
 

 

 

journals.uoz.edu.krd 

Available online at sjuoz.uoz.edu.krd 

 

Vol. 5, No. 1, pp. 107 –111, March-2017 

 

 
 

p-ISSN: 2410-7549 

e-ISSN: 2414­6943 

 

 107 

α-TOPOLOGICAL VECTOR SPACES 

Hariwan Zikri Ibrahim 

Dept. of Mathematics, Faculty of Science, University of Zakho, Zakho, Kurdistan Region, Iraq - hariwan.ibrahim@uoz.edu.krd 

Received: Sept. 2016 / Accepted: Dec. 2016 / Published: Mar. 2017 

ABSTRACT: 

The main objective of this paper is to present the study of α-topological vector spaces. α-topological vector spaces are defined by 

using α-open sets and α-irresolute mappings. Notions of convex, balanced and bounded set are introduced and studied for α-

topological vector spaces. Along with other results, it is proved that every α-open subspace of an α-topological vector space is an 

α-topological vector space. A homomorphism between α-topological vector spaces is α-irresolute if it is α-irresolute at the identity 

element. In α-topological vector spaces, the scalar multiple of α-compact set is α-compact and αCl(C) as well as αInt(C) is convex 

if C is convex. And also, in α-topological vector spaces, αCl(E) is balanced (resp. bounded) if E is balanced (resp. bounded), but 

αInt(E) is balanced if E is balanced and 0 ∈ αInt(E). 

KEYWORDS: α-Topological vector space, α-open set, α-irresolute mapping, left (right) translation, α-homeomorphism. 

1. INTRODCUTION 

Topology is an umbrella term that includes several fields of 

study including point set topology, algebraic topology, and 

differential topology. Because of this it is difficult to credit a 

single mathematician with introducing topology. In 1965, 

Njastad initiated and explored a new class of generalized 

open sets in a topological space called α-open sets and proved 

that the collection of all α-open sets in (X, τ) is a topology on 

X, finer that τ. If a set is endowed with algebraic and 

topological structures, then it is always fascinating to probe 

relationship between these two structures. The most formal 

way for such a study is to require algebraic operations to be 

continuous. This is the case we are investigating here for 

algebraic and topological structures on a set X, where 

algebraic operations (addition and scalar multiplication 

mappings) fail to be continuous. We join these two structures 

through weaker form of continuity. 

 

A topological vector space (A. Grothendieck,  and A. P. 

Robertson and W. J. Robertson) is a basic structure in 

topology in which a vector space X over a topological field F 

(R or C) is endowed with a topology τ such that:  

 

(1) The vector addition mapping m : X × X → X defined by 

m((x, y)) = x + y, and 

(2) Scalar multiplication mapping M : F × X → X defined by 

M((λ, x)) = λ · x for all λ ∈ F and x, y ∈ X are continuous 

with respect to τ. Equivalently, (X(F), τ) is a topological 

vector space if: 

 

(1) For each x, y ∈ X and for each open neighbourhood W of 

x + y in X, there exist open neighbourhoods U of x and V of 

y in X such that U + V ⊆ W, and 

(2) For each x ∈ X, λ ∈ F and for each open neighbourhood 

W in X containing λ · x, there exist open neighbourhoods U 

of λ in F and V of x in X such that U · V ⊆ W. 

In this paper, several new facts concerning topologies of α-

topological vector spaces are established. 

 

2. PRELIMINARIES 

Throughout in this paper X and Y are always topological spaces 

with no separation axioms considered until otherwise mentioned. 

If A ⊆ X, then Cl(A) and Int(A) denote the closure and interior 

of A in (X, τ), respectively. A subset A of a topological space (X, 

τ) is called α-open [O. Njastad] if A ⊆ Int(Cl(Int(A))). The 

complement of an α-open set is called an α-closed set. A subset 

A of a space X is called semi-open [N. Levine] if  A ⊆ Cl(Int(A)). 

The complement of semi-open set is called semi-closed set. The 

intersection of all α-closed sets containing A is called the α-

closure of A and is denoted by αCl(A). The α-interior of A is 

defined as the union of all α-open sets contained in A and is 

denoted by αInt(A). The family of all α-open (resp. α-closed) 

subsets of X is denoted by αO(X) (resp. αC(X)). For each x ∈ X, 

the family of all α-open sets containing x is denoted by αO(X, x). 

