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ABSTRACT

This paper reports on the preparation of nanostructure along tris(8-hydroxyquinoline) gallium, Gag3 thin film
aiming at modifying its optical absorption property. The formation of nanostructure was achieved by means of
thermal annealing in the temperature range from 85 °C to 255 °C under a flowing nitrogen gas for 10 minute. The
results showed a modified optical absorption at 235 °C to produce a broad absorption spectrum which is quite wider
than that of pristine film. It was noticed from the results of x-ray diffraction, XRD and field emission scanning
electron microscopy, FESEM techniques that such annealing process has led to the formation of amorphous nanorods
at specific temperatures, thereby modulating the films optical absorption. The relatively decreased absorption
intensity at 255 °C was attributed to the partial crystalline formation and degraded nanostructures due to hard
heating. Finally, the nanostructure growth was seen to possess a unique feature in modifying the optical behaviours of

the Gagg3 thin films.
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INTRODUCTION

mong the organometallic compounds,

tris  (8-hydroxyquinoline) aluminium,
Alg3 was most well known optoelectronic
semiconductor that has been widely used in the
fabrication of organic light emitting diodes
(OLEDS) (Lian et al., 2007). Very recently, its
use as buffer layer and dopant material in
organic solar cells (OSCs) has also been reported
(Kao, Chu, Huang, Tseng, & Chen, 2009; Vivo,
Jukola, Ojala, Chukharev, & Lemmetyinen,
2008). It was seen that this has led to increase in
both efficiency and stability of the devices. In
addition to Alg3, tris(8-hydroxyquinoline)
gallium,Gag3 has received considerable
attention thanks to the preliminary good results
obtained by Wang et al. (Wang, Jiang, Zhang, &
Xu, 2000), as they found Gag3-based OLED
enables to produce better performance compared
to that of Alg3-based one prepared under the
same condition. Since then, efforts have been
made to analyze the chemical bonds, molecular
geometry and electronic structure of Gag3
(Gahungu & Zhang, 2005; Zhang & Frenking,
2004), and to investigate the influence of
hydrostatic pressure on the spectroscopic
behaviour of this material (Hernandez & Gillin,
2009). In previous studies, we observed that
Gag3 films can attain lower optical band gap,
higher electrochemical stability and smoother
film formation compared to those of Alg3
(Muhammad, Abdul Hapip, & Sulaiman, 2010).
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Hence, modifying the photo-physical behaviours
of Gag3 is considered to be of great importance
when its application in OSC and/or OLED
devices is required. The optical absorption takes
prominent role in the overall devices
performance for OSC and/or OLED
technologies. Post-deposition thermal annealing
(Singh et al., 2005), in-situ controlled substrate
temperature (Cho, Yu, & Perng, 2006) and the
use of different substrates (Kumar, Sonia, Patel,
Prakash, & Goel, 2008) are regarded to be the
possible ways that are being taken by researchers
to enhance the physical properties of the organic
films. In this context, other research groups
(Cho, et al., 2006; Yu, Cho, & Perng, 2009)
utilized thermal evaporation technique under
cold trap to grow crystalline Alg3 and Gag3
nanostructures on silicon substrates at various
working temperatures and pressures through a
controlled amount of Ar and/or He gases. This
was however resulted in the enhanced
photoluminescence properties of the films, the
crystallized structure might cause problems in
the devices operation (Higginson, Zhang, &
Papadimitrakopoulos, 1998), thereby producing
undesirable light scattering or leak current
(Yokoyama, Sakaguchi, Suzuki, & Adachi,
2009), especially in OLEDs application. In this
work, a post-thermal annealing process upon
vacuum deposited Gag3 film is carried out under
flowing of nitrogen gas for 10 minute, aiming at
monitoring the nanostructure morphology and
hence modifying the optical absorption of Gag3
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thin film. We found that, this method is able to
produce amorphous Gag3 nanorods, which acts
as a new path for the nanostructure formation in
this type of organic material on one hand and to
modify the optical absorption of Gag3 thin films
on the other hand.

MATERIALS AND METHODS

Tris (8-hydroxyquinolinate) gallium, Gag3
was purchased from Sigma-Aldrich Company
(Malaysia branch) in powder form and used as
received. The chemical structure of Gag3
having molecular formula of Ga(CyHsNO); is

shown in Figure 1. Its molecule consists of three
ligands each with a phenoxide and pirydyl side
group. Films of Gag3 were thermally evaporated
onto pre-cleaned quartz substrates by a home-
made thermal evaporator under a pressure of
about 10* mbar. The quartz slides were cleaned
ultrasonically with Deacon® Neutracon foam
solution for 15 minutes followed by rinsing in
acetone, ethanol and distilled water for 10
minute in ultrasonic bath, respectively. Finally,
the quartz slides were dried thoroughly by
blowing the nitrogen gas.

