

journals.uoz.edu.krd

Available online at sjuoz.uoz.edu.krd

Vol. 6, No. 1, pp. 35–41, Mar.-2018

p-ISSN: 2410-7549

e-ISSN: 24146943

 35

WEB APPLICATIONS AND WEB SERVICES: A COMPARATIVE STUDY

Qusay I. Sarhan a ,* and Idrees S. Gawdan b

a College of Science, University of Duhok, Kurdistan Region, Iraq – (qusay.sarhan@uod.ac)
b Curriculum Development Center, Technical College of Engineering, Duhok Polytechnic University, Kurdistan

Region, Iraq.

Received: Jul. 2017 / Accepted: Mar., 2018 / Published: Mar., 2018 https://doi.org/10.25271/2018.6.1.375

ABSTRACT:

Software components that rely on the Internet in order to be accessed and used cover many aspects of our daily activities including

email checking, weather checking, purchase ordering, and Facebook logging. Nowadays, these components are considered one of

the most valuable and fundamental rights in human’s life. However, accessing and using the functionality of such components are

performed using two techniques: web applications or traditional web services. Determining which one of the techniques is better

suited for delivering the functionality of an Internet-based software component is not an easy task to decide. Therefore, this paper

aimed to make a comparative analysis and study of both techniques alongside many directions to help web developers make the

right choice to deliver the functionality of Internet-based software components. This is achieved by providing them with a set of

requirements that have been proposed by the authors. The proposed requirements clarify a number of misunderstandings and issues

peculiar to both techniques. Furthermore, this paper has provided a comparative table of both techniques. To the best of our

knowledge, so far there is no comprehensive comparative study has been conducted in this context which was the rationale for the

authors to carry out this study.

KEYWORDS: Internet-Based Software Components; Web Applications; Web Services; Internet of Things; Comparative Study.

1. INTRODUCTION

Internet-based daily life is obvious for everyone and it is one

of the most prominent characteristics of the current era in

which people live. A variety of Internet-based software

components are available to make our life easier and smarter.

The exponential increment of people and devices located at

different places and connected to the Internet using different

means of connectivity made them an important part of the

Internet (Gubbi et al., 2013). The evolution in Internet

technologies to meet the demands of this increment led to the

emergence of new application domains such as Internet of

Things (IoT). The IoT connects everyday objects around us to

the Internet and manages this kind of connectivity (Khan et al.,

2012). Besides, it provides a wide range of Internet-based

software components that help us to achieve many things in an

easy and smart way. Knowing a traffic state near your work

place using your mobile phone is just a very simple example

about using the IoT. However, this new interaction raises a

question of: How can users access and use the functionality of

different Internet-based software components exist due to such

recent domains. In other words, which technique has to be

selected and used by web developers in order to deliver the

functionality of these components to beneficiaries? Both web

applications and web services with their notable differences

represent the techniques of accessing and using Internet-based

software components. However, users see both techniques

completely the same in terms of work nature, technical

features, and consider no difference exists between them at all.

Usually, they need to accomplish some Internet-based tasks,

such as checking the daily weather or checking bank account

either using their personal computer or any other computing

device that has the ability to connect to the Internet. They care

* Corresponding author

This is an open access under a CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/)

only about getting the tasks they need done regardless of what

is going on behind technical scenes. Therefore, the technical

buzzer-words are not important for them. This point of view is

not applicable for web developers; they focus and care more

about the technical aspects. They need to know everything

about these techniques including how to select the best

technique, how to use it properly, and many other important

aspects. In literature, several authors presented many

comparison studies of web applications and web services

against standalone applications or distributed applications and

the ability of converting web applications into web services

using wrapping and reverse engineering techniques (Yu et al.,

2007, Cook & Barfield, 2006, Torchiano et al., 2009, &

Lorenzo et al., 2007). However, there is no study that has

compared both techniques and provided a set of requirements

that help developers select the most suitable technique for a

specific usage. In this paper, we aim to contribute to the

following:

• Provide a comparative study of both web applications and

web services alongside many directions. On top of that, a set of

requirements have been proposed by the authors to help

developers go for the right choice. The proposed requirements

are organized in many categories to make them easy to be

remembered and followed.

