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ABSTRACT: 

In this paper some new properties and results about Intermediate Value Property (IVP) via nonstandard concepts are given, and 

modifying some existing results to show the advantage role of nonstandard analysis tools for obtaining differed nonstandard 

distinguished results.  
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1. INTRODUCTION 

During the past centuries there were several studies about 

intermediate value property of functions such as; 

investigations, new properties, new types, ...etc (see: 

Banaszewski,1997; Brown and Laczkovich,1988; Bruckner, 

1982; Gibson and Natkaniec, 1996; Gibson and Rouch, 1982; 

Maliszewski, 2006; Pawlak, 1987). A little of those studies 

on intermediate value property includes the concepts of 

nonstandard analysis(Arkeryd and Henson, 1997; Goldblatt, 

1998; Hurd and Loeb, 1985; Palmgren, 1998). In this paper 

we will restrict our attention to show how nonstandard tools 

will simplify some of the results obtained previously by 

mathematicians about intermediate value property and to 

present some other nonstandard results. 

Classically a function is said to have the Intermediate Value 

Property (IVP) provided that if Iba,  are real numbers 

such that ba   and )(<)( bfaf , then for every   ;

)()( bfaf   , there exists a number         z ; bza   

such that =)(zf . 

Darboux(1875) showed that there are functions with the 

intermediate value property that are not continuous. Young 
(1907) studied real valued functions defined on an interval I 

with the following property: for every Rx  there exist 

sequences nx  and ny  such that xxn  , xyn   and 

both )( nxf  and )( nyf  converge to )(xf .  Maximoff 

(1936) showed that for real valued Baire class 1 functions 

defined on an interval, functions with intermediate value 

property and functions with a perfect road are equivalent 

(Maximoff, 1936). Most of the following definitions and 

notations can be found in (Bruckner et al, 1997; Hurd, and 

Loeb, 1985; Kusraev and Kutateladze, 1994; Maximoff, 

1936; Nelson, 1977; Robinson, 1970; Rosen, 2003): 

 

A point ( yx, )
2R  is a bilateral limit point of the graph of 

RR:f  if for every open neighborhood U of ( yx, ), 

both   fUx  R),(  and   fUx  R),(  

                                                                 
*  Corresponding author 

 

are infinite. Let E  be a subset of R . The set E  is perfect if it 

is nonempty, closed, and has no isolated points, that is, the set E  

is perfect if it is closed and each point of E  is a limit point of E, 

and E  is nowhere dense if E  contains no open intervals. A 

function f  has a perfect road if for every Rx , there exists a 

perfect set P  having x  as a bilateral limit point such that Pf |  

is continuous at x . A function f  is said to be in the first class 

of Baire or Baire 1 if it can be written as the pointwise limit of a 

sequence of continuous functions. A function f  is upper 

semicontinuous at a point x  if for every 0>  there is a 0>  

so that if |<| yx   then )(<)( xfyf . If 

R],[: baf  is bounded function, the Oscillation of f  on 

],[ ba  is define to be 

],[,|:)()(|=]),[,( bayxyfxfsupbaf  . If ),( bac , 

then the Oscillation of the function at the point c  is defined to 

be ]),[,(lim=),(
0







ccfcf . The graph of f  is 

bilaterally dense in itself if every point ( )(, xfx )is a bilateral 

limit point of f . A function RR:f  is symmetrically 

continuous if for each Rx , 0=)()((lim
0

hxfhxf
h




. 

A function f  has a Cantor Intermediate Value Property (CIVP) 

if for all Rqp,  with qp   and )()( qfpf   and for every 

Cantor set K  between )( pf  and )(qf , there exists a Cantor 

set C  between p  and q  such that .)( KCf   

Every set defined in ZFC, Zermelo-Fraenckel Set Theory with 

Axiom of Choice, is standard and we recall that in ZFC every 

mathematical object: a real number, function,  , etc in ZFC is 

regarded as a set. In 1977, Nelson presented an axiomatic 

approach to the Robinson’s nonstandard analysis (Robinson, 

1970), based on a theory called Internal Set Theory (IST), any 

set or formula in IST is called internal in case if it does not 

defined with predicate “standard”, otherwise it is called external. 

