Available online at sjuoz.uoz.edu.krd

Science Journal of University of Zakho Vol. 5, No. 1, pp. 107–111, March-2017

a-TOPOLOGICAL VECTOR SPACES

Hariwan Zikri Ibrahim

Dept. of Mathematics, Faculty of Science, University of Zakho, Zakho, Kurdistan Region, Iraq - hariwan.ibrahim@uoz.edu.krd

Received: Sept. 2016 / Accepted: Dec. 2016 / Published: Mar. 2017

ABSTRACT:

The main objective of this paper is to present the study of α -topological vector spaces. α -topological vector spaces are defined by using α -open sets and α -irresolute mappings. Notions of convex, balanced and bounded set are introduced and studied for α -topological vector spaces. Along with other results, it is proved that every α -open subspace of an α -topological vector space is an α -topological vector space. A homomorphism between α -topological vector spaces is α -irresolute if it is α -irresolute at the identity element. In α -topological vector spaces, the scalar multiple of α -compact set is α -compact and α Cl(C) as well as α Int(C) is convex if C is convex. And also, in α -topological vector spaces, α Cl(E) is balanced (resp. bounded) if E is balanced (resp. bounded), but α Int(E) is balanced and $0 \in \alpha$ Int(E).

KEYWORDS: α -Topological vector space, α -open set, α -irresolute mapping, left (right) translation, α -homeomorphism.

1. INTRODCUTION

Topology is an umbrella term that includes several fields of study including point set topology, algebraic topology, and differential topology. Because of this it is difficult to credit a single mathematician with introducing topology. In 1965, Njastad initiated and explored a new class of generalized open sets in a topological space called a-open sets and proved that the collection of all α -open sets in (X, τ) is a topology on X, finer that τ . If a set is endowed with algebraic and topological structures, then it is always fascinating to probe relationship between these two structures. The most formal way for such a study is to require algebraic operations to be continuous. This is the case we are investigating here for algebraic and topological structures on a set X, where algebraic operations (addition and scalar multiplication mappings) fail to be continuous. We join these two structures through weaker form of continuity.

A topological vector space (A. Grothendieck, and A. P. Robertson and W. J. Robertson) is a basic structure in topology in which a vector space X over a topological field F (R or C) is endowed with a topology τ such that:

(1) The vector addition mapping $m : X \times X \rightarrow X$ defined by m((x, y)) = x + y, and

(2) Scalar multiplication mapping $M : F \times X \to X$ defined by $M((\lambda, x)) = \lambda \cdot x$ for all $\lambda \in F$ and $x, y \in X$ are continuous with respect to τ . Equivalently, $(X(F), \tau)$ is a topological vector space if:

(1) For each x, $y \in X$ and for each open neighbourhood W of x + y in X, there exist open neighbourhoods U of x and V of y in X such that $U + V \subseteq W$, and

(2) For each $x \in X$, $\lambda \in F$ and for each open neighbourhood W in X containing $\lambda \cdot x$, there exist open neighbourhoods U of λ in F and V of x in X such that $U \cdot V \subseteq W$.

In this paper, several new facts concerning topologies of α -topological vector spaces are established.

2. PRELIMINARIES

Throughout in this paper X and Y are always topological spaces with no separation axioms considered until otherwise mentioned. If $A \subseteq X$, then Cl(A) and Int(A) denote the closure and interior of A in (X, τ) , respectively. A subset A of a topological space (X, τ) τ) is called α -open [O. Njastad] if A \subseteq Int(Cl(Int(A))). The complement of an α -open set is called an α -closed set. A subset A of a space X is called semi-open [N. Levine] if $A \subseteq Cl(Int(A))$. The complement of semi-open set is called semi-closed set. The intersection of all α -closed sets containing A is called the α closure of A and is denoted by $\alpha Cl(A)$. The α -interior of A is defined as the union of all α -open sets contained in A and is denoted by α Int(A). The family of all α -open (resp. α -closed) subsets of X is denoted by $\alpha O(X)$ (resp. $\alpha C(X)$). For each $x \in X$, the family of all α -open sets containing x is denoted by $\alpha O(X, x)$. It is known that $x \in \alpha Cl(A)$ if and only if, for any α -open set U containing x, $U \cap A$ is non-empty.

If X (F) is a vector space, then 0 denotes its identity element, and for a fixed $x \in X$, $T_x: X \to X$; $y \to x + y$ and $T_x: X \to X$; $y \to y + x$, denote the left and the right translation by x, respectively. And, for every $0 \neq \lambda \in F$, $M_{\lambda}: X \to X$; $y \to \lambda \cdot y$, denote multiplication operator.

Definition 2.1 (D. Jangkovic) A space X is said to be α -compact if every α -open cover of X has a finite subcover.

Definition 2.2 (M. Khan and B. Ahmad) A space X is said to be P-regular, if for each semi-closed set F and $x \notin F$, there exist disjoint open sets U and V such that $x \in U$ and $F \subseteq V$.