It is known that x ∈ αCl(A) if and only if, for any α-open set U 

containing x, U ∩ A is non-empty. 

If X (F) is a vector space, then 0 denotes its identity element, and 

for a fixed x ∈ X, Tx: X → X; y → x + y and Tx: X → X; y → y 

+ x, denote the left and the right translation by x, respectively. 

And, for every 0 ≠ λ ∈ F, Mλ: X → X; y → λ · y, denote 

multiplication operator. 

 

Definition 2.1 (D. Jangkovic) A space X is said to be α-compact 

if every α-open cover of X has a finite subcover. 

 

Definition 2.2 (M. Khan and B. Ahmad) A space X is said to be 

P-regular, if for each semi-closed set F and x  F, there exist 

disjoint open sets U and V such that x ∈ U and F ⊆ V. 

 

Definition 2.3 (S. N. Maheshwari and S. S. Thakur) A space X 

is said to be α-T2, if for any two distinct points x, y ∈ X, there 

exist two α-open sets U and V containing x and y, respectively, 

such that U ∩ V = φ. 

 

Definition 2.4 (S. N. Maheshwari and S. S. Thakur) A function 

f: (X, τ) → (Y, σ) is said to be α-irresolute, if the inverse image 

of every α-open set in Y is an α-open set in X. 

http://journals.uoz.edu.krd/
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3. 𝛂-TOPOLOGICAL VECTOR SPACES 

We denote by F a scalar field. In practice this is either R or 

C, the set of real or complex numbers. 

Definition 3.1 Let X be a vector space. The pair (X(F), τ) is 

said to be an α-topological vector space over the field F (R or 

C) with a topology τ defined on X(F) and standard topology 

on F if the following two conditions are satisfied: 

(1) For each x, y ∈ X and for each α-open set W of X 

containing x + y, there exist α-open sets U and V in X 

containing x and y respectively, such that U + V ⊆ W. 

(2) For each x ∈ X, λ ∈ F and for each α-open set W of X 

containing λ· x, there exist α-open sets U in F containing λ 

and V in X containing x, such that U · V ⊆ W. 

 

Remark 3.2 Every vector space X over F endowed with the 

trivial topology is an α-topological vector spaces. 

 

Theorem 3.3 In α-topological vector spaces (X(F), τ), for any 

α-open set U containing 0, there exists an α-open set V 

containing 0 such that V + V ⊆ U. 

Proof. Let U be any α-open set such that 0 = 0 + 0 ∈ U. Since 

(X(F), τ) is α-topological vector spaces, then there are α-open 

sets A and B with 0 ∈ A, 0 ∈ B and A + B ⊆ U. Let V = A ∩ 

B, then V is α-open, 0 ∈ V and V + V ⊆ A + B ⊆ U. 

 

Theorem 3.4 If (X(F), τ) is an α-topological vector space. 

Then: 

(1) The (left) right translation Tx: X → X defined by Tx(y) = 

y + x, for all x, y ∈ X is α-irresolute. 

(2) The translation Mλ: X → X defined by Mλ(x) = λ · x, for 

all x ∈ X is α-irresolute. 

Proof. (1) Let W be an α-open set containing Tx(y) = y + x. 

Then by definition, there exist α-open sets U and V in X 

containing y and x respectively, such that U + V ⊆ W. So, 

Tx(U) = U + x ⊆ U + V ⊆ W. This proves that, Tx: X → X is 

α-irresolute mapping. 

(2) Let x ∈ X, λ ∈ F, then Mλ(x) = λ · x. Let W be any α-open 

set of X containing λ · x, then by definition, there exist α-

open sets U in F containing λ and V in X containing x, such 

that U · V ⊆ W. This gives that Mλ(V) = λ · V ⊆ U · V ⊆ W. 

This proves that Mλ is an α-irresolute mapping. 

 

Theorem 3.5 Suppose that (X(F), τ) is an α-topological vector 

space. If A ∈ αO(X), then: 

(1) A + y ∈ αO(X) for every y ∈ X. 

(2) λ · A ∈ αO(X) for every non zero λ ∈ F. 