A real number x  is called limited if rx || for some positive 

standard real numbers r . 

http://journals.uoz.edu.krd/
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Otherwise is called unlimited. A real number x  is called 

infinitesimal if rx |<|  for all positive standard real numbers 

r . Two real numbers x  and y  are said to be infinitely close 

if yx   is infinitesimal and denoted by yx  . If x  is a 

real number, then the set of all numbers which are infinitely 

close to x  is called the monad of x  and denoted by )(xm . 

By )(xm
 or 0)>( ;x  we mean the set of all numbers which 

are greater than and infinitely close to x . Similarly we can 

define )(xm
. The monad of a set A  E, where E is any 

metric space, is equal to the set of all elements of E which 

are infinitely close to some element members of A, and 

denoted by )(Am . If x  is a limited real number, then it is 

infinitesimal close to a unique standard real number called 

standard part or shadow of x  and denoted by )(xst , or 

)(xsh . The standard part of any set A is equal to the set of 

all its standard elements, and denoted by stA, or sh (A). If x  

is a real number, then the set of all numbers y  such that 

yx   is limited is called the galaxy of x  and denoted by 

)(xgal , by )(xgal ( )(xgal ) we mean the set of all 

numbers which are greater(less) than x . 

Let f  be a real valued function then: 

1. f  is called continuous at 
o

x  if f  and ox  are 

standards and for all oxxx ,  implies that 

)()( oxfxf   

2. f  is called s-continuous at 
o

x  if for all 

oxxx , , then. )()( oxfxf    

 

Transfer Principle (TP): Let ),,,(
1 k

ttxA   be an 

internal formula with free variables 
k

ttx ,,,
1
  and no 

other free variables. Then 

)],,,(),,,( [ 111 kk
st

k
stst ttxxttxAxtt    

Let E be a subset of R . If p  is a limit point of E, then there 

exists a sequence  
Nnnp  in E with pp

n
  for all 

Nn , such that ppn
n

=lim


, that is ppn   for every 

unlimited n . 

An internal function f  is s-differentiable at Ix  if 








 



 )()(
=)('

xfxf
shxf for all nonzero infinitesimal 

 . Some times IVP is defined via set properties as follows: 

 

A function RR If :  satisfies the intermediate value 

property if and only if )(Jf  is an interval for a subinterval 

IJ   (Maliszewski, 2006).     

) points is to be used. 

2. MAIN RESULTS 

Definition 2.1 (Intermediate Value Property- Standard 

Version, SV)  Let f  be a standard function defined on a 

standard interval I . Then we say that f  satisfies IVP if for 

all standard Iba,  and for every standard real number   

such that )()( bfxf   , there exists a number z ; 

bza   such that =)(zf .  

 

Lemma 2.2   Standard version of IVP is equivalent to the 

classical one. Moreover, for all Iz ; such that bza  , 

where Iba, , z  is standard.  

Proof.  Let Iz ; bza   where Iba, , be a standard. First 

assume that Definition of IVP holds. To prove Definition 2.1, 

suppose that RR],[: baf  is a function satisfies the 

conventional intermediate value property. By applying backward 

direction of (TP) on Definition IVP we get the following 

statement: 

[A standard function RR],[: baf  satisfies the 

intermediate value property if for all standard real numbers   

between standard values )(af  and )(bf , there exists a 

standard number z ; Iz ; bza   such that =)(zf ]. 

Take I  to be the interval ],[ ba  and Iyx, . Since both f

and   are standards, then z ; bza  , is also standard 

because standard functions cannot take standard value at 

nonstandard variables. Conversely, by applying forward 

direction of (TP) on Definition 2.1 we get Definition of  IVP.  