• As this comprehensive study provides deep understanding

of many aspects regarding both techniques. We also hope to

provide an integrated comparison guideline as an essential

point to guide whoever wants to work in this context.

The remainder of this paper is organized as follows. Section 2

presents the problem of this study and its space. On top of that,

it describes the requirements that have been proposed by the

authors to address the problem. In Section 3 and 4 respectively,

both web applications and web services have been compared

http://journals.uoz.edu.krd/
http://sjuoz.uoz.edu.krd/
https://doi.org/10.25271/2018.6.1.375
https://creativecommons.org/licenses/by-nc-sa/4.0/

Q.I, Sarhan and I.S.Gawdan / Science Journal of University of Zakho, 6(1), 35-41, Mar.-2018

 36

according to the proposed requirements. Finally, we provide a

table of comparison of both techniques as the summary of our

contribution and we conclude this study in Section 5.

2. THE PROBLEM AND ITS SPACETE

As this paper considers the problem of choosing the

appropriate technique for delivering the functionality of

Internet-based software components to beneficiaries, the

authors proposed a set of comparison requirements to help in

this respect. These requirements vary across a number of

different aspects as described below. In the subsequent

sections, we will refer to these requirements in detail to address

our problem.

• Terminology and Usage: this refers to the technical

definition of the technique with its general usage. This

requirement helps to clarify the misunderstanding of each

technique in terms of definition.

• User Interfaces: these specify whether the technique

provides a user interface to its users in order to allow them to

interact smoothly with its functionality or not. In case the

technique supports a user interface, it is important to specify

which type of interface is supported by the technique.

• Structure View: this specifies the external elements of the

technique, the relationships among these elements, and the

ways they communicate with each other. Generally, it does not

provide information about the internal functionality of the

technique.

• Interaction Models: these specify how the software

functional units of the technique interact with each other in

order to exchange data among themselves. Besides, they help

to determine if the used technique supports the collaborative

work or not.

• Building Blocks: these represent the internal components

of the technique. For example, the internal code segments that

collaborate with each other to deliver the software

functionality. It is worth mention that this requirement shows

how complex is the used technique.

• Testing: this specifies how the technique can be tested in

order to find different types of errors. Also, it determines the

well-known testing strategies related to each technique.

• Accessibility and Target Platform: these specify if the

technique provides cross-platform compatibility or not. On top

of that, it determines the barriers against interoperability.

• Working Nature: this specifies if the technique provides

synchronous/asynchronous request-response operations or not.

This requirement can be used to determine the flexibility of a

specific technique in terms of supporting different types of

request and response operations.

• Infrastructure Control: this specifies if the technique is

integrated into the user system environment or not. On top of

that, it determines if there will be any bad impact on the user’s

system in case of any failure.

• Release Control and Updating: this specifies if the user

will be involved in case of any updating process or not.

Besides, it determines the simplicity of the updating process

using a specific technique.

• Composition and Reusability: this determines if the

technique allows combining some functionality into each other

to provide more powerful functionality or not. Furthermore, it

determines if composition and reusability can be achieved in

runtime or not.

• Complexity: This requirement helps to provide the

complexity level of developing or using a specific technique.

Furthermore, it provides the factors that increase or decrease

the complexity level alongside many directions.

3. WEB APPLICATIONS

3.1 Terminology and Usage

A web application is any piece of code that can be accessed

using web browsers, such as Mozilla Firefox and Google

Chrome running on the client’s machine. It depends on web

browsers to be executed and then to deliver its functionality to

the client. In this case, the web browser acts as the universal

client for any web application. Generally, web applications are

developed using browser-oriented programming, scripting, and

styling languages/frameworks alongside server ones such as

Hybrid Text Markup Language (HTML), Cascading Style

Sheet (CSS), JavaScript, and Personal Home Page (PHP).

However, web applications are very popular due to their

notable features including the ease of use (humans are the

users) and the ability to update their contents without installing

any software on potentially thousands of clients’ machines

(Lam, 2011).

3.2 User Interfaces

A web application provides users the ability to interact

smoothly with its functionality through different types of user

interfaces. User interfaces represent the only visible parts for

users and the most important parts of any web application. That

is because they determine how easily users can use a web

application. Generally, user interfaces are divided into five

types as follows:

• Command Line Interface (CLI): It is the simplest one

among other types of user interfaces. In the CLI, the user

interacts with the web application by typing commands in a

specific screen using the keyboard and the application provides

back the output by printing it mostly on the same screen.

