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ABSTRACT: 

In this paper, the Binary Logistic Regression Analysis BLRA technique has been used and applied for building the best model for 

Hepatitis disease data using best subsets regression and stepwise procedures and depending on some laboratory tests such as glutamate 

oxalate transaminase, glutamate pyruvate transaminase, alkaline phosphatase, and total serum bilirubin which represents explanatory 

variables. Also, the technique has used for classifying persons into two groups which are infected and non-infected with viral Hepatitis 

disease. A random sample size consists of 200 persons has been selected which represents 86 of uninfected and 114 of infected persons. 

The results of the analysis showed that first, the two procedures identified the same three explanatory variables out of four and they 

were statistically significant, and it has been reliable in building the logistic model. And second, the percentage of visible correct 

classification rate was about 98% which represents the high ability of the model for classification. 

KEYWORDS: Logistic regression, Hosmer–Lemeshow test, Likelihood ratio test, Maximum likelihood estimation, Wald test. 

1. INTRODUCTION  

Binary Logistic Regression Analysis BLRA analyzes the 

relationship between multiple explanatory variables and a 

single binary response variable, a categorical variable with 

two categories, (Sweet and Martin, 2011). Many medical 

applications have been done in this area. (Lihui et al., 2001) 

compared both linear regression and a logistic regression 

model for biological percentage data using different methods 

for comparison. (Sarkar et al., 2010) have used logistic 

regression method for model selection. The study aimed to 

increase the power of prediction while reducing the number 

of covariates. The procedure was depending on the stepwise 

method and best subsets regression through applying on 

health survey data. (Javali and Pandit, 2012) used a model 

depending on multiple logistic regression to make risk factors 

prognostication of oral health infirmities. (Reeda and Wub, 

2013) used the logistic regression method and applied for 

building models of the risk factor in the stammer studies. 

(Mythili et al., 2013) suggested a formula based model 

compare the accuracies of applying formulas to the separate 

outcomes of support vector apparatus, judgment trees, and 

LRA on the database of Cleveland Heart Disease to obtain a 

reliable model of heart disease prediction. (Amir et al., 2014) 

studied the relation of hypertension with risk factors affecting 

significantly the execution of Hypertension using logistic 

regression technique. (Qais, 2015) used LRA and 

discriminant analysis DA and applied on natural and 

Caesarean births data to show the performance of such 

techniques and the capability in classification the type of 

birth. (Vaitheeswaran et al., 2016) examined the importance 

of keeping the possession of the ordinal nature of the 

outcome variable while marking the risk factors related to 

diabetic problems related to loss of vision using traditional 

and Bayesian approaches of ordinal logistic regression 

models.(Junguk et al., 2017) used multinomial logistic 

regression analysis MLRA to examine the effect of an 
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estrogen on the rate of reverse pregnancy results. The purpose of 

this paper is to find a best BLRA model for fitting line and for 

obtaining the best classification and predicting the group 

membership. The remainder of this paper is structured as follows: 

section 2, explains BLRA and methodology. Section 3 presents 

the application on real data and finally, in section4 conclusions 

are presented.      

2. BLRA 

Regression analysis presents the association between a response 

variable and one or more explanatory variables. It is often the 

situation that the outcome variable is discrete, assuming two or 

more potential values (Hosmer & Lemeshow, 2000). BLRA 

represents a special condition of linear regression analysis LRA 

used when the response is binary not continuous, and the 

explanatory variables are quantitative or qualitative variables 

(Hair et al., 2010). It was first suggested in the 1970s to overcome 

difficulties of ordinary least squares OLS regression in treating 

binary outcomes (Peng et al., 2002). Logistic regression LR uses 

the theory of binomial probability which represents having only 

two values to predict: that probability (p) is 1 instead of 0, i.e. the 

event belongs to one group instead of the other. LR presents the 

best fitting function depending on the maximum likelihood ML 

approach, which maximizes the distinguishing probability of the 

observed data into the suitable category given the coefficients of 

regression (Burns & Burns 2008). 