 

The Transfer Principle (TP) is one of the main tools for 

exchanging the valid statements between standard and 

nonstandard senses. Lemma 2.2 shows how Definition 2.1 made 

up on it. In a similar manner, we proved the valid of the 

nonstandard version of some definitions given in the introduction 

of the paper and it takes the following forms: 

A standard function f  is upper semicontinuous at a standard 

point x  if ))(()( xfmyf   whenever yx  . Oscillation of 

f  at a point x  is defined as the quantity 

 |)()(|=)( xfyfsupxf   for all )(xmy . A function 

RR:f  is called symmetrically s-continuous if for each 

Rx , )()( hxfhxf   for every 0h .  

 

Theorem 2.3  Every continuous function is satisfy IVP-SV. 

Proof. Let RR:f  be a a standard continuous function and 

  be a standard real numbers such that: 

)()( bfaf    for standard Rba, . To find z ; 

bza   such that =)(zf , 

take   R �)(:],[= xfbaxS st
, then S  because 

Sa  and S  is bounded by a standard element b . 

Since R  is complete, then S  has a least upper bound ( lub ) in 

R , standard or nonstandard. Let )(= Slubz . Since b  is an 

upper bound, bz � . 

We now show that =)(zf . Since )(= Slubz , either 

Sz  or )(Smz . If Sz , then �)(zf . If )(Smz

, then there exists a standard sequence   St
nn 
N  such that 

zt   for all unlimited  . Since f  and t  are standards, 

St  , then  )(tf . Since f  is continuous, then 

  �)()( tfzf  for all unlimited  .  

Thus in either case �)(zf .  
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To prove =)(zf . First suppose <)(zf . Since f  is 

continuous at z , therefore for all zx   we have 

)()( zfxf  . 

That is, for all standard 0> ,[ there exist a standard 

 |<)()(:|0> zfxf  , whenever ]|<| zx  . Using 

(TP) twice, we get for all 0> , [  there exist 

 |<)()(:|0> zfxf  , whenever ]|<| zx  . Take 






)(
=

zf
, then for all ],[)( bazmx  , we see that

  )(<)(<)( zfxfzf  

Since <)(zf , bz  , then  ],()( bzzm . Thus, 

for any ],( bzx  with )(zmx  , we have 









 <

1
1)(=

)(
)(=)(<)( 











 zf

zf
zfzfxf

 

That is <)(xf . But then Sx  and zx > , which 

contradicts )(= Slubz . Therefore =)(zf .  

 

Remark 2.4  The intermediate value Property is one of the 

fundamental properties of calculus. The property implies that 

if I  is an interval and RRI :f  is continuous, then 

)(If  is an interval. The following corollary is a nonstandard 

equivalent version of the above remark. 

 

 

Corollary 2.5  If RI  is a standard interval and RI:f  

is continuous on I , then )(If  is a standard interval.  

Proof. Let  ,  be standard numbers belongs to )(If  with 

 < , and let Iba,  with ba   be such that 

=)(af  and =)(bf . Suppose  satisfies  <<

. If ba < , then since f  is continuous on ],[ ba  by Theorem 

2.3 there exists ),( baz  such that =)(zf . Thus 

)(If . A similar argument also holds if ba > .  

 

Corollary 2.6  Every s-continuous function satisfies IVP-

SV.  

Proof. From the fact that every s-continuous is continuous 

and by Theorem 2.3 the result follows.  

 

Remark 2.7  Classically the converse of Theorem 2.3 does 

not holds generally. See the following example.  

Example 2.8  Let the function RR:f  defined by 

=)(xf  


















0=0

0
1

sin

x

x
x  satisfies IVP but is not 

continuous.  

The following lemma shows that s-continuity is stronger than 

continuity in the sense of IVP-SV. With s-continuity the 

values of variables a  and b  given in the Definition 2.1 are 

need not necessary to be standards. 

 

Lemma 2.9  Let f  be a s-continuous function from a metric 

space ),( dX  into a metric space ),( Y . Then for every 

Xba ,  and standard real number   such that 

)(<<)( bfaf   there exist a standard ),( baz  such that 

=)(zf .  

Proof. Let t  be a greatest point in X  such that <)(tf . Then 

for bta   we have )(<)(   tftf , where   is 

positive infinitesimal. Since )(tsttt    and f  is 

continuous then ))(()()( tstftftf   . Since   is 

standard, then ))((= tstf . Put )(= tstz , the result follows.  