However, it is worth mentioning that web applications

nowadays scarcely utilize the CLI to deliver their

functionalities to users. Comparing the CLI to other types of

user interfaces, the CLI is not considered as a user-friendly

mechanism for application-user interaction.

• Graphical User Interface (GUI): The GUI presents a

user-friendly mechanism for interacting with any application.

This interaction is performed via a set of graphical components

including menus, buttons, labels, and many others. Besides, it

provides a distinctive look and feel to attract users. Nowadays,

web applications exceedingly utilize the GUI to deliver their

functionalities to users.

• Zoomable User Interface (ZUI): The ZUI is a special

type of the GUI. With the ZUI, users are able to see more detail

or less by changing the scale of the view area. In other words,

the user can browse almost everything simply by zooming in

and out. Web applications that deal with data visualization and

map processing utilize the ZUI to deliver their functionalities

to users.

• Voice User Interface (VUI): With the VUI, users interact

with the application through voice/speech based commands in

order to utilize its functionality. The most important feature of

the VUI is providing hands-free and eyes-free application-user

interaction. Web applications that are designed to help people

with some disabilities utilize the VUI to deliver their

functionalities to them.

• Activity User Interface (AUI): It is also called gesture

user interface. With the AUI, different types of gestures can be

originated from a human face or hands to then be processed and

recognized as commands to a web application. Web

applications that deal for example with face recognition utilize

the AUI to deliver their functionalities to users. In such

applications, using some hardware devices, such as cameras

and sensors in are commonplace.

Q.I, Sarhan and I.S.Gawdan / Science Journal of University of Zakho, 6(1), 35-41, Mar.-2018

 37

The aforementioned types of interfaces help users of web

applications to send/receive data to/from a web application

over the Internet using their preferred web browsers. The data

then processed and presented to them within their browsers as

information (Tesarik et al., 2008). However, selecting the

appropriate user interface depends mainly on the aim and

domain of a web application.

3.3 Structure View

A web application consists of one or more web pages that are

created usually by using a various number of web

programming and scripting languages. These pages contain a

combination of static and/or dynamic contents including text,

images, and code that can be run on servers or web browsers.

Users can access these pages using their web browsers. Web

applications can reside on servers that have the ability to handle

user requests and to provide back the required responses.

Besides, they can use multiple servers in the network in order

to deliver their functionalities. Generally, users are not aware

that the required task requested by them might be distributed

across multiple servers (Marinho et al., 2011). Figure 1 shows

the conceptual model of a web application.

Figure 1. Conceptual model of a web application

3.4 Interaction Models

Interaction among different web applications in runtime does

not exist. For instance, two web applications cannot interact or

collaborate with each other in order to perform some

collaborative tasks. This is due to the fact that web applications

are human-oriented applications. In other words, they are

meant to be used by humans only. As a result, each web

application is independent from others and data cannot be

exchanged dynamically in runtime among them (Moreno &

Vallecillo, 2005). It is worth mentioning that missing the

interaction among web applications means developing a web

application always starts from scratch. In other words, web

developers are not able to re-use some existing software

components that are already developed by others. This leads to

develop the same components with the same functionalities

once again even if they exist somewhere on the network. Thus,

the main drawbacks of this situation are cost, affordance, and

time consumption.

3.5 Building Blocks

The main building blocks of any web application are typically

composed of three blocks: Presentation, Business, and Data

Access (Mašovi, 2012) as shown in Figure 2.

Figure 2. Typical building blocks of a web application

• Presentation Layer: Is the topmost level of the

application and represents the interface to its users.

Besides, it can be reached through web browsers and is

used to translate user requests and responses to something

the user can understand easily.

• Business Layer: Is used to coordinate the application

processes, logical decisions, evaluations, and

calculations. Moreover, it processes and passes data and

information between the two surrounding layers.
• Data Access Layer: In this layer data and information are

stored and retrieved from a database. Information is then

passed back to the business layer for more processing, and

eventually returned back to the user.