Definition 2.3 (S. N. Maheshwari and S. S. Thakur) A space X is said to be α -T₂, if for any two distinct points x, $y \in X$, there exist two α -open sets U and V containing x and y, respectively, such that $U \cap V = \varphi$.

Definition 2.4 (S. N. Maheshwari and S. S. Thakur) A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be α -irresolute, if the inverse image of every α -open set in Y is an α -open set in X.

3. α-TOPOLOGICAL VECTOR SPACES

We denote by F a scalar field. In practice this is either R or C, the set of real or complex numbers.

Definition 3.1 Let X be a vector space. The pair $(X_{(F)}, \tau)$ is said to be an α -topological vector space over the field F (R or C) with a topology τ defined on $X_{(F)}$ and standard topology on F if the following two conditions are satisfied:

(1) For each x, $y \in X$ and for each α -open set W of X containing x + y, there exist α -open sets U and V in X containing x and y respectively, such that $U + V \subseteq W$.

(2) For each $x \in X$, $\lambda \in F$ and for each α -open set W of X containing λ · x, there exist α -open sets U in F containing λ and V in X containing x, such that $U \cdot V \subseteq W$.

Remark 3.2 Every vector space X over F endowed with the trivial topology is an α -topological vector spaces.

Theorem 3.3 In α -topological vector spaces $(X_{(F)}, \tau)$, for any α -open set U containing 0, there exists an α -open set V containing 0 such that $V + V \subseteq U$.

Proof. Let U be any α -open set such that $0 = 0 + 0 \in U$. Since $(X_{(F)}, \tau)$ is α -topological vector spaces, then there are α -open sets A and B with $0 \in A$, $0 \in B$ and $A + B \subseteq U$. Let $V = A \cap B$, then V is α -open, $0 \in V$ and $V + V \subseteq A + B \subseteq U$.

Theorem 3.4 If $(X_{(F)}, \tau)$ is an α -topological vector space. Then:

(1) The (left) right translation T_x : $X \to X$ defined by $T_x(y) = y + x$, for all $x, y \in X$ is α -irresolute.

(2) The translation $M_{\lambda}: X \to X$ defined by $M_{\lambda}(x) = \lambda \cdot x$, for all $x \in X$ is α -irresolute.

Proof. (1) Let W be an α -open set containing $T_x(y) = y + x$. Then by definition, there exist α -open sets U and V in X containing y and x respectively, such that $U + V \subseteq W$. So, $T_x(U) = U + x \subseteq U + V \subseteq W$. This proves that, $T_x: X \to X$ is α -irresolute mapping.

(2) Let $x \in X$, $\lambda \in F$, then $M_{\lambda}(x) = \lambda \cdot x$. Let W be any α -open set of X containing $\lambda \cdot x$, then by definition, there exist α -open sets U in F containing λ and V in X containing x, such that $U \cdot V \subseteq W$. This gives that $M_{\lambda}(V) = \lambda \cdot V \subseteq U \cdot V \subseteq W$. This proves that M_{λ} is an α -irresolute mapping.

Theorem 3.5 Suppose that $(X_{(F)}, \tau)$ is an α -topological vector space. If $A \in \alpha O(X)$, then:

(1) $A + y \in \alpha O(X)$ for every $y \in X$.

(2) $\lambda \cdot A \in \alpha O(X)$ for every non zero $\lambda \in F$.

Proof. (1) Let $y \in X$ and $z \in A + y$, then we have to prove that z is an α -interior point of A + y. Now, z = x + y, where x is some point in A. We can write $x \in A + y + (-y) = A$. By the right translation T_{-y} : $X \to X$, we have $T_{-y}(z) = z + (-y) =$ x. By Theorem 3.4 (1), T_{-y} is α -irresolute for $z \in X$. Thus, for the α -open set A containing $x = T_{-y}(z)$, there exists α -open set M_z of X containing z such that $T_{-y}(M_z) = M_z + (-y) \subseteq A$, this implies $M_z \subseteq A + y$. This shows that z is an α -interior point of A + y. Hence $A + y \in \alpha O(X)$.

(2) Let $\lambda \in F$, $\lambda \neq 0$ and $z \in \lambda \cdot A$, this means $z = \lambda \cdot x$, for some $x \in A$. We have to show that z is an α -interior point of $\lambda \cdot A$. By Theorem 3.4 (2), the multiplication mapping $M_{\lambda -1}$: $X \to X$ is α -irresolute. Thus, for the α -open set A containing $M_{\lambda -1}(z) = \lambda^{-1} \cdot z = x$, there exists α -open set U_z of X containing z such that $M_{\lambda -1}(U_z) = \lambda^{-1} \cdot U_z \subseteq A$ this implies $U_z \subseteq \lambda \cdot A$. This shows that z is an α -interior point of $\lambda \cdot A$. Hence $\lambda \cdot A \in \alpha O(X)$

Corollary 3.6 Suppose that $(X_{(F)}, \tau)$ is an α -topological vector space. If $A \in \alpha O(X)$, then for all $u \in A$, there exists an α -open set V containing 0 such that $u + V \subseteq A$.

Proof. The proof is follow by taking V = A - u.

