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ABSTRACT:

In this paper some new properties and results about Intermediate Value Property (IVP) via nonstandard concepts are given, and
modifying some existing results to show the advantage role of nonstandard analysis tools for obtaining differed nonstandard

distinguished results.
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1. INTRODUCTION

During the past centuries there were several studies about
intermediate value property of functions such as;
investigations, new properties, new types, ..etc (see:
Banaszewski,1997; Brown and Laczkovich,1988; Bruckner,
1982; Gibson and Natkaniec, 1996; Gibson and Rouch, 1982;
Maliszewski, 2006; Pawlak, 1987). A little of those studies
on intermediate value property includes the concepts of
nonstandard analysis(Arkeryd and Henson, 1997; Goldblatt,
1998; Hurd and Loeb, 1985; Palmgren, 1998). In this paper
we will restrict our attention to show how nonstandard tools
will simplify some of the results obtained previously by
mathematicians about intermediate value property and to
present some other nonstandard results.

Classically a function is said to have the Intermediate Value

Property (IVP) provided that if a,b el are real numbers
suchthat a# b and f (@) < f(b), then for every 4 ;
f(a) <1 < f(b), there exists a number Z;a<z<b
suchthat f(z)=A4.

Darboux(1875) showed that there are functions with the
intermediate value property that are not continuous. Young
(1907) studied real valued functions defined on an interval |
with the following property: for every X € R there exist
sequences X, and Y, such that X, > X, y, = X and

both f(x,) and f(y,) converge to f(X). Maximoff

(1936) showed that for real valued Baire class 1 functions
defined on an interval, functions with intermediate value
property and functions with a perfect road are equivalent
(Maximoff, 1936). Most of the following definitions and
notations can be found in (Bruckner et al, 1997; Hurd, and
Loeb, 1985; Kusraev and Kutateladze, 1994; Maximoff,
1936; Nelson, 1977; Robinson, 1970; Rosen, 2003):

A point (X,y) e R? is a bilateral limit point of the graph of
f :R—R if for every open neighborhood U of (X, Y),
both ((—o0,x)xR)AU N f and ((x,0)xR)"U N f
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are infinite. Let E be a subset of R . The set E is perfect if it
is nonempty, closed, and has no isolated points, that is, the set E
is perfect if it is closed and each point of E is a limit point of E,
and E is nowhere dense if E contains no open intervals. A
function f has a perfect road if for every X € R, there exists a
perfect set P having X as a bilateral limit point such that f |p
is continuous at X . A function f is said to be in the first class
of Baire or Baire 1 if it can be written as the pointwise limit of a
sequence of continuous functions. A function f is upper
semicontinuous at a point X if forevery £ > 0 thereisa § >0
so that if |x-—y|<d then f(y)<f(X)-¢. If
f :[a,b] >R is bounded function, the Oscillation of f on
[a,b] is define to be
o(f,[a,b])=sup| f(xX)—f(y)|:x,ye[a,b].If ce(a,b),
then the Oscillation of the function at the point C is defined to
be @(f,c)= lim @(f,[c—5,c+5]). The graph of f is

50"

bilaterally dense in itself if every point (X, f(X))is a bilateral

limit point of f . A function f:R—>R is symmetrically

continuous if for each X e R, |im (f (x+h)—f(x=h)=0.
h—0

A function f hasa Cantor Intermediate Value Property (CIVP)
ifforall p,qeR with p=q and f(p)= f(q) and forevery
Cantor set K between f(p) and f(q), there exists a Cantor

set C between p and ¢ suchthat f(C) < K.

Every set defined in ZFC, Zermelo-Fraenckel Set Theory with
Axiom of Choice, is standard and we recall that in ZFC every
mathematical object: a real number, function, - - -, etcin ZFC is
regarded as a set. In 1977, Nelson presented an axiomatic
approach to the Robinson’s nonstandard analysis (Robinson,
1970), based on a theory called Internal Set Theory (IST), any
set or formula in IST is called internal in case if it does not
defined with predicate “standard”, otherwise it is called external.

