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ABSTRACT:

The main objective of this paper is to present the study of a-topological vector spaces. a-topological vector spaces are defined by
using a-open sets and o-irresolute mappings. Notions of convex, balanced and bounded set are introduced and studied for a-
topological vector spaces. Along with other results, it is proved that every a-open subspace of an a-topological vector space is an
a-topological vector space. A homomorphism between a-topological vector spaces is o-irresolute if it is a-irresolute at the identity
element. In a-topological vector spaces, the scalar multiple of a-compact set is a-compact and aCIl(C) as well as alnt(C) is convex
if C is convex. And also, in a-topological vector spaces, aCI(E) is balanced (resp. bounded) if E is balanced (resp. bounded), but

alnt(E) is balanced if E is balanced and 0 € alnt(E).

KEYWORDS: a-Topological vector space, a-open set, a-irresolute mapping, left (right) translation, a-homeomorphism.

1. INTRODCUTION

Topology is an umbrella term that includes several fields of
study including point set topology, algebraic topology, and
differential topology. Because of this it is difficult to credit a
single mathematician with introducing topology. In 1965,
Njastad initiated and explored a new class of generalized
open sets in a topological space called a-open sets and proved
that the collection of all a-open sets in (X, 1) is a topology on
X, finer that t. If a set is endowed with algebraic and
topological structures, then it is always fascinating to probe
relationship between these two structures. The most formal
way for such a study is to require algebraic operations to be
continuous. This is the case we are investigating here for
algebraic and topological structures on a set X, where
algebraic operations (addition and scalar multiplication
mappings) fail to be continuous. We join these two structures
through weaker form of continuity.

A topological vector space (A. Grothendieck, and A. P.
Robertson and W. J. Robertson) is a basic structure in
topology in which a vector space X over a topological field F
(R or C) is endowed with a topology t such that:

(1) The vector addition mapping m : X x X — X defined by
m((x, y)) =x +vy, and

(2) Scalar multiplication mapping M : F x X — X defined by
M((A, x)) =A - x for all A € F and X, y € X are continuous
with respect to 1. Equivalently, (X(F), 1) is a topological
vector space if:

(1) For each x, y € X and for each open neighbourhood W of
X +yin X, there exist open neighbourhoods U of x and V of
yin X such that U + V € W, and

(2) For each x € X, A € F and for each open neighbourhood
W in X containing A - x, there exist open neighbourhoods U
of AinFand V of xin X suchthatU - V € W.

In this paper, several new facts concerning topologies of a-
topological vector spaces are established.

2. PRELIMINARIES

Throughout in this paper X and Y are always topological spaces
with no separation axioms considered until otherwise mentioned.
If A € X, then CI(A) and Int(A) denote the closure and interior
of A in (X, 1), respectively. A subset A of a topological space (X,
1) is called a-open [O. Njastad] if A < Int(Cl(Int(A))). The
complement of an a-open set is called an a-closed set. A subset
A of aspace X is called semi-open [N. Levine] if A c CI(Int(A)).
The complement of semi-open set is called semi-closed set. The
intersection of all a-closed sets containing A is called the a-
closure of A and is denoted by aCI(A). The o-interior of A is
defined as the union of all a-open sets contained in A and is
denoted by alnt(A). The family of all a-open (resp. a-closed)
subsets of X is denoted by aO(X) (resp. aC(X)). For each x € X,
the family of all a-open sets containing x is denoted by aO(X, x).
It is known that x € aCI(A) if and only if, for any a-open set U
containing x, U N A is non-empty.

If X (F) is a vector space, then O denotes its identity element, and
forafixedXx e X, Tx X > X;y—»x+yand Tx X > X;y >y
+ X, denote the left and the right translation by X, respectively.
And, for every 0 #A € F, Mu: X — X; y — A -y, denote
multiplication operator.

Definition 2.1 (D. Jangkovic) A space X is said to be a-compact
if every a-open cover of X has a finite subcover.

Definition 2.2 (M. Khan and B. Ahmad) A space X is said to be
P-regular, if for each semi-closed set F and x ¢ F, there exist
disjoint open sets U and V such that x € U and F € V.

Definition 2.3 (S. N. Maheshwari and S. S. Thakur) A space X
is said to be a-To, if for any two distinct points x, y € X, there
exist two a-open sets U and V containing x and y, respectively,
such that U NV = ¢.