Theorem 3.7 Suppose that $(X_{(F)}, \tau)$ is an α -topological vector space and μ_0 is a collection of all α -open sets containing 0. Then, for each $U \in \mu_0$, there exists $V \in \mu_0$ such that $\alpha Cl(V) \subseteq U$.

Proof. Let $U \in \mu_0$. Then by Theorem 3.3, there exists $V \in \mu_0$ such that $V + V \subseteq U$. Let $x \in \alpha Cl(V)$. Since x - V is α -open containing x, so $(x - V) \cap V \neq \phi$. Choose, $y \in (x - V) \cap V$, then $y = x - v_1 = v_2$, where $v_1, v_2 \in V$. Thus, $x = v_2 + v_1 \in V + V \subseteq U$. Therefore, $\alpha Cl(V) \subseteq U$.

Theorem 3.8 Suppose that $(X_{(F)}, \tau)$ is an α -topological vector space. If $A \in \alpha O(X)$ and B is any subset of X, then $A + B \in \alpha O(X)$.

Proof. Suppose $A \in \alpha O(X)$ and $B \subseteq X$. Then, by Theorem 3.5 (1), for each $x_i \in B$ we have $A + x_i \in \alpha O(X)$. Now, for each $x_i \in B$ we have $A + B = A + \{x_1, x_2, ...\} = \bigcup_{xi \in B} (A + x_i)$. Since union of any number of α -open sets is α -open, therefore A + B is α -open in X.

Corollary 3.9 Suppose that $(X_{(F)}, \tau)$ is an α -topological vector

space. If $A \in \alpha O(X)$, then the set $U = \bigcup_{n=1}^{\infty} nA$ is an α -open set in

X

Proof. Let A be α -open in X. Then, by Theorem 3.8, $A + A = 2A \in \alpha O(X)$ and $2A + A = 3A \in \alpha O(X)$. Similarly, we can prove that

each set 4A, 5A, ... is α -open in X. Thus the set U = $\bigcup_{n=1}^{\infty} nA$ is α -

open in X.

Theorem 3.10 Suppose that $(X_{(F)}, \tau)$ is an α -topological vector space. Then, $\lambda \cdot (\alpha Int(B)) = \alpha Int(\lambda \cdot B)$, where $\lambda \in F$.

Proof. Let $\lambda \cdot x \in \lambda \cdot (\alpha \operatorname{Int}(B))$ such that $x \in \alpha \operatorname{Int}(B)$, then there exists an α -open set U such that $x \in U \subseteq B$. Now, $\lambda \cdot x \in \lambda \cdot U \subseteq \lambda \cdot B$. As $\lambda \cdot U$ is α -open by Theorem 3.5 (2). So, $\lambda \cdot x \in \alpha \operatorname{Int}(\lambda \cdot B)$. Therefore, $\lambda \cdot (\alpha \operatorname{Int}(B)) \subseteq \alpha \operatorname{Int}(\lambda \cdot B)$.

Conversely, let $y \in \alpha Int(\lambda \cdot B)$, where define $y = \lambda \cdot x$ for some $x \in B$, then there exists an α -open set V such that $\lambda \cdot x \in V \subseteq \lambda \cdot B$. Since $(X_{(F)}, \tau)$ is an α -topological vector space, then there exist α -open sets U in F containing λ and W in X containing x, such that $\lambda \cdot x \in \lambda \cdot W \subseteq U \cdot W \subseteq V \subseteq \lambda \cdot B$. Then, $x \in W \subseteq B$ implies that $x \in \alpha Int(B)$ and so $\lambda \cdot x \in \lambda \cdot (\alpha Int(B))$. Therefore, $\alpha Int(\lambda \cdot B) \subseteq \lambda \cdot (\alpha Int(B))$. Hence, $\lambda \cdot (\alpha Int(B)) = \alpha Int(\lambda \cdot B)$.

Theorem 3.11 Suppose that $(X_{(F)}, \tau)$ is an α -topological vector space. Then, M: $F \times X \rightarrow X$ is an α -irresolute mapping.

Proof. Let $\lambda \in F$ and $x \in X$ and since $M((\lambda, x)) = \lambda \cdot x$. Let W be an α -open set of X containing $\lambda \cdot x$. Since $(X_{(F)}, \tau)$ is an α topological vector space, therefore there exist α -open sets U in F containing λ and V in X containing x, such that $U \cdot V \subseteq W$ implies that $M((U, V)) = M(U \times V) = U \cdot V \subseteq W$. Since, $U \in \alpha O(F, \lambda)$ and $V \in \alpha O(X, x)$, therefore, $U \times V \in \alpha O(F \times X, \lambda \cdot x)$. This proves that M: $F \times X \rightarrow X$ is an α -irresolute mapping.

Theorem 3.1. Suppose that $(X_{(F)}, \tau)$ is an α -topological vector space. Then, m: $X \times X \to X$ is an α -irresolute mapping.