A real number X is called limited if | X |< r for some positive
standard real numbersr .
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Otherwise is called unlimited. A real number X is called
infinitesimal if | X |< r for all positive standard real numbers
r. Two real numbers X and Yy are said to be infinitely close
if X—y is infinitesimal and denoted by X = y. If X isa
real number, then the set of all numbers which are infinitely
close to X is called the monad of X and denoted by m(X).
By m*(x) or (x>;0) we mean the set of all numbers which
are greater than and infinitely close to x . Similarly we can
define m™(x) . The monad of a set Ac E, where E is any

metric space, is equal to the set of all elements of E which
are infinitely close to some element members of A, and
denoted by m(A). If X is a limited real number, then it is

infinitesimal close to a unique standard real number called
standard part or shadow of X and denoted by st(X), or

sh(x) . The standard part of any set A is equal to the set of

all its standard elements, and denoted by A, or sh (A). If X
is a real number, then the set of all numbers y such that

X—y is limited is called the galaxy of X and denoted by

gal(x), by gal®(x) (gal™(x)) we mean the set of all
numbers which are greater(less) than X .
Let f be areal valued function then:

1. f s called continuous at X  if f and X, are
standards and for all
f) = f(x,)

2. f
X, X = X, , then. f(X)~ f(X,)

X,X = X, implies that

is called s-continuous at Xo if for all

Transfer Principle (TP): Let A(X,tl,...,tk) be an

internal formula with free variables X,tl,. . .,tk and no
other free variables. Then

VU - VXA, ) © YX(G Y, )]
Let E be a subset of R . If p is a limit point of E, then there

exists a sequence {pn}neN in E with D # P for all
neN, such that |im p, = p, thatis p, = p for every

n—o
unlimited n.

An internal function f is s-differentiable at xel if

- f(x+06)—f(x
f(x)= Sh[%} for all nonzero infinitesimal
J . Some times IVP is defined via set properties as follows:

A function f:l cR — R satisfies the intermediate value
property if and only if f(J) is an interval for a subinterval

J < | (Maliszewski, 2006).
) points is to be used.

2. MAIN RESULTS
Definition 2.1 (Intermediate Value Property- Standard
Version, SV) Let f be a standard function defined on a
standard interval |. Then we say that f satisfies I\VP if for

all standard a,b el and for every standard real number A

such that f(X)<A<f(b), there exists a number z;
a<z<b suchthat f(z)=A1.

Lemma 2.2  Standard version of IVP is equivalent to the
classical one. Moreover, for all zel; suchthat a<z<b,
where a,bel, Z is standard.

Proof. Let zel; a<z<b where a,bel, beastandard. First
assume that Definition of IVP holds. To prove Definition 2.1,
suppose that f :[a,b]cR—R s a function satisfies the
conventional intermediate value property. By applying backward

direction of (TP) on Definition IVP we get the following
statement:

[A standard function f:[a,b]cR—>R satisfies the

intermediate value property if for all standard real numbers A
between standard values f(a) and f(b), there exists a

standard number Z; zel; a<Z<b suchthat f(z)=11.
Take | to be the interval [a,b] and X, Y €. since both f

and A are standards, then Z; a<z<Db, is also standard
because standard functions cannot take standard value at
nonstandard variables. Conversely, by applying forward
direction of (TP) on Definition 2.1 we get Definition of 1VP.

The Transfer Principle (TP) is one of the main tools for
exchanging the valid statements between standard and
nonstandard senses. Lemma 2.2 shows how Definition 2.1 made
up on it. In a similar manner, we proved the valid of the
nonstandard version of some definitions given in the introduction
of the paper and it takes the following forms:

A standard function f is upper semicontinuous at a standard
point X if f(y)em®(f(x)) whenever x ~ y . Oscillation of

f at a point X is defined as the

;¢ (X) = Sup{| f(y)-f(X) |} for all yem(x). A function

quantity

f :R—>R is called symmetrically s-continuous if for each
xeR, f(x+h)=~ f(x—h) forevery h=0.

Theorem 2.3 Every continuous function is satisfy 1VP-SV.
Proof. Let f :R — R be a a standard continuous function and

A be a standard real numbers such that:
f(aQ)<A<f(b) for standard a,beR. To find Z;

a<z<bsuchthat f(z)= A4,

take S =" {x ela,b]: f(x)I:H}c R, then S =& because
JaeS and S is bounded by a standard element b .

Since R is complete, then S has a least upper bound (lub ) in
R, standard or nonstandard. Let z =lub(S) . Since b is an

upper bound, z[<b.
We now show that f(z)=A. Since z=Iub(S), either
ZzeSorzem(S).1fze S then f(2)[EA.1f zem(S)
, then there exists a standard sequence {tn }neN €S such that
t, = z for all unlimited @ . Since f and t, are standards,
tw €S, then f(t,)<A. Since f s continuous, then
f(z) = f(t,)[KA forall unlimited @.

Thus in either case f(z)[ 1.
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To prove f(z)=A.Firstsuppose f(z) <A.Since f is
continuous at z, therefore for all X=2Z we have

f(x)= f(2).