Definition 2.4 (S. N. Maheshwari and S. S. Thakur) A function

f: (X, 1) — (Y, o) is said to be a-irresolute, if the inverse image
of every a-open set in Y is an a-open set in X.
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3. a-TOPOLOGICAL VECTOR SPACES

We denote by F a scalar field. In practice this is either R or
C, the set of real or complex numbers.

Definition 3.1 Let X be a vector space. The pair (X, 1) is
said to be an a-topological vector space over the field F (R or
C) with a topology 1 defined on X and standard topology
on F if the following two conditions are satisfied:

(1) For each x, y € X and for each a-open set W of X
containing x + y, there exist a-open sets U and V in X
containing x and y respectively, such that U + V € W.

(2) For each x € X, A € F and for each a-open set W of X
containing A- X, there exist a-open sets U in F containing A
and V in X containing X, such that U - V € W.

Remark 3.2 Every vector space X over F endowed with the
trivial topology is an a-topological vector spaces.

Theorem 3.3 In a-topological vector spaces (X, 1), for any
a-open set U containing 0, there exists an a-open set V
containing O such that V +V < U.

Proof. Let U be any a-open set such that 0 =0 + 0 € U. Since
(X, 1) is a-topological vector spaces, then there are a-open
sets AandBwithOe A,0eBand A+Bc U.LetV=AN
B, then Vis a-open,0 e VandV+V c A+B c U.

Theorem 3.4 If (X, 1) is an o-topological vector space.
Then:

(1) The (left) right translation Tx: X — X defined by Tx(y) =
y + X, for all x, y € X is a-irresolute.

(2) The translation My.: X — X defined by Ma(x) = A - x, for
all x € X is a-irresolute.

Proof. (1) Let W be an a-open set containing Tx(y) =y + X.
Then by definition, there exist a-open sets U and V in X
containing y and x respectively, such that U + V € W. So,
Tx(U)=U+x < U+V S W. This proves that, Tx: X — X is
a-irresolute mapping.

(2) Letx € X, A € F, then Ma(x) =X - x. Let W be any a-open
set of X containing A - X, then by definition, there exist a-
open sets U in F containing A and V in X containing X, such
that U - V € W. This gives that My(V)=L-VCSU- VS W.
This proves that M is an a-irresolute mapping.

Theorem 3.5 Suppose that (X, 7) is an a-topological vector
space. If A € aO(X), then:

(1) A+y € aO(X) for every y € X.

(2) A - A € aO(X) for every non zero A € F.

Proof. (1) Lety € X and z € A +y, then we have to prove
that z is an a-interior point of A +y. Now, z = x +y, where x
is some point in A. We can write X € A + y + (-y) = A. By
the right translation T-y: X — X, we have T—y(z) =z + (-y) =
X. By Theorem 3.4 (1), T-y is a-irresolute for z € X. Thus,
for the a-open set A containing x = T—y(z), there exists a-open
set M; of X containing z such that T-y(Mz) = Mz + (-y) € A,
this implies Mz € A + y. This shows that z is an a-interior
point of A +y. Hence A +y € 0O(X).

2)Let L€ F,A#0and z € X - A, this means z =X - x, for
some X € A. We have to show that z is an a-interior point of
A - A. By Theorem 3.4 (2), the multiplication mapping M -1:
X — X is a-irresolute. Thus, for the a-open set A containing
My -1(z) = A1 - z = x, there exists a-open set U, of X
containing z such that My -1(Uz) =1 ! - U; € A this implies
Uz € A - A. This shows that z is an a-interior point of A - A.
Hence A - A € aO(X)

Corollary 3.6 Suppose that (X, 1) is an a-topological
vector space. If A € aO(X), then for all u € A, there exists an
a-open set V containing 0 such thatu + V € A.
Proof. The proof'is follow by taking V.= A —u.
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Theorem 3.7 Suppose that (X, 1) is an a-topological vector
space and Lo is a collection of all a-open sets containing 0. Then,
for each U € o, there exists V € o such that aCI(V) € U.
Proof. Let U € po. Then by Theorem 3.3, there exists V' € po such
thatV +V c U. Let x € aCI(V). Since x — V is a-0pen containing
X, 50 (x— V)NV #¢. Choose,y € (x— V)NV, theny=x—v1
=V, where vy, v2 € V. Thus, x =v2 +v1 € V + V < U. Therefore,
aCl(V) € U.