Proof. Let x, $y \in X$ and m((x, y)) = x + y. Let W be an α -open set of X containing x + y. Since $(X_{(F)}, \tau)$ is an α -topological vector space, therefore there exist α -open sets U containing x and V containing y in X, such that $U + V \subseteq W$ implies that $m((U, V)) = m(U \times V) = U + V \subseteq W$. Since, $U \in \alpha O(X, x)$ and $V \in \alpha O(X, y)$, therefore, $U \times V \in \alpha O(X \times X, x \times y)$. This proves that $m: X \times X \to X$ is an α -irresolute mapping.

Definition 3.13 A bijective mapping f from a topological space to itself is called α -homeomorphism if it is α -irresolute and for every α -open set A of X, the set f(A) is α -open in Y.

Theorem 3.14. Suppose that $(X_{(F)}, \tau)$ is an α -topological vector space. For given $y \in X$ and $\lambda \in F$ with $\lambda \neq 0$, each translation mapping $T_y: x \to x + y$ and multiplication mapping $M_{\lambda}: x \to \lambda \cdot x$, where $x \in X$ is α -homeomorphism onto itself.

Proof. First, we show that $T_y: x \to x + y$ is an α -homeomorphism. It is obviously bijective. By Theorem 3.4 (1), T_y is α -irresolute. Moreover, by Theorem 3.5 (1), for any α -open set U, we have $T_y(U) = U + y$ is α -open. Similarly, we can prove that $M_{\lambda}: x \to \lambda \cdot x$ is an α -homeomorphism.

Definition 3.15 An α -topological vector space $(X_{(F)}, \tau)$ is said to be α -homogenous space if for each x, y $\in X$, there is an α -homeomorphism f of the space X onto itself such that f(x) = y.

Theorem 3.16 Every α -topological vector space (X_(F), τ) is an α -homogenous space.

Proof. Take any x, $y \in X$ and put z = (-x) + y. Then, by Theorem 3.14, $T_z: X \to X$ is an α -homeomorphism and $T_z(x) = x + z = y$. Therefore, $(X_{(F)}, \tau)$ is an α -homogenous space.

Theorem 3.17 Let $f : (X_{(F)}, \tau_X) \rightarrow (Y_{(F)}, \tau_Y)$ be a homomorphism of α -topological vector spaces. If f is α -irresolute at $0 \in X$, then f is α -irresolute on X.

Proof. Let $x \in X$. Suppose that W is an α -open set in Y containing y = f(x). Since $T_y: Y \to Y$ is α -irresolute, therefore there is an α -open set V containing 0 such that $T_y(V) = V + y \subseteq W$. Now from α -irresolute of f at 0 of X, there exists α -open U in X containing 0 such that $f(U) \subseteq V$. Since $T_x: X \to X$ is α -homeomorphism, therefore the set U + x is α -open set containing x. Thus, $f(U + x) = f(U) + f(x) = f(U) + y \subseteq V + y \subseteq W$. Therefore, f is α -irresolute at x of X, and hence on X.

Theorem 3.18 Suppose $(X_{(F)}, \tau)$ is an α -topological vector space and S is a subspace of X. If S contains a non-empty α -open subset of X, then S is α -open in $(X_{(F)}, \tau)$.

Proof. Suppose U is a non-empty α -open subset in X, such that $U \subseteq S$. For any $y \in S$, the set $T_y(U) = U + y$ is α -open in X and $U + y \subseteq S$. Therefore, the subspace $S = \bigcup_{y \in S} (U + y)$ is α -open in X as the union of α -open sets.

Theorem 3.19 Suppose that $(X_{(F)}, \tau)$ is an α -topological vector space. Then every α -open subspace of X is α -closed in X.

Proof. Let S be an α -open subspace of X. As right translation $T_x: X \rightarrow X$ is α -homeomorphism, therefore, S + x is α -open in X. Then $Y = \bigcup_{x \in X \setminus S} (S + x)$ is also α -open. Now $S = X \setminus Y$ is α -closed.

Theorem 3.20 Every α -open subspace S of an α -topological vector space (X_(F), τ) is also an α -topological vector space (called α -topological subspace of X).

Proof. Let x, $y \in S$ and W be an α -open set of S containing x + y. This gives W is an α -open set of X containing x + y. Hence, there exist α -open sets U and V in X containing x and y respectively, such that $U + V \subseteq W$. Now, the sets $A = U \cap S$ and $B = V \cap S$ are α -open sets in S containing x and y respectively and also $A + B \subseteq U + V \subseteq W$. Again, let $\lambda \in F$ and $x \in S$. Let W be an α -open set of S containing $\lambda \cdot x$. Since S is α -open in X, therefore W is α -open set of X containing λ and V $\subseteq X$ containing y such that $U \cdot V \subseteq W$. Now, the set $A = U \cap F$ is α -open set of F containing λ and the set $B = V \cap S$ is α -open set of S containing λ and the set $B = V \cap S$ is α -open set of S containing λ and the set $B = V \cap S$ is α -open set of S containing λ and the set $B = V \cap S$ is α -open set of S containing λ and the set $B = V \cap S$ is α -open set of S containing λ and the set $B = V \cap S$ is α -open set of S containing λ and the set $B = V \cap S$ is α -open set of S containing λ and the set $B = V \cap S$ is α -open set of S containing λ and the set $B = V \cap S$ is α -open set of S containing λ and the set $B = V \cap S$ is α -open set of S containing λ and the set $B = U \cap S$ is α -open set of S containing λ and the set $B = U \cap S$ is α -open set of S containing λ and the set $B = V \cap S$ is α -open set of S containing λ and the set $B = V \cap S$ is α -open set of S containing λ and the set $B = U \cap S$ is α -open set of S containing λ and λ .