3.6 Testing

Internet-based software components that are deployed as web

applications or web services and the struggle to make them

work properly cause a variety of errors that reduce the required

level of functionality. These errors can be in many forms

including miss-implemented functionality, performance errors,

security errors, and errors that cause the entire web application

or web service to fail (Repasi, 2009). The general testing

strategies of both techniques include functionality, usability,

compatibility, and performance testing approaches. Despite

that, some testing approaches are unique and peculiar to each

technique. However, testing of web applications includes the

following main approaches (Lucca & Fasolino, 2006, Doǧan,

2014):

• Web Page Death: As web applications are combined with

web pages to explore their interfaces to users, these pages have

to be tested intensively. Testing of pages is very important to

check the status of a specific page if it is a dead or active. The

dead page is any page that does not work properly, cannot be

reached, or searched within the website that contains a web

application. On the other hand, the active page is any page that

works as required to present the functionality of its embedded

web application to be used by users.

• Web Page linkrot: A web link that does not work is called

broken link or linkrot. However, linkrot occurs when the target

of the reference is misused or no longer exists. As a result, users

lose the ability to access a specific web application in order to

use it.

• Web Page Redirection: It means the link of a web page

that contains a web application is working properly but not

pointing to the required reference target; could be pointing to

Q.I, Sarhan and I.S.Gawdan / Science Journal of University of Zakho, 6(1), 35-41, Mar.-2018

 38

another unrequired target. Therefore, redirection of web pages

should be checked repeatedly to find any invalid redirection.

• Field Validation: Input validation for each field in any

web page that contains a web application should be performed

rigidly. Such input values of these fields may be fed to a web

application in order to deliver its functionality in a proper way.

In many cases, web applications require different types of user

data. For example, a user name has to be entered in a specific

field and in a specific format in order to reach the next step of

an application’s functional work. Therefore, missing the

required inputs or providing them with no validation may lead

to a fail in the whole web application. However, negative

testing can be used in such similar situations to perform field

validation. For example, wrong inputs such as using a person’s

name combined with numbers or with age field some letters

can be entered rather than numbers to apply field validation.

3.7 Accessibility and Target Platform

Web applications provide fully interoperability or cross-

platform compatibility feature. Therefore, they can be accessed

and used by: any software platform (including Windows,

Linux, and Mac), any computing device, and at any location.

Interoperability makes web applications accessed by the

broadest audience using heterogeneous platforms for the least

effort. The concept of cross-platform makes the development

process of web applications easier rather than developing

applications tied up to a specific platform. Developing

applications to a specific platform limits its using in an obvious

way (Fernandes, 2012). Besides, any big change occurs in that

platform means the whole application has to be changed

accordingly which is not feasible and time consumed. Users

simply can reach any web application by using its URL through

their web browsers which instantly deliver the application’s

functionality to their devices.

3.8 Working Nature

Web applications are known for their synchronous nature. In

other words, users issue their requests to perform some tasks

and expect the instant responses to be sent back. For example,

when a user request a Gmail account login after providing the

required information (usually are username and password),

he/she expects to be logged in directly. However,

synchronization requires Internet connectivity to get data

exchanges from the server side and update the data in the user

side. Mostly, this is achieved without storing a web

application’s data on the local host of the user.

3.9 Infrastructure Control

Web applications are not integrated into the infrastructure of

the user’s system. They reside in foreign infrastructures that

could be located anywhere in the world. All user requests are

passed to the server side in order to be processed without

requesting to make any change in the user side. Therefore, any

fault or crash in the application or server does not affect in any

way the user’s system.

3.10 Release Control and Updating

Developmental releases of web applications do not affect users

in any way. Everything will be performed without involving

them. Generally, updating a web application involves fixing a

defect or adding a new feature. Therefore, when it comes to

update a web application that is already deployed; users do not

need to follow any updating procedure or make some

modifications in their environment in order to get the latest

release of that web application (Danesh et al., 2011). As a

result, every time they request a web application via their

browsers they directly get the latest and updated release of it.