Theorem 3.8 Suppose that (X, 1) is an a-topological vector
space. If A € aO(X) and B is any subset of X, then A + B €
aO(X).

Proof. Suppose A € aO(X) and B € X. Then, by Theorem 3.5
(1), for each xi € B we have A + xi € aO(X). Now, for each xi €
B we have A + B = A + {x1, X2, ...} = Uxie B (A + Xi). Since union
of any number of a-open sets is a-open, therefore A + B is a-open
in X.

Corollary 3.9 Suppose that (X, 1) is an o-topological vector

space. If A € aO(X), then the set U = U nA is an o-open set in
n=1

X.

Proof. Let A be a-open in X. Then, by Theorem 3.8, A+ A=2A

€ aO(X) and 2A + A =3A € aO(X). Similarly, we can prove that

o0

each set 4A, 5A, ... is a-open in X. Thus the set U = U nA is a-
n=1

open in X.

Theorem 3.10 Suppose that (X), 1) is an a-topological vector
space. Then, A - (aInt(B)) = alnt(X - B), where A € F.

Proof. Let A - x € X - (aInt(B)) such that x € alnt(B), then there
exists an a-open set U suchthatx € U € B.Now, A -x €A -UC
A B. As A - U is a-open by Theorem 3.5 (2). So, A - x € alnt(A -
B). Therefore, A - (alnt(B)) € alnt(A - B).

Conversely, lety € alnt() - B), where define y =A - x for some x
€ B, then there exists an a-open set V such thatL - x €V S A -
B. Since (X(p), 1) is an a-topological vector space, then there exist
a-open sets U in F containing A and W in X containing X, such
thatA-x€EA-WCU-WcCVCA-B. Then,x € W C Bimplies
that x € alnt(B) and so A - x € A - (aInt(B)). Therefore, alnt(\ -
B) € A - (aInt(B)). Hence, A - (alnt(B)) = alnt(: - B).

Theorem 3.11 Suppose that (X), t) is an a-topological vector
space. Then, M: F x X — X is an a-irresolute mapping.

Proof. Let A € F and x € X and since M((A, X)) = A - x. Let W be
an a-open set of X containing A - X. Since (X, 7) is an a-
topological vector space, therefore there exist a-open sets U in F
containing A and V in X containing X, such that U -V € W implies
that M((U, V)) = M(U xV) =U -V € W. Since, U € aO(F, A) and
V € a0(X, x), therefore, U x V € aO(F x X, A - x). This proves
that M: F x X — X is an a-irresolute mapping.

Theorem 3.1. Suppose that (X), 1) is an a-topological vector
space. Then, m: X x X — X is an a-irresolute mapping.

Proof. Let X, y € X and m((x, y)) = x +y. Let W be an a-open
set of X containing x +y. Since (X, 1) is an a-topological vector
space, therefore there exist a-open sets U containing x and V
containing y in X, such that U + V € W implies that m((U, V)) =
mU xV)=U+V c W. Since, U € aO(X, x) and V € aO(X,
y), therefore, U x V € aO(X x X, x x y). This proves that m: X x
X — X is an a-irresolute mapping.

Definition 3.13 A bijective mapping f from a topological space
to itself is called a-homeomorphism if it is a-irresolute and for
every a-open set A of X, the set f(A) is a-openin Y .
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Theorem 3.14. Suppose that (X, 1) is an a-topological
vector space. For given y € X and A € F with A # 0, each
translation mapping Ty: x — x + y and multiplication
mapping Mx: x — A - X, where x € X is a-homeomorphism
onto itself.

Proof. First, we show that Ty: x — x + y is an a-
homeomorphism. It is obviously bijective. By Theorem 3.4
(1), Tyis a-irresolute. Moreover, by Theorem 3.5 (1), for any
a-open set U, we have Ty(U) =U +y is a-open. Similarly, we
can prove that Ma: x — A - x is an a-homeomorphism.

Definition 3.15 An a-topological vector space (X, 1) is said
to be a-homogenous space if for each x, y € X, there is an a-
homeomorphism f of the space X onto itself such that f(x) =
y.

Theorem 3.16 Every a-topological vector space (X), 1) is
an a-homogenous space.