Theorem 3.21 Let A and B be subsets of an α -topological vector space (X_(F), τ). Then $\alpha Cl(A) + \alpha Cl(B) \subseteq \alpha Cl(A + B)$.

Proof. Suppose that $x \in \alpha Cl(A)$ and $y \in \alpha Cl(B)$. Let W be an α -open set containing x + y. Then there are α -open sets U and V containing x and y respectively, such that $U + V \subseteq W$. Since $x \in \alpha Cl(A)$ and $y \in \alpha Cl(B)$, there are $a \in A \cap U$ and $b \in B \cap V$. Then $a + b \in (A + B) \cap (U + V) \subseteq (A + B) \cap W$. This means $x + y \in \alpha Cl(A + B)$, that is $\alpha Cl(A) + \alpha Cl(B) \subseteq \alpha Cl(A + B)$.

Theorem 3.22 Suppose $(X_{(F)}, \tau)$ is an α -topological vector space and A, B are subsets of X. If B is α -open, then for any set A, we have $A + B = \alpha Cl(A) + B$.

Proof. As we know that $A \subseteq \alpha Cl(A)$, so $A + B \subseteq \alpha Cl(A) + B$. Conversely, let $y \in \alpha Cl(A) + B$ and write y = x + b where $x \in \alpha Cl(A)$ and $b \in B$. There exists an α -open set V containing zero such that $T_b(V) = V + b \subseteq B$. Now, V is α -open in X containing 0, this gives that -V is also α -open in X containing 0. Since, $x \in \alpha Cl(A)$, so, $a \in A \cap (x - V)$. We know that $y = x + b = a - a + x + b \in a + V + b \subseteq A + B$. Therefore, $\alpha Cl(A) + B \subseteq A + B$. Hence, $A + B = \alpha Cl(A) + B$.

Theorem 3.23 Suppose that $(X_{(F)}, \tau)$ is an α -topological vector space, then for any $A \subseteq X$, $\alpha Cl(A) = \cap \{A + U: U \in \alpha O(X, 0)\}$.

Proof. Let $x \in \alpha Cl(A)$, this implies that for every $U \in \alpha O(X, 0)$, we have $x + U \in \alpha O(X, x)$ and $(x + U) \cap A \neq \phi$. Let $a \in (x + U)$ and $a \in A$. Hence $a = x + u_1$ for some $u_1 \in U$. This gives $x = a - u_1 \in a - U \subseteq A - U$. Thus,

 $x \in \cap \{A - U: U \in \alpha O(X, 0)\}$ and so $x \in \cap \{A + U: U \in \alpha O(X, 0)\}$.

Conversely, assume that $x \notin \alpha Cl(A)$. Then, there exists $U \in \alpha O(X, 0)$ such that $(-U + x) \cap A = \varphi$, that is, $x \notin A + U$, hence $x \notin \cap \{A + U: U \in \alpha O(X, 0)\}$. This shows that $\cap \{A + U: U \in \alpha O(X, 0)\} \subseteq \alpha Cl(A)$. Therefore, we have $\alpha Cl(A) = \cap \{A + U: U \in \alpha O(X, 0)\}$.

Theorem 3.24 Suppose $(X_{(F)}, \tau)$ is an α -topological vector space. Then the scalar multiple of α -closed set is α -closed.

Proof. Let $B \in \alpha C(X)$, then $X \setminus B \in \alpha O(X)$ and $M_{\lambda}(X \setminus B) = \lambda \cdot (X \setminus B) = \lambda \cdot X \setminus \lambda \cdot B = X \setminus \lambda \cdot B \in \alpha O(X)$. Therefore, $\lambda \cdot B \in \alpha C(X)$.

Theorem 3.25 Suppose $(X_{(F)}, \tau)$ is an α -topological vector space. Then scalar multiple of α -compact set is α -compact.

Proof. Let A be an α -compact subsets of X. Let $\{U_i: i \in I\}$ be an α - open cover of $\lambda \cdot A$ for some non-zero $\lambda \in F$, then $\lambda \cdot A \subseteq \bigcup_{i \in I}$ U_i. This gives $A \subseteq 1/\lambda \cdot \bigcup_{i \in I} U_i = \bigcup_{i \in I} 1/\lambda \cdot U_i$. Since, $U_i \in \alpha O(X)$ and $(X_{(F)}, \tau)$ is an α -topological vector space, therefore, $1/\lambda \cdot U_i \in \alpha O(X)$ for each $i \in I$. Since, A is α -compact therefore, there exist a finite subset I₀ of I such that $A \subseteq \bigcup_{i \in I0} 1/\lambda \cdot U_i$. This implies that $\lambda \cdot A \subseteq \bigcup_{i \in I0} U_i$. Hence $\lambda \cdot A$ is α -compact in X.