Proof. (1) Let y ∈ X and z ∈ A + y, then we have to prove 

that z is an α-interior point of A + y. Now, z = x + y, where x 

is some point in A. We can write x ∈ A + y + (−y) = A. By 

the right translation T−y: X → X, we have T−y(z) = z + (−y) = 

x. By Theorem 3.4 (1), T−y  is α-irresolute for z ∈ X. Thus, 

for the α-open set A containing x = T−y(z), there exists α-open 

set Mz of X containing z such that T−y(Mz) = Mz + (−y) ⊆ A, 

this implies Mz ⊆ A + y. This shows that z is an α-interior 

point of A + y. Hence A + y ∈ αO(X). 

(2) Let λ ∈ F, λ ≠ 0 and z ∈ λ · A, this means z = λ · x, for 

some x ∈ A. We have to show that z is an α-interior point of 

λ · A. By Theorem 3.4 (2), the multiplication mapping Mλ −1: 

X → X is α-irresolute. Thus, for the α-open set A containing 

Mλ −1(z) = λ−1 · z = x, there exists α-open set Uz of X 

containing z such that Mλ −1(Uz) = λ −1 · Uz ⊆ A this implies 

Uz ⊆ λ · A. This shows that z is an α-interior point of λ · A. 

Hence λ · A ∈ αO(X) 

 

Corollary 3.6 Suppose that (X(F), τ) is an α-topological 

vector space. If A ∈ αO(X), then for all u ∈ A, there exists an 

α-open set V containing 0 such that u + V ⊆ A. 

Proof. The proof is follow by taking V = A − u. 

 

Theorem 3.7 Suppose that (X(F), τ) is an α-topological vector 

space and µ0 is a collection of all α-open sets containing 0. Then, 

for each U ∈ µ0, there exists V ∈ µ0 such that αCl(V) ⊆ U. 

Proof. Let U ∈ µ0. Then by Theorem 3.3, there exists V ∈ µ0 such 

that V + V ⊆ U. Let x ∈ αCl(V). Since x − V is α-open containing 

x, so (x − V) ∩ V ≠ φ. Choose, y ∈ (x − V) ∩ V, then y = x − v1 

= v2, where v1, v2 ∈ V. Thus, x = v2 + v1 ∈ V + V ⊆ U. Therefore, 

αCl(V) ⊆ U.  

 

Theorem 3.8 Suppose that (X(F), τ) is an α-topological vector 

space. If A ∈ αO(X) and B is any subset of X, then A + B ∈ 

αO(X). 

Proof. Suppose A ∈ αO(X) and B ⊆ X. Then, by Theorem 3.5 

(1), for each xi ∈ B we have A + xi ∈ αO(X). Now, for each xi ∈ 

B we have A + B = A + {x1, x2, ...} = xi ∈ B (A + xi). Since union 

of any number of α-open sets is α-open, therefore A + B is α-open 

in X. 

 

Corollary 3.9 Suppose that (X(F), τ) is an α-topological vector 

space. If A ∈ αO(X), then the set U = 


1n

nA is an α-open set in 

X. 

Proof. Let A be α-open in X. Then, by Theorem 3.8, A + A = 2A 

∈ αO(X) and 2A + A = 3A ∈ αO(X). Similarly, we can prove that 

each set 4A, 5A, ... is α-open in X. Thus the set U = 


1n

nA is α-

open in X. 

 

Theorem 3.10 Suppose that (X(F), τ) is an α-topological vector 

space. Then, λ · (αInt(B)) = αInt(λ · B), where λ ∈ F. 

Proof. Let λ · x ∈ λ · (αInt(B)) such that x ∈ αInt(B), then there 

exists an α-open set U such that x ∈ U ⊆ B. Now, λ · x ∈ λ · U ⊆ 

λ· B. As λ · U is α-open by Theorem 3.5 (2). So, λ · x ∈ αInt(λ · 

B). Therefore, λ · (αInt(B)) ⊆ αInt(λ · B). 

Conversely, let y ∈ αInt(λ · B), where define y = λ · x for some x 

∈ B, then there exists an α-open set V such that λ · x ∈ V ⊆ λ · 

B. Since (X(F), τ) is an α-topological vector space, then there exist 

α-open sets U in F containing λ and W in X containing x, such 

that λ · x ∈ λ · W ⊆ U · W ⊆ V ⊆ λ · B. Then, x ∈ W ⊆ B implies 

that x ∈ αInt(B) and so λ · x ∈ λ · (αInt(B)). Therefore, αInt(λ · 

B) ⊆ λ · (αInt(B)). Hence, λ · (αInt(B)) = αInt(λ · B). 