Proof. Take any x, y € X and put z = (—x) + y. Then, by
Theorem 3.14, Tz: X — X is an a-homeomorphism and Tz(X)
=X +z =Y. Therefore, (X, 1) is an a-homogenous space.

Theorem 3.17 Let f : X@, ©x) — (Y@, tv) be a
homomorphism of a-topological vector spaces. If f is a-
irresolute at 0 € X, then fis a-irresolute on X.

Proof. Let x € X. Suppose that W is an a-open set in Y
containing y = f(x). Since Ty: Y — Y is a-irresolute, therefore
there is an a-open set V containing 0 such that Ty(V) =V +y
€ W. Now from a-irresolute of f at 0 of X, there exists a-
open U in X containing 0 such that f(U) < V. Since Tx: X—
X is a-homeomorphism, therefore the set U + x is a-open set
containing X. Thus, f(U +x) = f(U) + f(x) = f(U) +y S V +y
€ W. Therefore, fis a-irresolute at x of X, and hence on X.

Theorem 3.18 Suppose (X, 1) is an a-topological vector
space and S is a subspace of X. If S contains a non-empty a-
open subset of X, then S is a-open in (X, 1).

Proof. Suppose U is a hon-empty a-open subset in X, such
that U € S. Forany y € S, the set Ty(U) = U + y is a-open in
X and U +y c S. Therefore, the subspace S = Uyes (U +Y)
is a-open in X as the union of a-0open sets.

Theorem 3.19 Suppose that (X, 1) is an a-topological
vector space. Then every a-open subspace of X is a-closed in
X.

Proof. Let S be an a-open subspace of X. As right translation
Tx: X—X is a-homeomorphism, therefore, S + x is a-0pen in
X. Then'Y = Uxexis (S + x) is also a-open. Now S = X\Y is
a-closed.

Theorem 3.20 Every a-open subspace S of an a-topological
vector space (X, 1) is also an a-topological vector space
(called a-topological subspace of X).

Proof. Let x, y € S and W be an a-0open set of S containing x
+ y. This gives W is an a-open set of X containing X + y.
Hence, there exist a-open sets U and V in X containing x and
y respectively, such that U + V € W. Now, the sets A=U N
S and B =V N S are a-open sets in S containing x and y
respectively and also A+ B S U +V S W. Again, let A € F
and x € S. Let W be an a-open set of S containing A - x. Since
S is a-open in X, therefore W is a-open set of X containing
A-x. Hence, there exist a-open sets U C F containing A and V
c X containing y such that U - V € W. Now, the set A=U
N F is a-open set of F containing A and the set B=V N S is
a-open set of S containingyandalso A-BcU -V cW.
This proves that S is an a-topological vector space.

Theorem 3.21 Let A and B be subsets of an a-topological
vector space (X, 7). Then aCl(A) + aCl(B) € aCl(A + B).

Proof. Suppose that x € aCl(A) and y € aCI(B). Let W be an a-
open set containing x + y. Then there are a-open sets U and V
containing x and y respectively, such that U + V € W. Since x €
aCl(A) and y € aCI(B), therearca € AN Uandb€eB N V.
Thena+b e (A+B)NU+V)Cc (A+B)NW. This means x
+y € aCl(A + B), that is aCI(A) + aCI(B) € aCI(A + B).

Theorem 3.22 Suppose (X, 1) is an a-topological vector space
and A, B are subsets of X. If B is a-open, then for any set A, we
have A+ B = aCI(A) + B.

Proof. As we know that A < aCl(A), so A + B < aCI(A) + B.
Conversely, let y € aCI(A) + B and write y = x + b where x €
aCl(A) and b € B. There exists an a-open set V containing zero
such that To(V) =V + b < B. Now, V is a-open in X containing
0, this gives that —V is also a-open in X containing 0. Since, X €
aCl(A),so,a€ AN(x—V). Weknowthaty=x+b=a—a+x
+bea+V+bc A+B. Therefore, aCl(A) + B € A + B. Hence,
A+B=0aCl(A) + B.

Theorem 3.23 Suppose that (X, 1) is an a-topological vector
space, then for any A € X, aCl(A) =N{A + U: U € aO(X, 0)}.
Proof. Let x € aCI(A), this implies that for every U € aO(X, 0),
we have X + U € 0O(X, x) and (x + U) N A #¢. Leta € (x + U)
and a € A. Hence a = x + u1 for some u1 € U. This gives x =a —
ur€a—UCA-U. Thus,

X € N{A—-U: U € aO(X, 0)} and so x € N{A + U: U € aO(X,
0)}.