That is, for all standard & >0 ,[there exist a standard
6>0: f(x)—f(z)|<e&, whenever |X—2|<J]. Using
(TP) twice, we get for all &£>0, [ there exist
6>0: f(X)—f(z)|<&, whenever |x—2z|<68]. Take
o= A—-1(2)

w

f(z)-e<ft(X)<f(2)+¢

Since f(z)<A, z#b, then m(z2)n(z,b]=D. Thus,

, then for all Xem(z)N[a,b], we see that

forany X € (z,b] with x e m*(z) , we have

fx)<f(2)+e= f(z)+/1_—f(z):i+ f(z)(l—lj</1

w w w
That is f(X)<A. Butthen xeS and X>Z, which
contradicts z =lub(S) . Therefore f(z)=A4.

Remark 2.4 The intermediate value Property is one of the
fundamental properties of calculus. The property implies that

if | is an interval and f:lcR >R is continuous, then

f (I) is an interval. The following corollary is a nonstandard
equivalent version of the above remark.

Corollary 2.5 If | c R isastandard interval and f :| >R
is continuous on |, then f (1) is a standard interval.

Proof. Let @, 3 be standard numbers belongsto T (1) with
a<pB, and let a,bel with a#b be such that
f(a)=a and f(b)= /. Suppose A satisfies &« <A< f3
.If a<b,thensince f iscontinuouson [a,b] by Theorem
2.3 there exists ze(a,b) such that f(z)=A. Thus
A e f(l). Asimilar argument also holds if a >b .

Corollary 2.6 Every s-continuous function satisfies 1VP-
SV.

Proof. From the fact that every s-continuous is continuous
and by Theorem 2.3 the result follows.

Remark 2.7 Classically the converse of Theorem 2.3 does
not holds generally. See the following example.

Example 2.8 Let the function f:R-—>R defined by

(1

f(x)= Sm[;j X#0  tisfies IVP but is not
0 x=0

continuous.

The following lemma shows that s-continuity is stronger than
continuity in the sense of IVP-SV. With s-continuity the

values of variables a and b given in the Definition 2.1 are
need not necessary to be standards.

Lemma2.9 Let f beas-continuous function from a metric
space (X,d) into a metric space (Y, p). Then for every
a,beX
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and standard real number A such that

f(a) <A< f(b) there exist a standard z € (a,b) such that
f(z)=1.

Proof. Let T beagreatest pointin X suchthat f(t) < A.Then
for a<t<b we have f(t)<A<f(t+a), where a is
positive infinitesimal. Since t~t+a ~st(t) and f is
f(t)= f(t+a)=~ f(st(t)). Since A is
standard, then A = f(st(t)) . Put z = st(t), the result follows.

In the following theorem and lemmas we present some
applications of 1VP-SV concerning the differentiation concepts.

continuous then

Theorem 2.10 Let f be an internal continuous function defined
onaninterval |. Then WX,y el;x #y suchthatx e m(y) , the
fO)—f(y)

X-y
galaxy interval of points on the graph of the function f.
Proof. Let ™ = {1 eS: Ais standard}.

shadow of the set S:{ :x,yel;x;ty} is a

Fix a point A €S, then 3%x,yel,x<y such that

A= M , then A is  standard. Let
y—X

A= M,u <y, Since X<Y and u<V then for all
v-u

te[0,1] we have (1-t)(y—x)+t(v—u)=0. Define

0:[0,1]—> S as follows:
o) = f(l-tly+tv)— f({l—t}x—tu),te[o,l].
fi-tly+tv—{l-tjx—tu
It’s clear that
g0 =2and g)=7
since f is continuous, thensois g .
Thus, by Corollary 2.5 we obtain that g([0,1]) is an interval,

From Equation (1) we obtain that A and any other points A of

S belong to a bounded interval subset S . That is, S" isa
standard interval for all points belong to S . Thus, S is also
bounded interval.

Therefore, gal(4) =S and S” = st(S).

Lemma 2.11 Let f :l—>R be s-differentiable function with
standard differentiation, defined on an internal open interval l.
Then for every nonstandard number A  such that
f'(@) <A< f'(b) there exist a standard z; @ < Z <b such

that f'(z) = A.
{f(x+§)—f(x)
o

Proof. Let E = :xal,5isinfinitesimal}.

Since f is continuous then by Theorem 2.10 we obtain that E
is an interval. Let S = {f "(x): x el}. Toprove f'(z2)=1,by
Corollary 2.5 it is only required to prove that S is an interval.