Theorem 3.26 Suppose $(X_{(F)}, \tau)$ is a P-regular and α -topological vector space. Then the algebraic sum of an α -compact set A and α -closed set B is α -closed.

Proof. Let $x \notin A+B$, then for some $a \in A$, $x \notin a + B$. Since, the translation mapping is α -homeomorphism, so $T_a(B) = a + B$, where a + B is α -closed. Since X is P-regular space, therefore, there exist open sets U_a and V_a such that $x \in U_a$, $a + B \subseteq V_a$ and $U_a \cap V_a = \phi$. Also $V_a - B = \bigcup_{b \in B} (V_a - b)$ is α -open and contains a. Hence, $A \subseteq \bigcup_{a \in A} (V_a - B)$. Since, A is α -compact, therefore there exists a finite subset $\{a_1, a_2, a_3, ..., a_n\}$ of elements of A,

such that
$$A \subseteq \bigcup_{i=1}^{\infty} (V_{ai} - B)$$
. Let $U = \bigcup_{i=1}^{\infty} U_{ai}$, then U is an α -open

set containing x. We claim that $U \cap (A + B) = \varphi$. If not, then $y = a + b \in U \cap (A + B)$, then $y \in V_{ai}$ for some i and $y \in U_{ai}$, which is contradiction to the fact that $U_a \cap V_a = \varphi$.

Theorem 3.27 Suppose that $(X_{(F)}, \tau)$ is an α -topological vector space. If $H \subseteq X$ is linear subspace, then so is α Cl(H).

Proof. Let H be a linear subspace of X, which means that, H + H \subseteq H and for all $\lambda \in F$, $\lambda \cdot H \subseteq H$. By Theorem 3.21, $\alpha Cl(H) + \alpha Cl(H) \subseteq \alpha Cl(H + H) \subseteq \alpha Cl(H)$. Since, scalar multiplication is an α -homeomorphism it maps the α -closure of a set into the α -closure of its image, namely, for every $\lambda \in F$, $\lambda \cdot (\alpha Cl(H)) = \alpha Cl(\lambda \cdot H) \subseteq \alpha Cl(H)$. Therefore, $\alpha Cl(H)$ is linear subspace.

Definition 3.28 A subset E of an α -topological vector space $(X_{(F)}, \tau)$ is said to be balanced if for all $\lambda \in F$, $|\lambda| \leq 1$, $\lambda \cdot E \subseteq E$.

Theorem 3.29 Suppose that $(X_{(F)}, \tau)$ is an α -topological vector space. For every $B \subseteq X$:

(1) If B is balanced so is $\alpha Cl(B)$.

(2) If B is balanced and $0 \in \alpha \operatorname{Int}(B)$, then $\alpha \operatorname{Int}(B)$ is balanced. **Proof.** (1) Since multiplication by a (non-zero) scalar is an α homeomorphism, thus for every $\lambda \in F$, $\lambda \cdot (\alpha \operatorname{Cl}(B)) = \alpha \operatorname{Cl}(\lambda \cdot B)$. If B is balanced, then for $|\lambda| \leq 1$, $\lambda \cdot (\alpha \operatorname{Cl}(B)) = \alpha \operatorname{Cl}(\lambda \cdot B) \subseteq \alpha \operatorname{Cl}(B)$, hence $\alpha \operatorname{Cl}(B)$ is balanced.

(2) Let B be balanced subset of X. By Theorem 3.10, for every $0 < |\lambda| \le 1$, $\lambda \cdot (\alpha Int(B)) = \alpha Int(\lambda \cdot B)$. Since, B is balanced, therefore $\lambda \cdot B \subseteq B$, $|\lambda| \le 1$. Also, $\lambda \cdot (\alpha Int(B)) = \alpha Int(\lambda \cdot B) \subseteq \alpha Int(B)$. Since for $\lambda = 0$, $\lambda \cdot (\alpha Int(B)) = \{0\}$, we must require $0 \in \alpha Int(B)$ for the latter to be balanced.

Theorem 3.30 Suppose that $(X_{(F)}, \tau)$ is an α -topological vector space, then for every $U \in \mu_0$, there exists a balanced $V \in \mu_0$ such that $V \subseteq U$.

Proof. The proof is clear.

Definition 3.31. A set C is said to be convex if for $t \in [0, 1]$, $t C + (1 - t) C \subseteq C$.

Theorem 3.32 Suppose that $(X_{(F)}, \tau)$ is an α -topological vector space. If C is convex, then so is α Cl(C).

Proof. Convexity is a purely algebraic property, but α closures and α -interiors are topological concepts. The convexity of C implies that for all $t \in [0, 1]$, $t C + (1 - t) C \subseteq$ C. Let $t \in [0, 1]$, then $t (\alpha Cl(C)) = \alpha Cl(t C)$ and (1 - t) $(\alpha Cl(C)) = \alpha Cl((1-t)C)$. By Theorem 3.21, $t (\alpha Cl(C)) + (1 - t) (\alpha Cl(C)) = \alpha Cl(t C) + \alpha Cl((1 - t) C) \subseteq \alpha Cl(t C + (1 - t) C)$ $\subseteq \alpha Cl(C)$. Thus, $\alpha Cl(C)$ is convex.