2.1 Assumptions of BLRA 

Logistic regression ignores a linear relationship between the 

response and explanatory variables. It is also supposed that the 

response variable must be a binary and the explanatory variables 

need not be an interval, the distribution is normal, the relationship 

is linear, nor of equality of variance within each group. 

Furthermore, the groups must be mutually exclusive and detailed; 

a case can only be in one group and every case must be a member 
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of one of the groups. Finally, the sample size must be large 

than for LR because ML coefficients are large sample 

estimates. A minimum of 50 cases for each explanatory 

variable is needed (Hair et al., 2010), (Burns & Burns 2008), 

(Kleinbaum & Klein, 2010). 

2.2 The Logistic Model 

To explore the implied association between a response 

variable and one or more explanatory variables, the LRA is 

suitable for study. By taking the case of one explanatory 

variable X with one binary outcome variable Y, the logistic 

model predicts the logit of Y from X which represents a 

natural logarithm of odds of Y. The simple formula can be 

written as the following (Peng et al., 2002), (James et al., 

2013): 

 

ln (
π

1 − π
) = α + βx.                                                            (1) 

The left-hand side is called the log-odds or logit. The LR 

model has a logit that is linear in X. Hence: 

π(x) = E(Y|X) =
eα+βx

1 + eα+βx
 ,                                            (2) 

Where π is the probability of the outcome of interest given 

that X=x, α is a parameter which represents the Y-intercept, 

and β is a parameter of the slope, X can be qualitative 

(categorical) or quantitative variable, and Y is always 

qualitative or categorical. The formula (1) can be expressed 

and extended from simple to multiple linear regression as 

follows: 

ln (
π

1 − π
) = α + β1x1 + β2x2 + ⋯ + βkxk.                  (3)   

Therefore, 

π(x) =
eα+β1x1+β2x2+⋯+βkxk

1 + eα+β1x1+β2x2+⋯+βkxk
 ,                                   (4) 

Where π is the event probability, α is the Y-intercept, βs are 

parameters of the slope, and X`s are combinations of 

explanatory variables. α and βs are estimated by the 

maximum likelihood estimator MLE approach. 

2.3 Goodness of Fit Test 

It is also called Hosmer-Lemeshow test which represents a 

X2 (Chi-square) test used for testing the adequacy of the 

model for fitting the data. The null hypothesis is that the 

model is adequate to fit the data and we will only reject this 

null hypothesis if there are sufficiently strong grounds to do 

so (traditionally if the p-value is less than 0.05). See (Hosmer 

& Lemeshow, 2000) for details. 

2.4 Likelihood Ratio Test (LRT) 

The test depends on –2log likelihood ratio. We use this test 

for checking the significance of the difference between the 

likelihood ratio for the reduced model with explanatory 

variables and the likelihood ratio for current model with only 

a constant in it. Significance at 0.05 level or less means the 

reduced model with the explanatory variables is significantly 

different from the one with the constant only (all ‘b’ 

coefficients being zero). It measures the enhancement in a fit 

that the explanatory variables make compared to the null 

model. Chi-square is used to evaluate the significance of this 

ratio. When probability unable to reach the 0.05 significance 

level, we do not reject the null hypothesis that knowing the 

explanatory variables has no more effects in predicting the 

response variable. See (Burns & Burns, 2008), (Bewick et al., 

2005), (Bergerud, 1996). for details. 

2.5 Measures of Goodness of Fit Test 

In linear regression method and depending on OLS, we use the 

coefficient of determination R2 as a measurement of goodness of 

fit, which represents the variation ratio which explained by the 

model. Using logistic regression, a similar statistic does not exist, 

and therefore several pseudo-R2 statistics have been developed. 

In this paper, we will depend on three pseudo R2 values: Cox and 

Snell R2, Nagelkerke R2, and McFadden R2. See (Nagelkerke, 

1991), (StatSoft, 2013) for details. 