Conversely, assume that x ¢ aCI(A). Then, there exists U €
aO(X, 0) such that (U + x) N A = g, that is, x ¢ A + U, hence X
¢ N{A + U: U € aO(X, 0)}. This shows that N{A + U: U €
aO(X, 0)} € aCIl(A). Therefore, we have aCl(A)=N{A + U: U
€ a0(X, 0)}.

Theorem 3.24 Suppose (X(r), 7) is an a-topological vector space.
Then the scalar multiple of a-closed set is a-closed.

Proof. Let B € aC(X), then X\B € aO(X) and Ma(X\B) = X -
(X\B) =A - X\L - B=X\A"B € aO(X). Therefore, . - B €
aC(X).

Theorem 3.25 Suppose (X, 1) is an a-topological vector space.
Then scalar multiple of a-compact set is a-compact.

Proof. Let A be an a-compact subsets of X. Let {Ui: i € I} be an
a- open cover of A - A for some non-zero A € F, then A - A € Uiel
Ui. This gives A € 1/A - Uiel Ui = Uier 1/A - Ui. Since, Ui € aO(X)
and (X, 1) is an a-topological vector space, therefore, 1/A - Ui
€ aO(X) for each i € L. Since, A is a-compact therefore, there
exist a finite subset lo of | such that A S Uieio 1/A - Ui. This
implies that A - A € Uieio Ui. Hence A - A is a-compact in X.

Theorem 3.26 Suppose (X, 7) is a P-regular and a-topological
vector space. Then the algebraic sum of an a-compact set A and
a-closed set B is a-closed.

Proof. Let x ¢ A+B, then for some a € A, xg a + B. Since, the
translation mapping is o-homeomorphism, so Ta(B) = a + B,
where a + B is a-closed. Since X is P-regular space, therefore,
there exist open sets Ua and Va such that x € U,, a + B € Vaand
Ua N Va=¢. Also Va— B = Unes (Va— b) is a-open and contains
a. Hence, A © waea (Va — B). Since, A is a-compact, therefore
there exists a finite subset {a1, az, as, ..., an} of elements of A,

n n
such that A < U (Vai—B).LetU= U Uai, then U is an a-open
i=1 i=1
set containing x. We claim that U N (A + B) = ¢. If not, then y =
a+beUN(A+B), theny € Vai for some i and y € Uai, which
is contradiction to the fact that Ua N Va= ¢.

Theorem 3.27 Suppose that (X), 7) is an a-topological vector
space. If H € X is linear subspace, then so is aCI(H).
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Proof. Let H be a linear subspace of X, which means that, H
+HCS Hand forall A € F, A - H € H. By Theorem 3.21,
aCl(H) + aCl(H) € aCI(H + H) € aCI(H). Since, scalar
multiplication is an a-homeomorphism it maps the a-closure
of a set into the a-closure of its image, namely, for every A €
F, A - (aCI(H)) = aCl(A-H) € aCI(H). Therefore, aCl(H) is
linear subspace.

Definition 3.28 A subset E of an a-topological vector space
(X(®), 1) is said to be balanced if forall A € F, A|<1,A- E S
E.

Theorem 3.29 Suppose that (X, t) is an a-topological
vector space. For every B € X:

(1) If B is balanced so is aCI(B).

(2) If B is balanced and 0 € alnt(B), then alInt(B) is balanced.
Proof. (1) Since multiplication by a (non-zero) scalar is an a-
homeomorphism, thus for every A € F, A - (aCl(B)) =
aCl(A-B). If B is balanced, then for A| < 1, A - (aCl(B)) =
aCl(A - B) € aCI(B), hence aCI(B) is balanced.

(2) Let B be balanced subset of X. By Theorem 3.10, for
every 0 < |A| £ 1, A - (aInt(B)) = alnt(A - B). Since, B is
balanced, therefore A - B € B, [A| < 1. Also, A - (alnt(B)) =
alnt(A - B) € alnt(B). Since for A=0, A - (aInt(B)) = {0}, we
must require 0 € alnt(B) for the latter to be balanced.

