ in test scenarios 4, 5, and 6 with message

size of 1 byte. On the other hand, Apache ActiveMQ

outperformed Apache Apollo only in test scenarios 4, 5, and 6

with message sizes of 1000 and 10000 byte. Table 3 and 4

present the summary of this study. Moreover, in this paper a

well-defined test methodology has been proposed to be used to

measure the performance of other messaging brokers. This is

crucial to help developers to select a broker with an acceptable

level of messaging capabilities in a distributed environment.

5.2 Future Works

Some possible future works are listed below:

 Applying the evaluation approach and test scenarios used

in this paper to evaluate the same brokers with each other

but via publish-subscribe messaging capabilities.

 Measuring the impact of changing message properties

(e.g. QoS, filters, etc.) along message body on the overall

performance of each broker.

 Sending and receiving messages using different

techniques and protocols (e.g. MQTT, AMQP, STOMP,

etc.) would be a good choice for further performance

evaluation of each broker.

REFERENCES

Ahuja, S. P., & Mupparaju, N. (2014). Performance Evaluation and

Comparison of Distributed Messaging Using Message
Oriented Middleware. Computer and Information Science,

7(4), 9-20.

Crimson Consulting Group (2003). High-Performance JMS

Messaging: A Benchmark Comparison of Sun Java System

Message Queue and IBM WebSphere MQ. Los Altos, CA.

Greenfield, P. (2004). QoS evaluation of JMS: an empirical approach.
Proceedings of the 37th Annual Hawaii International

Conference System Sciences, 1-10.

He, W. & Xu, L. D. (2014). Integration of Distributed Enterprise
Applications: A Survey. IEEE Transactions on Industrial

Informatics, 10(1), 35-42.

Hohpe, G., & Woolf, B. (2003). Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions.

Addison-Wesley Professional, 1st edition.

Hsiao, T.-Y., Cheng, M.-C., Chiao, H.-T., & Yuan, S.-M. (2003). FJM:
a High Performance Java Message Library. IEEE

International Conference on Cluster Computing (ICCC),

460-463.
Klein, A. F., ŞtefǍnescu, M., Saied, A., & Swakhoven, K. (2015). An

experimental comparison of ActiveMQ and OpenMQ

brokers in asynchronous cloud environment. the 5th
International Conference on Digital Information

Processing and Communications (ICDIPC), 24-30.

Menth, M., Henjes, R., Gehrsitz, S., & Zepfel, C. (2006).Throughput
Comparison of Professional JMS Servers. University of

Wurzburg, Institute of Computer Science, Research Report

Series, Report No. 380, 1-23.

Richards, M., Monson-Haefel, R., & Chappell, D. A. (2009). Java

Message Service. O’Reilly, 2nd edition.

The Apache Software Foundation, Apache ActiveMQ web link:
http://activemq.apache.org/, accessed 10/05/2017.

The Apache Software Foundation, Apache Apollo web link:

http://activemq.apache.org/apollo/, accessed 10/05/2017.
Tran, P., Greenfield, P., & Gorton, I. (2002). Behavior and

performance of message-oriented middleware systems.

Proceedings of the International Conference on Distributed
Computing Systems, 645-650.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9424
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9424
http://www.amazon.com/Gregor-Hohpe/e/B001KDEH2S/ref=dp_byline_cont_book_1
http://www.amazon.com/Enterprise-Integration-Patterns-Designing-Deploying/dp/8131725081/ref=dp_ob_title_bk
http://www.amazon.com/Enterprise-Integration-Patterns-Designing-Deploying/dp/8131725081/ref=dp_ob_title_bk
http://activemq.apache.org/
http://activemq.apache.org/