3.11 Composition and Reusability

In web applications, users cannot combine some ready-made

applications into a single application to make it more valuable

and powerful (Moreno & Vallecillo, 2005). This is because of

that web applications cannot interact dynamically in runtime

with each other as mentioned in a previous section. However,

as web applications can be accessed through web browsers, the

combination of two web applications for example can be

achieved by opening them in two separated tabs or in two

different web browsers. The first tab can be used to enter some

data to be processed by one of the applications. Then, the

produced results can be copied and fed into the second tab for

further processing. However, users need to repeat this process

many times if they want to apply the same processing for a long

period of time. As noted, composition process in web

applications is completely human-based and consumes a lot of

time and effort. It is worth mentioning that as web applications

do not support composition, they do not support software

integration in runtime. However, integration can be achieved

by opening all the required applications then manually

exchange data among them which is not an efficient way of

making benefit of using different applications. Regarding

reusability, using web applications does not help in this respect,

for developing a new web application the required

programming tasks must be developed from scratch even if

they are already exist somewhere else on the Internet.

3.12 Complexity

Developing web applications does not require a lot of

complexity comparing to web services. The development

process does not involve using external entities (excluding

application servers). Besides, it does not rely on heavyweight

protocols for communicating and exchanging data as

everything is handled by web browsers. On top of that, there is

no integration processes between the user side and the

application side. All the aforementioned factors decrease the

complexity level of developing such applications.

4. WEB SERVICES

4.1 Terminology and Usage

A web service is a number of independent functional

components that allows different machines to interact and

collaborate with each other through a network to achieve a

common goal (Yu et al., 2007). To use a web service properly,

clients require some information about the service including its

name, its location, and many others. Usually, web service

engines and repositories are available to help developers

searching and then locating web services in order to use them.

For example, clients can search for a specific web service using

keywords and then from the results list any service can be

invoked.

4.2 User Interfaces

Web services do not provide users with any interactive

interfaces as in web applications in order to enable users to

interact with their functionalities. This is due to that web

services meant to be used only by machines not humans. As

there is no user interfaces supported, they share business logic,

data, and processes through programmatic interfaces across a

network called application interfaces instead of user interfaces

http://www.webopedia.com/TERM/G/GUI.html

Q.I, Sarhan and I.S.Gawdan / Science Journal of University of Zakho, 6(1), 35-41, Mar.-2018

 39

(Cook & Barfield, 2006). However, developers can use

application interfaces to embed a specific web service to a user

interface, a web page, or an application in order to extend its

functionality to users.

4.3 Structure View

Ready-made web services available on the network allow

distributed software components that are language and

platform independent to be accessed and used by different

applications across the Internet. Applications can perform

some of their tasks by making use of these ready-made services

(Yu et al., 2007). Figure 3 shows the conceptual model of web

services.

Figure 3. Conceptual model of web services

Web services use industry-standards protocols and

technologies including Hyper Text Transfer Protocol (HTTP)

to provide standardized way of communication among

different entities. A web service is usually provided by a server

(service provider) and can be accessed and used by a client

(service consumer). The server and client exchange request

(method name, parameter list) and response (return value)

messages in order to interact with each other smoothly.

4.4 Interaction Models

Web services interact with each other by exchanging

Extensible Markup Language (XML) based text messages

which are human-readable. The XML message is a well-

constructed hierarchy of XML tags that together describe a set

of data fields sent or received by different web services. Each

XML message consists of two sections: header and payload.

The header section stores control information about the

message, whereas the payload section contains the actual

content of the message. However, web services use two types

of interaction models in order to exchange XML message

between each other (Maximilien & Singh, 2005) as follows:

• Peer to Peer (P2P) Interaction Model: In this model, two

web services exchange request/response messages using HTTP

over the Internet. Often, request messages could be for a

Remote Procedure Call (RPC) to invoke the functionality of a

piece of code or an XML data document to get some kind of

data. Whereas, response messages could be a computation

result from the RPC or XML data document. However,

request/response messages are managed by web services using

Simple Object Access Protocol (SOAP). Figure 4 shows the

P2P interaction model between two web services.

Figure 4. P2P interaction model

• Multilateral Interaction Model: In this model, more than

two web services exchange messages among themselves.

Multilateral interaction is achieved by aggregating multiple

P2P interactions as shown in Figure 5.

Figure 5. Multilateral interaction model

4.5 Building Blocks

To utilize web services, a number of blocks are required to

work and collaborate with each other. The SOAP, Web

Services Description Language (WSDL), and Universal

Description/Discovery/Integration (UDDI) are the main

building blocks of any web service (Lee, 2014, Anass &

Ahmed, 2017) as shown in Figure 6.