 In the following theorem and lemmas we present some 

applications of IVP-SV concerning the differentiation concepts. 

 

Theorem 2.10  Let f  be an internal continuous function defined 

on an interval I . Then yxyx  ;, I  such that )(ymx , the 

shadow of the set 












yxyx

yx

yfxf
S ;,:

)()(
= I  is a 

galaxy interval of points on the graph of the function f . 

Proof. Let  standardisSS   :=*  . 

Fix a point 
*S , then yxyxst < ,, I  such that 

 
xy

xfyf



 )(
= , then   is standard. Let 

.<,
)()(

=* vu
uv

ufvf




  Since yx <  and vu <  then for all 

[0,1]t  we have 0)())((1  uvtxyt . Define 

Sg [0,1]:  as follows: 

   
   

[0,1],
11

)1()1(
=)( 




t

tuxttvyt

tuxtftvytf
tg .  

It’s clear that   
*=(1)  ,=(0)  gandg              (1)   

Since f  is continuous, then so is g . 

Thus, by Corollary 2.5 we obtain that ([0,1])g  is an interval, 

From Equation (1) we obtain that   and any other points 
*  of 

S  belong to a bounded interval subset S . That is, 
*S  is a 

standard interval for all points belong to S . Thus, S  is also 

bounded interval. 

Therefore, Sgal =)(  and )(=* SstS .  

 

Lemma 2.11  Let RI:f  be s-differentiable function with 

standard differentiation, defined on an internal open interval I . 

Then for every nonstandard number   such that 

)()( bfaf    there exist a standard z; bza   such 

that =)(zf  .  

Proof. Let











malinfinitesiisx
xfxf

E   ,:
)()(

= 



I . 

Since f  is continuous then by Theorem 2.10 we obtain  that E  

is an interval. Let  I xxfS :)(= . To prove =)(zf  , by 

Corollary 2.5 it is only required to prove that S  is an interval. 

Let )(= EmH . Then HS , but H SE , by Theorem 

2.10 we have E  is an interval and definition of monad of sets 

implies that S  is an interval.  
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Lemma 2.12  Let f  and g  be two internal functions 

defined on an open interval I  into R  satisfying IVP. If f  

is limited and g  is infinitesimal, then the shadow of gf   

satisfy IVP.  

Proof. Since both f  and g  are satisfying IVP, then there 

exist z  and u  between x  and y  where Iyx, , such that 

=)(zf  and =)(ug  for )()( yfxf    and 

)()( ygxg   . 

Let ))(())(( ygfxgf   . Since f  is limited and 

g  is infinitesimal, then )())(( xfxgf   for all x .Sin

)(= zf ,then =)())(( zfzgf  , that is 

 ))(( zgf . 

Thus =))(( zgfo  . Hence, choose zw = ,the result 

follows.  

 

Lemma 2.13  If f  is a standard function satisfying 

Definition 2.1 and not continuous at a standard point x , then 

there is a an interval ),( ba  such that for all standard 

),( bay  there is a sequence 
n

x  such that xxn   and 

yxf n =)(  for all unlimited n .  

Proof. Since f  is not continuous at x , then there are 

sequences ny  and nt  such that nn txy   for all 

unlimited n  and )(<)( nn tfbaxf   for some 

unlimited n . That is, )(<)( nn tfyf . For all standard 

byay <<;  we obtain that )(<<)( nn tfyyf . Use 

Definition 2.1 and from being nn txy   we deduce that 

there is a sequence )(xmxn   such that nnn txy <<  and 

yxf n =)( .  

Gibson and Natkaniecn (1996) gave a proof of the following 

theorem in a standard method, here we modify and reprove it 

by using nonstandard tools and showing that there are more 

types of Cantor sets satisfying the requirement of the given 

theorem. 

 

Theorem 2.14  If RR:f  is a function satisfying CIVP, 

then f  is perfect road function.  