 

Theorem 3.11 Suppose that (X(F), τ) is an α-topological vector 

space. Then, M: F × X → X is an α-irresolute mapping. 

Proof. Let λ ∈ F and x ∈ X and since M((λ, x)) = λ · x. Let W be 

an α-open set of X containing λ · x. Since (X(F), τ) is an α-

topological vector space, therefore there exist α-open sets U in F 

containing λ and V in X containing x, such that U ·V ⊆ W implies 

that M((U, V)) = M(U ×V) = U ·V ⊆ W. Since, U ∈ αO(F, λ) and 

V ∈ αO(X, x), therefore, U × V ∈ αO(F × X, λ · x). This proves 

that M: F × X → X is an α-irresolute mapping. 

 

Theorem 3.1. Suppose that (X(F), τ) is an α-topological vector 

space. Then, m: X × X → X is an α-irresolute mapping. 

Proof. Let x, y ∈ X and m((x, y)) = x + y. Let W be an α-open 

set of X containing x + y. Since (X(F), τ) is an α-topological vector 

space, therefore there exist α-open sets U containing x and V 

containing y in X, such that U + V ⊆ W implies that m((U, V)) = 

m(U × V ) = U + V ⊆ W. Since, U ∈ αO(X, x) and V ∈ αO(X, 

y), therefore, U × V ∈ αO(X × X, x × y). This proves that m: X × 

X → X is an α-irresolute mapping. 

 

Definition 3.13 A bijective mapping f from a topological space 

to itself is called α-homeomorphism if it is α-irresolute and for 

every α-open set A of X, the set f(A) is α-open in Y . 
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Theorem 3.14. Suppose that (X(F), τ) is an α-topological 

vector space. For given y ∈ X and λ ∈ F with λ ≠ 0, each 

translation mapping Ty: x → x + y and multiplication 

mapping Mλ: x → λ · x, where x ∈ X is α-homeomorphism 

onto itself. 

Proof. First, we show that Ty: x → x + y is an α-

homeomorphism. It is obviously bijective. By Theorem 3.4 

(1), Ty is α-irresolute. Moreover, by Theorem 3.5 (1), for any 

α-open set U, we have Ty(U) = U + y is α-open. Similarly, we 

can prove that Mλ: x → λ · x is an α-homeomorphism. 

 

Definition 3.15 An α-topological vector space (X(F), τ) is said 

to be α-homogenous space if for each x, y ∈ X, there is an α-

homeomorphism f of the space X onto itself such that f(x) = 

y. 

Theorem 3.16 Every α-topological vector space (X(F), τ) is 

an α-homogenous space. 

Proof. Take any x, y ∈ X and put z = (−x) + y. Then, by 

Theorem 3.14, Tz: X → X is an α-homeomorphism and Tz(x) 

= x + z = y. Therefore, (X(F), τ) is an α-homogenous space. 

 

Theorem 3.17 Let f : (X(F), τX) → (Y(F), τY) be a 

homomorphism of α-topological vector spaces. If f is α-

irresolute at 0 ∈ X, then f is α-irresolute on X. 

Proof. Let x ∈ X. Suppose that W is an α-open set in Y 

containing y = f(x). Since Ty: Y → Y is α-irresolute, therefore 

there is an α-open set V containing 0 such that Ty(V) = V + y 

⊆ W. Now from α-irresolute of f at 0 of X, there exists α-

open U in X containing 0 such that f(U) ⊆ V. Since Tx: X→ 

X is α-homeomorphism, therefore the set U + x is α-open set 

containing x. Thus, f(U + x) = f(U) + f(x) = f(U) + y ⊆ V + y 

⊆ W. Therefore, f is α-irresolute at x of X, and hence on X. 

 

Theorem 3.18 Suppose (X(F), τ) is an α-topological vector 

space and S is a subspace of X. If S contains a non-empty α-

open subset of X, then S is α-open in (X(F), τ). 

Proof. Suppose U is a non-empty α-open subset in X, such 

that U ⊆ S. For any y ∈ S, the set Ty(U) = U + y is α-open in 

X and U + y ⊆ S. Therefore, the subspace S = y∈S (U + y) 

is α-open in X as the union of α-open sets. 

 

Theorem 3.19 Suppose that (X(F), τ) is an α-topological 

vector space. Then every α-open subspace of X is α-closed in 

X. 