Theorem 3.33 Suppose that $(X_{(F)}, \tau)$ is an α -topological vector space. If C is convex, then α Int(C) is convex.

Proof. Suppose that C is convex. Let x, $y \in \alpha Int(C)$. This means there exist α -open sets U and V containing 0 such that $x + U \subseteq C$ and $y + V \subseteq C$. Since C is convex, so, $t(x + U) + (1-t)(y+V) = (t x + (1-t) y) + t U + (1-t) V \subseteq C$, which proves that $t x + (1-t) y \in \alpha Int(C)$, namely $\alpha Int(C)$ is convex.

Definition 3.34 Suppose that $(X_{(F)}, \tau)$ is an α -topological vector space. A subset $E \subseteq X$ is said to be bounded if for all α -open set V containing 0, there exists $s \in R$ such that for all t > s, $E \subseteq tV$. That is, every α -open set containing zero contains after being blown up sufficiently.

Theorem 3.35 Suppose that $(X_{(F)}, \tau)$ is an α -topological vector space. If E is bounded, then $\alpha Cl(E)$ is bounded.

Proof. Let V be an α -open set containing 0, then by Theorem 3.7, there exist $W \in \mu_0$ such that $\alpha Cl(W) \subseteq V$. Since E is bounded, so $E \subseteq tW \subseteq t\alpha Cl(W) \subseteq tV$, for sufficiently large t. It follows that for large enough t, $\alpha Cl(E) \subseteq t\alpha Cl(W) \subseteq tV$. Thus, $\alpha Cl(E)$ is bounded.

The following result provides a characterization for α -T₂ of α -topological vector space.

Theorem 3.36 Let $(X_{(F)}, \tau)$ be an α -topological vector space. Then the following statements are equivalent: (1) X is α-T₂.

(2) If $x \in X$, $x \neq 0$, then there exists $U \in \mu_0$ such that $x \notin U$.

(3) If x, y \in X, x \neq y, then there exists V $\in \mu_x$ such that y \notin V.

Proof. (1) \Rightarrow (2). Let $x \in X$, $x \neq 0$ by assumption, there exist U,

 $V \in \alpha O(X)$ such that $0 \in U, x \in V$ and $U \cap V = \varphi$. Thus, $U \in \mu_0$, $V \in \mu_x$ and $x \notin U$.

 $\begin{array}{l} (2) \Rightarrow (1). \mbox{ Let } x, \ y \in X \ \mbox{such that } x - y \neq 0. \ \mbox{Theorem 3.3, there exists } U \\ \in \mu_0 \ \mbox{such that } x - y \notin U. \ \mbox{By Theorem 3.30, } W \ \mbox{can be assumed} \\ \mbox{such that } W + W \subseteq U \ \mbox{and by Theorem 3.30, } W \ \mbox{can be assumed} \\ \mbox{to be balanced. Let } V_1 = x + W \ \mbox{and } V_2 = y + W \ \mbox{and note that } V_1 \\ \in \mu_x, \ V_2 \in \mu_y \ \mbox{and } V_1 \cap V_2 = \phi, \ \mbox{since if } a \in V_1 \cap V_2, \ \mbox{then } -(a - x) \\ \in W, \ \mbox{as W is balanced and } a - y \in W. \ \mbox{It follows that } x - y = \\ (a - y) + (-(a - x)) \in W + W \subseteq U, \ \mbox{which is a contradiction. So,} \\ \mbox{we must have } V_1 \cap V_2 = \phi. \ \mbox{This shows that } X \ \mbox{is } \alpha - T_2. \end{array}$

$$(1) \Rightarrow (3)$$
. Obvious.

 $(3) \Rightarrow (2)$. Obvious.

The following result follows from Theorem 3.36.

Corollary 3.37 Let (X $_{(F)}$, τ) be an α -topological vector space. Then the following statements are equivalent: (1) X is α -T₂.

(2) \cap {U: U \in μ_0 } = {0}.

 $(3) \cap \{V: V \in \mu_x\} = \{x\}.$

Theorem 3.38 Any α -topological vector space $(X_{(F)}, \tau)$ is α -T₂. **Proof**. Pick $u_0, u_1 \in X$ such that $u_0 \neq u_1$. Thus $V = X \setminus \{u_1 - u_0\}$ is an α -open set containing zero. As 0 + 0 = 0, by $(X_{(F)}, \tau)$ is an α -topological vector space, there exist V_1 and V_2 sets containing 0 such that $V_1 + V_2 \subseteq V$. Define $U = V_1 \cap V_2 \cap (-V_1) \cap (-V_2)$, thus U = -U and $U + U \subseteq V$ and hence $u_0 + U + U \subseteq u_0 + V \subseteq X \setminus \{u_1\}$, so that $u_0 + v_1 + v_2 \neq u_1$, for all $v_1, v_2 \in U$, or $u_0 + v_1 \neq u_1 - v_2$, for all $v_1, v_2 \in U$, and since U = -U, therefore $(u_0 + U) \cap (u_1 + U) = \varphi$.