Figure 6. Typical building blocks of a web service

• The SOAP: Is a simple XML based protocol that defines

the structure and data type of messages used for

communication in web services. A SOAP message consists of

an envelope with a message body and an optional header. The

SOAP body contains the actual message content and the SOAP

header is used for passing control information. However,

SOAP messages typically travel over HTTP which is the

standard network protocol.

• The WSDL: Is a document that describes web services

alongside many directions. For example, it describes the format

of requests that web services handle, parameters to be supplied

to each request, and the format of responses. The WSDL

document of a web service is stored in a text file with the

extension of .wsdl. Besides, it can be located typically on the

same server where the web service itself is deployed. Web

service developers use WSDL documents to describe the

functions that web services provide and how other programs

can access and use those functions. Usually, web service

requesters analyze WSDL documents to know the

functionalities of the provided web services, their locations,

and how to invoke them properly.

• The UDDI: Is a mechanism for registries intended for

storing and publishing descriptions of web services in forms of

WSDL documents. Web service providers use UDDI to

register their services with all the required information

regarding how they can be located and invoked by service

requesters.

Q.I, Sarhan and I.S.Gawdan / Science Journal of University of Zakho, 6(1), 35-41, Mar.-2018

 40

4.6 Testing

Testing of web services includes two main approaches (Sharma

et al., 2012) as follows:

• The WSDL Document Validation: While creating the

WSDL document for a web service, interfaces alongside other

important information have to be correctly and precisely

described. Besides, service requesters must conform to

contracts specified in WSDL documents in terms of message

content, binding to the transport layer, and many others. It is

worth mentioning that mistakes and ambiguous descriptions in

WSDL documents can affect the whole communication

process among services and may lead to communication

failure.

• Publish, Find, and Bind (PFB) Testing: In order to use a

web service, the service has to be already published properly.

Therefore, service providers register their services to service

brokers/servers. Then, these brokers advertise about the

registered services via different types of information regarding

each service in brokers that can be found through search

methods. The search process helps service requesters to find

the needed services and then bind to them for consuming their

functionalities. In this respect, the PFB testing must answer the

following questions:

➢ Are services able to register themselves to brokers?

➢ Can applications or other web services find and bind to

registered services?

4.7 Accessibility and Target Platform

Web service interoperability is a big issue especially when a

service requester encounters problem while invoking a method

provided by a service provider. Or, when it does not really

understand messages sent by a service provider. These issues

usually happen by misusing different types of prerequisites that

are exposed by a service provider or requester environment.

Therefore, it is essential for service providers to ensure that

their services are accessible and usable by a variety number of

service requesters (Elia et al., 2014).

4.8 Working Nature

Web services work usually in two request/response operation

modes: asynchronous and synchronous. In the asynchronous

mode, a web service requester does not expect to get a response

back directly. So, the time in this mode is not crucial.

Therefore, a requester will issue a request to perform some

tasks and a provider is not expecting to send back a required

response instantly. In other words, the response will be

available when the provider decides. In the synchronous mode,

a service requester will be waiting for getting back a response

after issuing a request. Therefore, the requester is expecting to

get the response back directly and the provider has to handle it

instantly (Mannava & Ramesh, 2012).

4.9 Infrastructure Control

Usually, web services reside in more than one foreign

infrastructure. Besides, they require a tight integration process

between both environments of a service provider and a service

consumer. This integration process depends totally on the

network connectivity to work. Any fault in a provider’s side

has a direct effect on the process of integration and even on a

consumer’s environment. In many cases, faults lead to

consumer’s system crash (Cook & Barfield, 2006).

4.10 Release Control and Updating

Web service providers control everything regarding releases of

their services. Generally, service releases are provided to make

changes and recovers from minor or major issues. Sometimes

changes in the body of a service are not evident from its

Application Programming Interfaces (APIs). In other words,

the changes do not require API reconstruction. As a result,

service consumers do not notice such internal changes.

However, as service APIs are the only visible parts to service

consumers, any reconstruction in them affect directly the

process of a service calling (Li et al., 2013). It is worth

mentioning that the API reconstruction process may include

modification in the parameter-list, return type, and service

name. Such modifications force consumers to make changes in

their environments and to upgrade the calling process.

Otherwise, they will face many calling issues or even they will

not be able to call the required services at all.