Proof. Let S be an α-open subspace of X. As right translation 

Tx: X→X is α-homeomorphism, therefore, S + x is α-open in 

X. Then Y = x∈X\S (S + x) is also α-open. Now S = X\Y is 

α-closed. 

 

Theorem 3.20 Every α-open subspace S of an α-topological 

vector space (X(F), τ) is also an α-topological vector space 

(called α-topological subspace of X). 

Proof. Let x, y ∈ S and W be an α-open set of S containing x 

+ y. This gives W is an α-open set of X containing x + y. 

Hence, there exist α-open sets U and V in X containing x and 

y respectively, such that U + V ⊆ W. Now, the sets A = U ∩ 

S and B = V ∩ S are α-open sets in S containing x and y 

respectively and also A + B ⊆ U + V ⊆ W. Again, let λ ∈ F 

and x ∈ S. Let W be an α-open set of S containing λ · x. Since 

S is α-open in X, therefore W is α-open set of X containing 

λ·x. Hence, there exist α-open sets U ⊆ F containing λ and V 

⊆ X containing y such that U · V ⊆ W. Now, the set A = U 

∩ F is α-open set of F containing λ and the set B = V ∩ S is 

α-open set of S containing y and also A · B ⊆ U · V ⊆ W. 

This proves that S is an α-topological vector space. 

 

Theorem 3.21 Let A and B be subsets of an α-topological 

vector space (X(F), τ). Then αCl(A) + αCl(B) ⊆ αCl(A + B). 

Proof. Suppose that x ∈ αCl(A) and y ∈ αCl(B). Let W be an α-

open set containing x + y. Then there are α-open sets U and V 

containing x and y respectively, such that U + V ⊆ W. Since x ∈ 

αCl(A) and y ∈ αCl(B), there are a ∈ A ∩ U and b ∈ B ∩ V . 

Then a + b ∈ (A + B) ∩(U + V ) ⊆ (A + B) ∩ W. This means x 

+ y ∈ αCl(A + B), that is αCl(A) + αCl(B) ⊆ αCl(A + B). 

 

Theorem 3.22 Suppose (X(F), τ) is an α-topological vector space 

and A, B are subsets of X. If B is α-open, then for any set A, we 

have A + B = αCl(A) + B. 

Proof. As we know that A ⊆ αCl(A), so A + B ⊆ αCl(A) + B. 

Conversely, let y ∈ αCl(A) + B and write y = x + b where x ∈ 

αCl(A) and b ∈ B. There exists an α-open set V containing zero 

such that Tb(V) = V + b ⊆ B. Now, V is α-open in X containing 

0, this gives that −V is also α-open in X containing 0. Since, x ∈ 

αCl(A), so, a ∈ A ∩ (x − V ). We know that y = x + b = a − a + x 

+ b ∈ a + V + b ⊆ A + B. Therefore, αCl(A) + B ⊆ A + B. Hence, 

A + B = αCl(A) + B. 

 

Theorem 3.23 Suppose that (X(F), τ) is an α-topological vector 

space, then for any A ⊆ X, αCl(A) = ∩{A + U: U ∈ αO(X, 0)}. 

Proof. Let x ∈ αCl(A), this implies that for every U ∈ αO(X, 0), 

we have x + U ∈ αO(X, x) and (x + U) ∩ A ≠ φ. Let a ∈ (x + U) 

and a ∈ A. Hence a = x + u1 for some u1 ∈ U. This gives x = a − 

u1 ∈ a − U ⊆ A − U. Thus, 

x ∈ ∩{A − U: U ∈ αO(X, 0)} and so x ∈ ∩{A + U: U ∈ αO(X, 

0)}. 

Conversely, assume that x  αCl(A). Then, there exists U ∈ 

αO(X, 0) such that (−U + x) ∩ A = φ, that is, x  A + U, hence x 

 ∩{A + U: U ∈ αO(X, 0)}. This shows that ∩{A + U: U ∈ 

αO(X, 0)} ⊆ αCl(A). Therefore, we have αCl(A) = ∩{A + U: U 

∈ αO(X, 0)}. 

 

Theorem 3.24 Suppose (X(F), τ) is an α-topological vector space. 

Then the scalar multiple of α-closed set is α-closed. 