2.6 Statistical Significant Test  

In linear regression, we want to know how the model overall fits 

the data but also to determine the contributions of the explanatory 

variables. In logistic regression, we use another tool called Wald 

statistic, which is similar to the t-test performed on the 

coefficients of regression in a linear regression to test whether the 

variable has a real contribution to the prediction of the outcome, 

specifically whether the coefficient of explanatory variables is 

significantly different from zero. To evaluate the fit of a logistic 

regression model, we use the area under the curve which ranges 

from 0.5 and 1.0 with larger values indicative of better fit. 

(Kleinbaum & Klein, 2010) 

2.7 The Classification Table 

A good way to summarize the results of a fitted logistic 

regression model is via classification table which represents the 

result of cross-classification of the response variable Y and a 

binary variable whose values are gained from the probabilities of 

estimated logistic (Hosmer & Lemeshow, 2000). The 

reclassification table shows the accuracy of the model. It shows 

the frequencies of the predicted and observed classification of 

cases and percentage of correct predictions depend on the logistic 

regression model. When the predicted probability is greater than 

0.5 an observation is predicted as 1 else it is predicted as 0. 

(StatSoft, 2013). Several criteria are existing to evaluate a set of 

classification rule and one of the simplest criteria is 

misclassification rate (Abdullah & Majid, 2014). For two groups, 

among the n1 observations in G1, n11 are classified correctly into 

G1, and n12 are classified incorrectly into G2, where n1 = n11 + n12. 

Similarly, of the n2 observations in G2, n21 are classified 

incorrectly into G1, and n22 are classified correctly into G2, where 

n2 = n21 + n22. Thus, the visible error rate VER can be presented 

as (Rencher, 2002): 

VER =
n12 + n21

n1 + n2
=

n12 + n21

n11 + n12 + n21 + n22
 .             (5)     

Similarly, we can present overall visible correct classification 

rate VCCR as: 

VCCR =
n11 + n22

n1 + n2
 .                                                           (6)    

2.8 Methodology 

 

To obtain the best binary logistic regression model we first try to 

get a combination of models using best subset regression 

depending on Akaike Information Criterion AIC which 

represents a way of choosing a model from a combination of 

models. This statistic seeks for a model that has a goodness-of-

fit with few parameters (Lawless &Singhal, 1987). It is defined 

as: 

AIC = −2(ln(likelihood)) + 2K                                   (7) 

where likelihood is the probability of the data given a model and 

K is the number of free parameters in the model. The procedure 
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is to select best of the best subsets regression models with 

minimum AIC value. Second, we apply the binary logistic 

regression analysis on the data set using a stepwise procedure 

which works as a judge for an order of importance of the 

explanatory variable. Finally, represents obtaining the best 

logistic model. The methodology can be presented in figure1: 

 

 
Figure 1: Methodology of obtaining the best logistic model 

3. APPLICATION ON REAL DATA 

The application concerning the BLRA was performed using 

the Hepatitis data and working with SPSS statistical package 

program. The data were obtained from (Iehab & Sahar, 

2013). The classification task consists of predicting whether 

a person would test positive for Hepatitis. The person's data 

were labeled, such that we put 1 for infected persons and 0 

for non- infected persons or healthy persons. There are four 

laboratory tests which represent explanatory variables for 

200 persons, and among them, 114 persons tested positive for 

infected. Table 1 presents the details about the frequency and 

percentage distribution of the groups. 

Table 1. Distribution of the class of Hepatitis data 

Class name 
Class 

Size 

Class 

Distribution 

Infected persons or positive 114 57% 

Non-infected persons or negative 86 43% 

As presented in table1, the sample size of the data is 200 

observations and the data set were classified into two groups 

such that, the first group with n1=114 which represents the 

57% of observations, and the second group with n2=86 which 

represents the 43% 0f observations. Table 2 presents the 

information on statistical analysis which shows the mean and 

the standard deviation of the explanatory variables. 

Table 2. Information of statistical analysis 

Explanatory variables Mean Standard deviation 

X1 49.595 49.146 

X2 122.265 135.077 
X3 202.560 132.768 

X4 56.401 77.753 

 

The response variable name is “Kind” which is the kind of test. 