4.11 Composition and Reusability

Composition in web services means connecting together

various independent services with different functionalities to

provide a high-level and more value-added functionality to the

compositors (service-based applications or systems).

Generally, composition can be classified into two types

(Mathkour et al., 2012) as follows:

• Static composition: It occurs in the compilation time. In

this type, service requesters should specify all the required

information of invoking required services while coding. The

main drawback here is that composition details are hard-coded

in the development phase and cannot be changed in runtime.

• Dynamic composition: It occurs in the runtime. In this

type, service requesters should be able to discover methods of

required services in runtime. The main drawback here is that

the increased level of complexity due to searching and

discovering of services.

Integrating many existing systems developed using different

programming languages, deployed on different platforms, at

different locations, and makes them work together as a

collaborative system. Web services come to the picture to solve

this issue using a number of standards. For example, web

services use XML for data exchanging among different

systems regardless of their languages, platforms, and locations.

Regarding reusability, using web services prevent the

repetition of developing existing applications and

programming tasks. Therefore, web services are the best choice

for integrating different existing systems. Besides, using this

technique saves a lot of time, cost, and effort.

4.12 Complexity

Developing web services is more complex than web

applications due to a number of reasons. For example, the

development process involves using external entities such as

UDDI brokers for registering services. Besides, the

development process uses heavy methods for communicating

and exchanging data including SOAP and XML. All these

reasons and many others mentioned in previous sections

require a lot of deployment, registering, and integration

processes.

5. CONTRIBUTIONS AND CONCLUSIONS

5.1 Contributions

After studying both web applications and web services in

detail, the authors proposed a set of requirements to help

developers or anyone approaches this field of study to make the

right choice when using these techniques to deliver the

functionality of Internet-based software components. Table 1

presents briefly the comparison between both techniques

Q.I, Sarhan and I.S.Gawdan / Science Journal of University of Zakho, 6(1), 35-41, Mar.-2018

 41

corresponding to a set of factors that have been derived from

the proposed requirements given in this paper.
Table 1: Comparison between web applications and web services

Technique

Factors
Web applications Web services

Orientation Human-oriented Machine-oriented

Accessibility
Accessed by web

browsers

Accessed by

services,

applications, and
systems

Development

Tools

Developed using

browser-oriented
programming,

scripting, and styling

languages/frameworks
alongside server ones

Developed using
standard

programming

languages

Development

Process
Easy Difficult somewhat

Usability Easy
Complicated

somewhat

User Interfaces Provided Not provided

Structure View Centralized Distributed

Interaction Models Not provided Provided

Building Blocks
Presentation, business,
and data access

SOAP, WSDL,
and UDDI

Testing

Page death, linkrot,

redirection, and
validation

WSDL and PFB

Interoperability Fully Partially

Operation Modes Synchronous
Synchronous and

asynchronous
Infrastructure

Control
Not integrated Integrated

Updating Users are not involved Clients are involved

Composition Not supported Supported

Reusability Not supported Supported

Complexity Low High

5.2 CONCLUSIONS

This study aimed to clarify many aspects regarding using web

applications and web services. Generally, they can fulfil the

requirements proposed in this paper but in detail there are many

differences between them. However, the paper is not to draw

any conclusion regarding which technique is superior since the

suitability of each technique is greatly influenced in one way

or another by the application/service domain and usage.

Choosing one technique to deliver the functionality of an

Internet-based software component means that many

requirements have to be considered carefully. The authors

provided most of the requirements for web developers to go for

the right choice in this context. For future works, the authors

will consider some experimental scenarios and case studies to

compare web applications and web services practically.

REFERENCES

Anass, M. & Ahmed, E. (2017). Towards a standard Resful WADL

implementation of Multi-view web services. International
Journal of Computer Science and Network Security

(IJCSNS), 17(4), 315-320.

Cook, W. & Barfield, J. (2006). Web Services versus Distributed
Objects: A Case Study of Performance and Interface

Design. IEEE International Conference on Web Services

(ICWS), 419-426.
Danesh, A. S., Saybani, M. R., Yahya, S., & Danesh, S. (2011).

Software release management challenges in industry : An

exploratory study. African Journal of Business
Management (AJBM), 5(20), 8050-8056.