Proof. Let B ∈ αC(X), then X\B ∈ αO(X) and Mλ(X\B) = λ · 

(X\B) = λ · X\ λ · B = X \ λ · B ∈ αO(X). Therefore, λ · B ∈ 

αC(X). 

 

Theorem 3.25 Suppose (X(F), τ) is an α-topological vector space. 

Then scalar multiple of α-compact set is α-compact. 

Proof. Let A be an α-compact subsets of X. Let {Ui: i ∈ I} be an 

α- open cover of λ · A for some non-zero λ ∈ F, then λ · A ⊆ i∈I 

Ui. This gives A ⊆ 1/λ · i∈I Ui = i∈I 1/λ · Ui. Since, Ui ∈ αO(X) 

and (X(F), τ) is an α-topological vector space, therefore, 1/λ · Ui  

∈ αO(X) for each i ∈ I. Since, A is α-compact therefore, there 

exist a finite subset I0 of I such that A ⊆ i∈I0 1/λ · Ui. This 

implies that λ · A ⊆ i∈I0 Ui. Hence λ · A is α-compact in X. 

 

Theorem 3.26 Suppose (X(F), τ) is a P-regular and α-topological 

vector space. Then the algebraic sum of an α-compact set A and 

α-closed set B is α-closed. 

Proof. Let x  A+B, then for some a ∈ A, x a + B. Since, the 

translation mapping is α-homeomorphism, so Ta(B) = a + B, 

where a + B is α-closed. Since X is P-regular space, therefore, 

there exist open sets Ua and Va such that x ∈ Ua, a + B ⊆ Va and 

Ua ∩ Va = φ. Also Va − B = b∈B (Va − b) is α-open and contains 

a. Hence, A ⊆ a∈A (Va − B). Since, A is α-compact, therefore 

there exists a finite subset {a1, a2, a3, ..., an} of elements of A, 

such that A ⊆ 
n

i 1

(Vai − B). Let U = 
n

i 1

Uai, then U is an α-open 

set containing x. We claim that U ∩ (A + B) = φ. If not, then y = 

a + b ∈ U ∩ (A + B), then y ∈ Vai for some i and y ∈ Uai, which 

is contradiction to the fact that Ua ∩ Va = φ. 

 

Theorem 3.27 Suppose that (X(F), τ) is an α-topological vector 

space. If H ⊆ X is linear subspace, then so is αCl(H). 
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Proof. Let H be a linear subspace of X, which means that, H 

+ H ⊆ H and for all λ ∈ F, λ · H ⊆ H. By Theorem 3.21, 

αCl(H) + αCl(H) ⊆ αCl(H + H) ⊆ αCl(H). Since, scalar 

multiplication is an α-homeomorphism it maps the α-closure 

of a set into the α-closure of its image, namely, for every λ ∈ 

F, λ · (αCl(H)) = αCl(λ·H) ⊆ αCl(H). Therefore, αCl(H) is 

linear subspace. 

 

Definition 3.28 A subset E of an α-topological vector space 

(X(F), τ) is said to be balanced if for all λ ∈ F, |λ| ≤ 1, λ · E ⊆ 

E. 

 

Theorem 3.29 Suppose that (X(F), τ) is an α-topological 

vector space. For every B ⊆ X: 

(1) If B is balanced so is αCl(B). 

(2) If B is balanced and 0 ∈ αInt(B), then αInt(B) is balanced. 

Proof. (1) Since multiplication by a (non-zero) scalar is an α-

homeomorphism, thus for every λ ∈ F, λ · (αCl(B)) = 

αCl(λ·B). If B is balanced, then for |λ| ≤ 1, λ · (αCl(B)) = 

αCl(λ · B) ⊆ αCl(B), hence αCl(B) is balanced. 

(2) Let B be balanced subset of X. By Theorem 3.10, for 

every 0 < |λ| ≤ 1, λ · (αInt(B)) = αInt(λ · B). Since, B is 

balanced, therefore λ · B ⊆ B, |λ| ≤ 1. Also, λ · (αInt(B)) = 

αInt(λ · B) ⊆ αInt(B). Since for λ = 0, λ · (αInt(B)) = {0}, we 

must require 0 ∈ αInt(B) for the latter to be balanced. 

 

Theorem 3.30 Suppose that (X(F), τ) is an α-topological 

vector space, then for every U ∈ µ0, there exists a balanced V 

∈ µ0 such that V ⊆ U. 

Proof. The proof is clear. 