Theorem 3.30 Suppose that (X, 1) is an a-topological
vector space, then for every U € Lo, there exists a balanced V
€ Mo such that V < U.

Proof. The proof is clear.

Definition 3.31. A set C is said to be convex if for t € [0, 1],
tC+(1-t)CcC.

Theorem 3.32 Suppose that (X, 1) is an a-topological
vector space. If C is convex, then so is aCI(C).

Proof. Convexity is a purely algebraic property, but o-
closures and o-interiors are topological concepts. The
convexity of C implies that forallt € [0, 1[,tC+ (1 —t)C S
C. Let t € [0, 1], then t (aCI(C)) = aCl(t C) and (1 — t)
(aCI(C)) = aCl((1-t)C). By Theorem 3.21, t (aCI(C)) + (1 —
t) (aCI(C)) = aCl(t C) + aCl(1 = t) C) S aCl(t C+ (1 —t) C)
€ aCI(C). Thus, aCI(C) is convex.

Theorem 3.33 Suppose that (X, 1) is an a-topological
vector space. If C is convex, then alnt(C) is convex.

Proof. Suppose that C is convex. Let x, y € alnt(C). This
means there exist a-open sets U and V containing 0 such that
x+Uc Candy+V c C.Since C is convex, so, t(x + U) +
A-t(y+V)=(@tx+(1-t)y)+tU+1—1t)V € C,which
proves thatt x + (1—t) y € alnt(C), namely alnt(C) is convex.

Definition 3.34 Suppose that (X, 1) is an a-topological
vector space. A subset E € X is said to be bounded if for all
a-open set V containing 0, there exists s € R such that for all
t > s, E € tV. That is, every a-open set containing zero
contains after being blown up sufficiently.

Theorem 3.35 Suppose that (X), 1) is an a-topological
vector space. If E is bounded, then aCI(E) is bounded.
Proof. Let V be an a-open set containing 0, then by Theorem
3.7, there exist W € o such that aCI(W) € V . Since E is
bounded, so E € tW < taCI(W) < tV, for sufficiently large t.
It follows that for large enough t, aCI(E) € taCI(W) S tV.
Thus, aCI(E) is bounded.

The following result provides a characterization for a-T2 of
a-topological vector space.

Theorem 3.36 Let (X, T) be an a-topological vector space.
Then the following statements are equivalent:
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(1) Xis a-Ta.

(2) If x € X, x # 0, then there exists U € po such that x ¢ U.

(3) If X,y € X, x #y, then there exists V € px such thaty ¢ V.
Proof. (1) = (2). Let x € X, x # 0 by assumption, there exist U,
V € aO(X) such that 0 € U, x € Vand U NV = ¢. Thus, U € o,
V € uxand x ¢ U.

(2) = (1). Let X, y € X such that x —y # 0. Then there exists U
€ Mo such that x —y ¢ U. By Theorem 3.3, there exists W € po
such that W + W < U and by Theorem 3.30, W can be assumed
to be balanced. Let V1 =x + W and V2 =y + W and note that V1
€ M, V2 € Py and V1 NV2 = g, since if a € V1 N V2, then —(a —
X) € W, as W is balanced and a —y € W. It follows that x —y =
(a—y)+(—(a—x)) € W+ W < U, which is a contradiction. So,
we must have V1 N V2 = ¢. This shows that X is a-Tz.

(1) = (3). Obvious.

(3) = (2). Obvious.

The following result follows from Theorem 3.36.

Corollary 3.37 Let (X (), 1) be an a-topological vector space.
Then the following statements are equivalent:

(1) Xis a-Ta.

(2) N{U: U € po} = {0}

B3)N{V:V € i} ={x}.

Theorem 3.38 Any a-topological vector space (X, 1) is a-Ta.
Proof. Pick uo, u1 € X such that uo # u1. Thus V = X\{u1 — uo} is
an a-open set containing zero. As 0 + 0 = 0, by (X, 1) is an o-
topological vector space, there exist V1 and V2 sets containing 0
such that V1 + V2 € V. Define U = V1N V2N (V1) N (=V2),
thusU=-UandU+UcVandhenceuo+U+UCu+Vc
X\ {u1}, so that uo + v1 + v2 # ug, for all v, v2 € U, or uo + v1 #
u — v, for all vi, v2 € U, and since U = —U, therefore (uo + U) N
(u1+U)=oe.
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