Proof. Let Rx  such that the function f  is constant on 

)(\ xmR . Let 
n

x  be a standard increasing sequence in 

)(xm
 such that xxn  , )()( xfxf n   and 

)()( xfxf n  , that is )(xmxn
  and 

))(()( xfmxf n   for all unlimited n  such that 

0|>)()(| ;xfxf n  . from definition of s-continuity, we 

obtain that the function f  is s-continuity and for every 

unlimited n  not both )( nxf  and )(xf  are standards at the 

same time, because on contrary we have )(=)( xfxf n . 

Therefore, for some standard n , select any Cantor set nK  

between )( nxf  and )(xf . According to the value of n , 

the Cantor set nK  will be as follows  

=nK  









standardsarefxn

eappreciablnseteappreciabl

unlimitednsetmalinfinitesi

  ,,

  

  



 

Since f  satisfying CIVP, then there exists a Cantor set nC  

between nx  and x  as follows 

=nC  









standardsarefxn

eappreciablnseteappreciabl

unlimitednsetmalinfinitesi

  ,,

  

  



 

such that nn KCf )( . Let  xCA n
n

=  for standard 

n . Then A  is perfect and Af |  is s-continuous on )(xm
. 

Similarly we can find perfect set B  such that Bf |  is s-

continuous on )(xm
. Let BAP = . Then the function f  

is s-continuous on )()(=)( xmxmxm    and it is also 

perfect.  

 

Theorem 2.15  If [0,1]: Rf  is a bilaterally dense in itself, 

symmetrically s-continuous and the set of s-continuous points of 

f  is subset of (0)1f , then the oscillation function, f , is 

satisfying Definition 2.1. 

Proof. Let )( fC  be the set of all s- continuity points of f . By 

Theorem 2.5 in [20] the oscillation function f  is upper 

semicontinuous, symmetrically continuous and 

(0))(==)( 11   ffCfC f . Since f  is symmetrically 

continuous, then C(f) is dense in R . To see that the graph of f  

is bilaterally dense in itself, let Rx  and 
 0 .Since 

(0))( 1 ffC  and )( fC  is dense in R , then 

 )(,:|)()(|1 xmzyzfyfsupf 

  )(�)(:)( xfxmyyfsup  . 

Since f  is symmetrically continuous at x  and 
1

f  is upper 

semicontinuous, there exits 
 0  such that: if )(mh , 

then )()( hxfhxf   and if yx  , then 

)(<)( 11 yy ff
  ; . Since f  is bilaterally dense in itself and 

(0))( 1 ffC , then for every )(mh  there exist 

 xxm \)(,   symmetric with respect to x . That is, 

x2=   such that )()( 1 xf f
   and )()(  ff  . 

Therefore )()(1  fxf 
. 

Now, since }{\)( xxm  and from being 

)(<)( 11 yy ff
    we deduce that )(<)(1 xff  

).(<)(1 xff  
 

Due to the fact that 
f

  satisfies Definition 2.1 and its graph 

having each ))(,( xx f  as a bilateral limit point(Kuratowski 

and Sierpinski, 1922).  
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 :ێنیكولێل ایكورت
مكی نا كارهێنانی چههۆی بهیشییگ بهسییگ  هدهبه  IVP ندینهندی نرخی ناوهتمهى تایبهربارهنجامی نوێ دهت  و ئهسییه ه ندێك له, ههیهوهم توێژینهله

 .یینجامی نا پێوانهستهێنانی ئهدهیی بۆ بهمكی شهكاری ناپێوانهكانی پێشوو و دیاریكردنی رۆڵی چهنجامهئه ندێك لهیی و  ۆرانكاریكردنی ههپێوانه

 

 

 

 

 خلاصة البحث:
مخ خلال م اهلم غلر قلاسییلق وتعديب بعض النتائا   IVPفي هذه البحث ، يتم إعطاء بعض الخصییائو والنتائا الجديدع عخ خاةییلق ال لمق المتوسییطق  

 مملزات أدوات التحللب غلر ال لاسلق للحصول على نتائا غلر قلاسلق متملزع. والحاللق لإظهار دور 
 

 