Doǧan, S., Betin-Can, A., & Garousi, V. (2014). Web application

testing: A systematic literature review. Journal of Systems
and Software, 91(1), 174-201.

Elia, I., Laranjeiro, N., & Vieira, M. (2014). A Field Perspective on the

Interoperability of Web Services. IEEE International
Conference on Services Computing (SCC), 75-82.

Fernandes, N., Costa, D., Duarte, C., & Carriço, L. (2012). Evaluating

the Accessibility of Web Applications. The 4th
International Conference on Software Development for

Enhancing Accessibility and Fighting Info-Exclusion

(DSAI), 14, 28-35.
Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet

of Things (IoT): A vision, architectural elements, and future

directions. Future Generation Computer Systems (FGCS),
29(7), 1645-1660.

Khan, R., Khan, S., Zaheer, R., & Khan, S. (2012). Future Internet: The

Internet of Things Architecture, Possible Applications and
Key Challenges. The 10th International Conference on

Frontiers of Information Technology (FIT), 257-260.

Lam, M. (2011). Methodologies, tools, and techniques in practice for
Web application development. Journal of Technology

Research (JTR), 3, 1-20.

Lee, S. (2014). A Study on Web Service Analysis and Bio-information

based Web Service Security Mechanism. International

Journal of Security and Its Applications (IJSIA), 8(2), 77-

86.
Li, J., Xiong, Y., Liu, X., & Zhang, L. (2013). How Does Web Service

API Evolution Affect Clients?. The IEEE 20th International

Conference on Web Services (ICWS), 300-307.
Lorenzo, G., Fasolino, A., Melcarne, L., Tramontana, P., & Vittorini,

V. (2007). Turning Web Applications into Web Services by

Wrapping Techniques. The 14th Working Conference on
Reverse Engineering (WCRE), 199-208.

Lucca, G. & Fasolino A. (2006). Testing Web Applications: The State

of Art and the Future Trends. Information and Software
Technology (IST), 48(12), 1172-1186.

Mannava, V. & Ramesh, T. (2012). An Adaptive Design Pattern for

Invocation of Synchronous and Asynchronous Web
Services in Autonomic Computing Systems. Asia-Pacific

Web Conference (APWeb): Web Technologies and

Applications, 131-142.
Marinho, E., Mendonca, A., Rodrigues, G., Alves, V., & Bonifcio, R.

(2011). Exploring Architecture-Based Reliability Analysis

of Current Multi-layered Web Applications. The 5th
Brazilian Symposium on Software Components,

Architectures and Reuse (SBCARS), 51-60.

Mašovi, S., Sara, M., Kamberovi, H., & Kudumovi, M. (2012). Java
technology in the design and implementation of web

applications. Technics Technologies Education

Management (TTEM), 7(3), 504-514.
Mathkour, H., Gannouni, S., & Beraka, M. (2012). Web service

composition: Models and Approaches. International

Conference on Multimedia Computing and Systems
(ICMCS), 718-723.

Maximilien, E. & Singh, M. (2005). Toward Web services interaction
styles. IEEE International Conference on Services

Computing (SCC), 1, 147-154.

Moreno, N. & Vallecillo, A. (2005). Modelling interactions between
Web applications and third-party systems. The 5th

International Workshop on Web Oriented Software

Technologies (IWWOST), 441-452.
Repasi, T. (2009). Software testing - State of the art and current

research challenges. The 5th International Symposium on

Applied Computational Intelligence and Informatics
(SACI), 47-50.

Sharma, A., Hellmann, T., & Maurer, F. (2012). Testing of Web

Services - A Systematic Mapping. The IEEE 8th World
Congress on Services, 346-352.

Tesarik, J., Dolezal, L., & Kollmann, C. (2008). User interface design

practices in simple single page web applications. The 1st
International Conference on the Applications of Digital

Information and Web Technologies (ICADIWT), 223-228.

Torchiano, M., Ricca, F., & Marchetto, A. (2009). Defect Location In
Traditional Vs. Web Applications - An Empirical

Investigation. The IEEE 11th International Symposium on

Web Systems Evolution (WSE), 121-129.
Yu, Y., Lu, J., Fernandez-Ramil, J., & Yuan, P. (2007). Comparing

Web Services with other Software Components. IEEE

International Conference on Web Services (ICWS), 388-
397.