REFERENCES

- A. Grothendieck, Topological vector spaces, New York: Gordon and Breach Science Publishers, (1973).
- D. Jangkovic, I. J. Reilly and M. K. Vamanamurthy, On strongly compact topolog- ical spaces, Question and answer in General Topology, 6 (1) (1988), 29-40.
- N. Levine. Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1) (1963), 36-41.
- S. N. Maheshwari and S. S. Thakur, On α-irresolute mappings, Tamkang J. Math. 11 (2) (1980), 209-214.
- O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.
- M. Khan and B. Ahmad, On P-regular spaces, Math. Today, XIII, (1995), 51-56.
- A. P. Robertson, W. J. Robertson, Topological vector spaces, Cambridge Tracts in Mathematics. 53. Cambridge University Press, (1964).

بۆشاييا ئاراستەبرى توپولوجى ژ جورىّ a

كورتيا لێكولينێ:

مەرەم ژڨێ كارى ئەوە كو پێشكێشكرن و خويندنا بۆشاييا ئاراستەبرێ توپولوجى ژ جورێ α. بۆشاييا ئاراستەبرێ توپولوجى ژ جورێ α هاتيه پێناسەكرن برێكا كومێن ڤەكرى ژ جورێ α و نەخشا دوو دلى ژ جورێ α. بيرۆكا قۆقز، هاوسەنگ و كوما سنوردار هاتينه پێشكێشكرن وخاندن بۆ بۆشاييا ئاراستەبرێ توپولوجى ژ جورێ α بەدرێژايى دگەل ئەنجامێن دى، هاته سەلماندن كو هە مى بوشايى بەشى يا ڤەكرى ژ جورێ α ژ بۆشاييا ئاراستەبرێ توپولوجى ژ جورێ α دبيته بۆشاييا ئاراستەبرێ توپولوجى ژ جورێ α. هومۆمۆرپيسم لە نێوان بۆشايێن ئاراستەبرێ توپولوجى ژ جورێ α دريته نەخشا دوو دل ژ جورێ α ئەگەر ئەو نەخشەكا دوو دل بيت لىمەر توخمێ هاوئەنجام. لێ بۆشايێن ئاراستەبرێ توپولوجى ژ جورێ α ليكدانا ژمارێ دگەل كوما پتەو جورێ α ئەگەر ئەو نەخشەكا دوو دل بيت لىمەر توخمێ هاوئەنجام. لێ بۆشايێن ئاراستەبرێ توپولوجى ژ جورێ α ليكدانا ژمارێ جورێ α دبيته پتەو ژ جورێ α در (C)اع ھەروەسا (C) مەرى داندە قۆقز ئەگەر C قۆقز بيت. و ھەروەسا، لێ بۆشايێن ئاراستەبرێ توپولوجى ژ جورێ α،

lpha فضاءات متجه التوبولوجية من النمط

خلاصة البحث:

الغرض من هذا العمل هو تقديم و دراسة فضاءات متجه التوبولوجية من النمط α. فضاء متجه التوبولوجية من النمط α عرفناها باستخدام المجموعات المفتوحة من النمط α و الدوال المتعدية من النمط α. درسنا المفاهيم محدب، توازن و المجموعة مقيد في فضاء متجه التوبولوجية من النمط α. جنبا إلى جنب مع غيرها من النتائج، أثبتنا أن كل فضاء الجزئي المفتوح من النمط α في فضاء متجه التوبولوجية من النمط α تكون فضاء متجه التوبولوجية من النمط α. مفهوم التماثل بين فضاءات متجه التوبولوجية من النمط α في فضاء متجه التوبولوجية من النمط α تكون فضاء متجه التوبولوجية من احدي. في فضاءات متجه التوبولوجية من النمط α ضرب كمية عددية غير موجهة مع مجموعة المتراص من النمط α تكون المتراص من احادي. في فضاءات متجه التوبولوجية من النمط α ضرب كمية عددية غير موجهة مع مجموعة المتراص من النمط α تكون المتراص من النمط α و احدي. في فضاءات متجه التوبولوجية من النمط α ضرب كمية عددية غير موجهة مع مجموعة المتراص من النمط α تكون المتراص من النمط α و احدي. في فضاءات متجه التوبولوجية من النمط α ضرب كمية عددية غير موجهة مع مجموعة المتراص من النمط α تكون المتراص من النمط α و احدي. في فضاءات متجه التوبولوجية من النمط α ضرب كمية عددية غير موجهة مع مجموعة المتراص من النمط α تكون المتراص من النمط α و عراري (مقيد)، و لكن (٢) لمحدب اذا كانت C محدب. و أيضا، في فضاءات متجه التوبولوجية من النمط α, النمط α و لكن (٤) متكون متوازن اذا كانت E متوازن و ٤) عرب