Definition 3.31. A set C is said to be convex if for t ∈ [0, 1], 

t C + (1 − t) C ⊆ C. 

 

Theorem 3.32 Suppose that (X(F), τ) is an α-topological 

vector space. If C is convex, then so is αCl(C). 

Proof. Convexity is a purely algebraic property, but α-

closures and α-interiors are topological concepts. The 

convexity of C implies that for all t ∈ [0, 1], t C + (1 − t) C ⊆ 

C. Let t ∈ [0, 1], then t (αCl(C)) = αCl(t C) and (1 − t) 

(αCl(C)) = αCl((1−t)C). By Theorem 3.21, t (αCl(C)) + (1 − 

t) (αCl(C)) = αCl(t C) + αCl((1 − t) C) ⊆ αCl(t C + (1 − t) C) 

⊆ αCl(C). Thus, αCl(C) is convex. 

 

Theorem 3.33 Suppose that (X(F), τ) is an α-topological 

vector space. If C is convex, then αInt(C) is convex. 

Proof. Suppose that C is convex. Let x, y ∈ αInt(C). This 

means there exist α-open sets U and V containing 0 such that 

x + U ⊆ C and y + V ⊆ C. Since C is convex, so,  t(x + U) + 

(1 − t) (y + V ) = (t x + (1 − t) y) + t U + (1 − t) V ⊆ C, which 

proves that t x + (1 – t) y ∈ αInt(C), namely αInt(C) is convex. 

 

Definition 3.34 Suppose that (X(F), τ) is an α-topological 

vector space. A subset E ⊆ X is said to be bounded if for all 

α-open set V containing 0, there exists s ∈ R such that for all 

t > s, E ⊆ tV. That is, every α-open set containing zero 

contains after being blown up sufficiently. 

 

Theorem 3.35 Suppose that (X(F), τ) is an α-topological 

vector space. If E is bounded, then αCl(E) is bounded. 

Proof. Let V be an α-open set containing 0, then by Theorem 

3.7, there exist W ∈ µ0 such that αCl(W) ⊆ V . Since E is 

bounded, so E ⊆ tW ⊆ tαCl(W) ⊆ tV, for sufficiently large t. 

It follows that for large enough t, αCl(E) ⊆ tαCl(W) ⊆ tV. 

Thus, αCl(E) is bounded. 

The following result provides a characterization for α-T2 of 

α-topological vector space. 

 

Theorem 3.36 Let (X(F), τ) be an α-topological vector space. 

Then the following statements are equivalent: 

(1) X is α-T2. 

(2) If x ∈ X, x ≠ 0, then there exists U ∈ µ0 such that x  U. 

(3) If x, y ∈ X, x ≠ y, then there exists V ∈ µx such that y  V. 

Proof. (1) ⇒ (2). Let x ∈ X, x ≠ 0 by assumption, there exist U, 

V ∈ αO(X) such that 0 ∈ U, x ∈ V and U ∩ V = φ. Thus, U ∈ µ0, 

V ∈ µx and x  U. 

(2) ⇒ (1). Let x, y ∈ X such that x − y ≠  0. Then there exists U 

∈ µ0 such that x − y  U. By Theorem 3.3, there exists W ∈ µ0 

such that W + W ⊆ U and by Theorem 3.30, W can be assumed 

to be balanced. Let V1 = x + W and V2 = y + W and note that V1 

∈ µx, V2 ∈ µy and V1 ∩V2 = φ, since if a ∈ V1 ∩ V2, then −(a − 

x) ∈ W, as W is balanced and a − y ∈ W. It follows that x − y = 

(a − y) + (−(a − x)) ∈ W + W ⊆ U, which is a contradiction. So, 

we must have V1 ∩ V2 = φ. This shows that X is α-T2. 

(1) ⇒ (3). Obvious. 

(3) ⇒ (2). Obvious.  

The following result follows from Theorem 3.36. 

 

Corollary 3.37 Let (X (F), τ) be an α-topological vector space. 

Then the following statements are equivalent: 

(1) X is α-T2. 

(2) ∩{U: U ∈ µ0} = {0}. 

(3) ∩{V: V ∈ µx} = {x}. 

 

Theorem 3.38 Any α-topological vector space (X(F), τ) is α-T2. 