The explanatory variables as shown in table2 are presented as the 

following: X1 for glutamate oxalate transaminase, X2 for 

glutamate pyruvate transaminase, X3 for alkaline phosphatase, 

and X4 for total serum bilirubin. We dealt with these explanatory 

variables as scale measure. 

 

3.1 Getting Best Subsets Regression Models 

 

Here we use the procedure representing best subsets of model 

selection using automatic selection which compares all possible 

models using a specified set of explanatory variables and displays 

the best-fitting models that contain one predictor or more. Table 

3 shows the four best models selected depending on AIC 

criterion: 

 
Table 3. Best models identified depending on AIC criterion   

Model Model covariates AIC 

1 X1, X2 44.40 
2 X2, X4 39.85 

3 X1, X2, X4 35.38 

4 X1, X2, X3, X4 36.87 

 

From table3, four best subsets models specified and among them, 

third model has a minimum value of AIC which contains the 

three explanatory variables respectively: glutamate oxalate 

transaminase (X1), glutamate pyruvate transaminase (X2), and 

total serum bilirubin (X4). The specified model represents the 

best of the best subsets model under study. 

 

3.2 Applying BLRA on Real Data Using Stepwise Procedure 

 

BLRA was applied to the Hepatitis data set to study the 

relationship between the response variable and combination of 

explanatory variables to find the most important predictors that 

discriminate the kind of test. Table4 gives the information of 

model fitting showing the statistical significance of the final x2. 

 
Table 4. Information of the Model fitting 

Model 
Model fitting criteria 

-2likelihood 

Likelihood ratio tests 

𝑥2 D.F. Sig. 

Intercept only 273.326 
245.949 3 0.000 

Final 27.377 

 

It is clear from table 4 that when including only the intercept, the 

value of -2log likelihood of basic model was (273.326), and this 

value has decreased to (27.377) with the existence the set of 

explanatory variables in the model. The value of the  

𝑥2was (245.949) comparing with the probability (0.000) 

concluding that the model is significant and for this cause, we 

refuse the null hypothesis and take the alternative hypothesis 

which says that there is an essential relation between the 

explanatory variables and the response variable.  

To evaluate the overall correlation between explanatory variables 

and the response variable we use the LRT for the coefficients of 

the logistic model. By using the stepwise procedure, three most 

important explanatory variables were selected respectively (X4, 

X2, X1) and the explanatory variable X3 were removed from the 

analysis because its contribution into the model was not 

significant for making discrimination the kind of test. The result 

of the tests presented in table 5. 
Table 5. The result of likelihood ratio tests 

Effect 

Model fitting criteria 

-2likelihood 

of the reduced model 

Likelihood ratio tests 

𝑥2 D.F. Sig. 

Intercept 156.966 129.589 1 0.000 

X4 38.399 11.022 1 0.001 

X2 58.187 30.810 1 0.000 
X1 33.850 6.473 1 0.011 

The 𝑥2 of Hosmer–Lemeshow test was 1.452 with P-value = 

0.984 indicates that the numbers of infected persons of Hepatitis 

Data

Procedure1: Obtaining best subsets 
regression models

Choosing the best of the best subsets 
regression depending on AIC criterion

Procedure2: Applying binary logistic 
regression analysis depending on stepwise 

procedure

Obtaining best binary logistic model
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disease are not significantly different from those predicted by 

the model and that the overall model fit is good. Table 6 

presents the three pseudo R2 values. 

Table 6. The pseudo R2 

 

From table 6, the response variable defines 70.8% of the 

variance in explanatory variables according to Cox & Snell 

R2 value, 95% according to Nagelkerke R2 value which is the 

modified form of Cox & Snell coefficient, and 90% 

according to McFadden R2. 