Let H=m(E). Then ScH, but Ec S cH, by Theorem

2.10 we have E is an interval and definition of monad of sets
implies that S is an interval.
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Lemma 2.12 Let f and § be two internal functions

defined on an open interval | into R satisfying IVP. If f
is limited and @ is infinitesimal, then the shadow of f + @

satisfy 1\VP.
Proof. Since both f and g are satisfying 1\VP, then there

exist Z and U between X and Y where X,y €1, such that
f(z)=4 and gu)=y for f(X)<A<f(y) and
g(x¥)<r=g(y).

Let (f+g)(X)<u<(f+9g)(y).Since f is limited and
g is infinitesimal, then (f +g)(X) = f(x) forall X .Sin
A=1(z) then (f+9)2)~f(z)=A, that is
(f+9)2)= 4.

Thus °(f +9)(z) =A. Hence, choose W = z the result
follows.

Lemma 2.13 If f is a standard function satisfying
Definition 2.1 and not continuous at a standard point X, then
there is a an interval (a,b) such that for all standard
y€(a,b) there is a sequence X such that x, — X and
f(x,) =y forall unlimited n.

Proof. Since f is not continuous at X, then there are
sequences Yy, and t, such that y,=Xx=t, for all
f(x,)~a<b~ f(t,) for some
unlimited N. That is, f(y,)< f(t,). For all standard
y;a<y<b we obtain that f(y,)<y<f(t,). Use
Definition 2.1 and from being y, = X =t we deduce that

unlimited n and

there is a sequence X, € m(X) such that y, <X, <t, and

f(x))=y.
Gibson and Natkaniecn (1996) gave a proof of the following
theorem in a standard method, here we modify and reprove it
by using nonstandard tools and showing that there are more
types of Cantor sets satisfying the requirement of the given
theorem.

Theorem 2.14 If f :R — R isa function satisfying CIVP,
then f is perfect road function.

Proof. Let x € R such that the function f is constant on
R\m™(x). Let X be a standard increasing sequence in
f(x,)= f(x) and
X, €M™ (X) and
unlimited n such that

m~(X) such that Xx,—>X,
f(x,)—> f(x), that is

f(x,)em(f(x)) for all
| f(X,)—F(X)|>0. from definition of s-continuity, we
obtain that the function f is s-continuity and for every
unlimited N notboth f(x,) and f(x) are standards at the
same time, because on contrary we have f(x,)= f(X).
Therefore, for some standard N, select any Cantor set K,
between f(x,) and f(x). According to the value of n,

the Cantor set K,, will be as follows

infinitesimal set nunlimited
K, = 4 appreciable set n appreciable
@ n,x, f are standards

Since f satisfying CIVP, then there exists a Cantor set C,
between X, and X as follows

infinitesimal set nunlimited
C, = < appreciable set n appreciable
@ n,x, f are standards

such that f(C,)c K. Let A= U C, U {x} for standard
n

n. Then A is perfect and f |, is s-continuous on m~(X).

Similarly we can find perfect set B such that f |5 is s-
continuous on m* (x) . Let P = A\ B . Then the function f

is s-continuous on M(X) =m™(X)um®(X) and it is also
perfect.

Theorem 2.15 If f:R—[0,1] is a bilaterally dense in itself,
symmetrically s-continuous and the set of s-continuous points of

f is subset of ffl(O), then the oscillation function, @; , is
satisfying Definition 2.1.

Proof. Let C(f) be the set of all s- continuity points of f . By
Theorem 2.5 in [20] the oscillation function @; is upper
semicontinuous, symmetrically continuous and
C(f)= a)?l =C(f)c f(0). Since f is symmetrically
continuous, then C(f) is dense in R . To see that the graph of @,

is bilaterally dense in itself, let XeR and £~0" Since
C(f)c f0) and C(f) is
it ~sup{ f(y)- f(2)Fy, zem(x)}

~sup{f (y):yemO)IBk f(x).

Since f is symmetrically continuous at X and m{l is upper

dense in R, then

semicontinuous, there exits & ~0" such that: if hem™(5),
then f(x+h)~ f(x-h) and if

a)?l(y) <;a)?l(y) . Since f is bilaterally dense in itself and

X=Y, then

C(f)c f72(0), then for every hem™ () there exist
a, fem(x)\{x} symmetric with respect to X. That is,

a+f=2x such that f(a)~w (x) and f(5)= f(B).
Therefore a);l(x) ~ f(B).

aem(X)\{x} and from
o (y) <~ o7 (y)
ot (B) <~ o (X).

Due to the fact that (D, satisfies Definition 2.1 and its graph

Now, since being

we deduce thatw;*(a) <~ @; (X)

having each (X,@; (X)) as a bilateral limit point(Kuratowski
and Sierpinski, 1922).
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