Proof. Pick u0, u1 ∈ X such that u0 ≠ u1. Thus V = X\{u1 − u0} is 

an α-open set containing zero. As 0 + 0 = 0, by (X(F), τ) is an α-

topological vector space, there exist V1 and V2 sets containing 0 

such that V1 + V2 ⊆ V . Define U = V1 ∩ V2 ∩ (−V1) ∩ (−V2), 

thus U = −U and U + U ⊆ V and hence u0 + U + U ⊆ u0 + V ⊆ 

X\ {u1}, so that u0 + v1 + v2 ≠ u1, for all v1, v2 ∈ U, or u0 + v1 ≠  

u1 − v2, for all v1, v2 ∈ U, and since U = −U, therefore (u0 + U) ∩ 

(u1 + U) = φ. 
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 αبرێ توپولوجى ژ جورێ بۆشاییا ئاراسته
 

 :ێنیكولێل ایكورت
كرن پێناسه هاتیه αبرێ توپولوجى ژ جورێ  .  بۆشاییا ئاراستهαبرێ توپولوجى ژ جورێ كو پێشكێشكرن و خویندنا بۆشاییا ئاراسته وهم ژڤێ كارى ئهرهمه

برێ پێشكێشكرن وخاندن بۆ  بۆشاییا ئاراسته نگ و كوما سنوردار هاتینه. بیرۆكا قۆقز، هاوسهαخشا دوو دلى ژ جورێ و نه αكرى ژ جورێ برێكا كومێن ڤه
برێ توپولوجى ژ ژ  بۆشاییا ئاراسته  αكرى ژ جورێ شى یا ڤهمى بوشایى به لماندن كو ههسه نجامێن دى، هاتهل ئهدرێژایى دگه. بهαتوپولوجى ژ جورێ 

خشا دوو دل ژ نه دبیته αبرێ توپولوجى ژ جورێ نێوان بۆشایێن ئاراسته . هومۆمۆرپیسم  لهαبرێ توپولوجى ژ جورێ استهبۆشاییا ئار دبیته αجورێ 
و  ژ ل كوما پتهلێكدانا ژمارێ دگه αبرێ توپولوجى ژ جورێ نجام. لێ  بۆشایێن ئاراستهر توخمێ هاوئهكا دوو دل بیت لسهخشهو نهر ئهگهئه α جورێ

، αبرێ توپولوجى ژ جورێ سا، لێ  بۆشایێن ئاراستهروهقۆقز بیت. و هه Cر گهقۆقز ئه دبنه αInt(C)سا روههه  αCl(C)و αو ژ جورێ  پته دبیته αێ جور

αCl(E) ر گهئه  (سنوردار)نگ هاوسه دبیتهE لام  بیت، به  (سنوردار)نگ هاوسهαInt(E) ر گهنگ ئههاوسه دبیتهE نگ بیت و ههاوسαInt(E) 0∈. 
 

 
 α متجه التوبولوجية من النمط فضاءات

 خلاصة البحث:
المجموعات باستخدام عرفناها   αمتجه التوبولوجية من النمط  .  فضاءα  متجه التوبولوجية من النمط الغرض من هذا العمل هو تقديم و دراسة فضاءات     

جنبا إلى .  αمتجه التوبولوجية من النمط  فضاءفي  مجموعة مقيدالمفاهيم محدب، توازن و ال درسنا .α  من النمط و الدوال المتعدية αمن النمط  المفتوحة
متجه التوبولوجية من  تكون فضاء αمتجه التوبولوجية من النمط  فضاءفي  αالنمط أن كل فضاء الجزئي المفتوح من  أثبتناجنب مع غيرها من النتائج،  

العنصر على  α  من النمط اذا كانت الدالة المتعدية α  من النمط تكون الدالة المتعدية α  متجه التوبولوجية من النمط فضاءات مفهوم التماثل بين. αالنمط 
و  α  من النمطتكون المتراص  α  من النمطالمتراص  مجموعة ضرب كمية عددية غير موجهة مع  αمتجه التوبولوجية من النمط  فضاءاتفي احادي. 
αCl(C)  كذلكαInt(C)   المحدب اذا كانت تكوناC  متجه التوبولوجية من النمط فضاءاتمحدب. و أيضا، في  α، αCl(E)  اذا كانت  (مقيد)تكون متوازن

E  و لكن (مقيد)متوازن ،αInt(E)  تكون متوازن اذا كانتE  متوازن وαInt(E) 0∈.   