 

3.2.1 Estimating the Logistic Regression Coefficients: The 

estimation of parameters of the logistic regression by using 

the MLE method depending on Wald statistic for the final 

model is showed in table 7 which gives the results of fitting 

the logistic regression model to Hepatitis data and showing 

coefficients, which are used in the equation for making the 

classifications in BLRA, much as. The constant term 

gathering with the sum of products of the coefficients with 

the observations gives the discriminant scores. 

 
Table 7. Results of fitting the logistic regression model to Hepatitis 

data 

Variable 𝛽 
Std. 

Error 
Wald D.F. Sig. Exp. (𝛽) 

Intercept 6.738 1.458   21.372 1 0.000  

X4 -0.046 0.018 6.589 1 0.010 0.955 
X2 -0.128 0.044 8.541 1 0.003 0.880 

X1 -0.050 .0220 5.452 1 0.020 0.951 

 

From the above table, the estimated BLRA model can be 

presented by the following formula: 
 

ln (
π

1 − π
) = 6.738 − 0.05(X1) − 0.128(X2) − 0.046(X4)      (8) 

 

3.2.2 Evaluation of a Logistic Regression Model: For 

making an evaluation of the logistic model, we use the area 

under the curve as we mentioned in theoretical part. Table 8 

shows the values of the area under the curve of the 

explanatory variables. 

 
Table8.The values of the area under the curve of the explanatory 

variables 
Test 

Result  

Variable

(s) 

Area 
Std. 

Error 

Asymptotic 

Sig. 

Asymptotic 95%  
Confidence Interval 

Lower 

Bound 

Upper 

Bound 

X1 0.984 0.011 0.000 0.963 1.000 
X2 0.997 0.003 0.000 0.991 1.000 

X4 0.990 0.009 0.000 0.972 1.000 

 

From table 8, the area under the curve of the three 

explanatory variables are: 0.984, 0.997, and 0.990 

respectively with 95% confidence interval (0.963, 1.000), 

(0.991,1.000) and (0.972,1.000) and they are all significant 

because p-value is equal to 0.000 for the three explanatory 

variables indicating that the logistic regression can classify 

the group significantly better than by chance. 

 

3.2.3 Testing the Power of classification of the Logistic 

Model: To show the accuracy of the model, the two measures 

VER and VCCR as we referred in section 2.7 are performed 

here to evaluate the efficiency of the BLR model of the 

estimated function. Table 8 shows the final results of 

classification. 

Table 9. Final classification results using binary logistic regression 

model 

Kind of test Non-infected Infected Total 

Non-infected 84 2 86 
Infected 2 112 114 

VER 2% 

98% VCCR 

From table 9, we can see that 84 of 86 persons from the first group 

were classified correctly, and 112 of 114 persons from the second 

group were classified correctly, we conclude that the LRA was 

able to classify 196 cases of persons out of 200 cases correctly. 

The VER was 2% and the VCCR was 98% indicating that the 

model has the high ability on classification. 

4. CONCLUSION 

In this paper, the BLRA has been applied on real data and two 

procedures have been used. The first procedure based on best 

subsets regression and depending on AIC criterion while the 

second procedure was depending on stepwise technique. The 

LRT has been performed for modeling, classifying, and selecting 

the most important explanatory variables. The accuracy of the 

model was depending on two statistical criteria: VER and VCCR. 

The results of the analysis showed that the performance of the 

BLRA gave the high ability of classification (VCCR =98%). In 

addition, the analysis showed that the two procedures have 

selected the same model consisting of three explanatory 

variables; X4, X2, and X1 which represents the three tests 

respectively (total serum bilirubin, glutamate pyruvate 

transaminase, and glutamate oxalate transaminase) have 

contributed significantly to discriminate the kind of test and also 

both procedures excluded the remaining predictor; X3 which 

represents alkaline phosphatase and cancelled from the analysis 

because it was unable to give a positive contribution when 

making discrimination. The best model obtained by using BLRA 

through looking at the value of the parameters of the logistic 

model and its signs in equation (8) it is observed that there is a 

negative correlation between the type of test and the specified 

explanatory variables. 
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