Figure (1): Three dimensional view of chemical structure of Gag3 molecule (Muhammad, et al., 2010).

The vacuum deposited Gag3 films of
thickness ~764 nm were post annealed under a
flowing nitrogen gas atmosphere using a barrel
furnace. The thermal annealing process was set
for 10 minute at the temperature of
85 °C, 160 °C, 235 °C and 255 °C. The optical
absorption and transmission spectra of the as-
deposited and annealed films were performed at
room temperature using a Jasco V-570 UV-Vis-
NIR spectrophotometer in the wavelength range
from 200 to 2500 nm. The thicknesses of the
films before and after annealing process were
estimated from their transmittance spectra using
envelope method described else where
(Muhammad, et al., 2010). KLA Tensor P-6
surface profilometer instrument was also utilized
for further confirmation of the films thickness by
scratching each film at three different regions
across its surface, then taking the average of the
measurements. The absorption coefficient (o) of
the films was calculated by using the relation
a =2.303A/t where, A is the absorbance of the

film and t its thickness. This relation can also be
used to determine the absorption coefficient of

solutions. X-ray diffractometer (Bruker AXS)
using Cu K, radiation of wavelength A = 1.5406
A° as a source was used to measure the XRD
patterns to confirm the structural nature of the
films. To visualize the morphology and
structural distribution of the thin films after
thermally annealing, low dimensional images
have been captured by the field emission
scanning electronic  microscopy technique
(FESEM, Quanta 200F). All the tests and
instrumentation have been carried out at the low
dimensional ~ materials  research  centre,
department of Physics, faculty of science,
university of Malaya, Malaysia.

RESULTS AND DISCUSSION

Figure 2 shows the absorption spectra of the
pristine and annealed films in the temperature
range from 85 °C to 255 °C under nitrogen gas
for 10 minute. Two peaks are seen for the
pristine film, the first peak is in close proximity
to the visible range at photon energy of 3.14 eV,
while the second peak is located in the
ultraviolet region with relatively broad and
intense at energy of about 4.67 eVV. These peaks
have been assigned to the presence of
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optoelectronic transitions from 7~ -7z and
4p — 7 orbital energy bands, respectively

(Muhammad, et al., 2010). Upon thermally
annealing, the visible absorption band rises
whilst the ultraviolet, UV band falls to lower
intensity. This feature continues to appear in the
films annealed from 85 °C to 160 °C. However,
at higher annealing temperature of 235 °C, the
absorption spectrum has become broader
covering from the whole UV range till some
parts of the visible region. The decrease in the
absorption peak intensity in the UV regions was
also observed for Alg3 films by Djurisic et al.
(Djurisi¢, Lau, Lam, & Chan, 2004) with no
given attribution when the films exposed to
atmosphere, but Credo et al. (Credo, Winn, &
Buratto, 2001) ascribed the behaviour to the
change in chemical nature of the Alg3 films. In
our work, Gag3 films were annealed under
nitrogen gas, so the influence of atmospheric
exposure can be cancelled out. Referring to the
absorption response of Gag3 films, we may
expect the occurrence of morphological and/or
conformational changes upon our films in the
temperature range from 85 to 235 °C under the
influence of nitrogen gas, as we will see later
that morphological change has led to the

Reasonably, it is such nanostructure formation
and conformational change that are responsible
for the optical modification of the films. This
can be understood as, within the broad
distribution of molecular packings, favourable
z—n overlaps between facing ligands may
occur (Brinkmann et al., 2000), thereby
involving interaction and energy exchanges at
molecular level which have consequences on the
spectral properties of the molecules (Auzel,
Baldacchini, Baldacchini, Chiacchiaretta, &
Balaji Pode, 2006).

On the other hand, annealing at higher
temperature of 255 °C, caused the broad band to
fall to lower absorption intensity and the
absorption edge slightly shifted towards the UV
region in comparison to that of the pristine film.
This behaviour is consistent with the results
obtained by Credo et al (Credo, et al., 2001) for
the Alg3 films (counterpart of Gag3) annealed
above glass transition temperature (Tq = 172 °C
for Alg3). It was reported that glass transition
temperature, Ty of Alg3 is at 172 °C, and upon
annealing Alg3 film above Ty the crystalline
region in the films would be formed (Credo, et
al., 2001). This crystalline formation was seen
for our Gag3 films annealed at 225 °C.

formation of amorphous Gag3 nanorods.
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Figure (2): Absorption spectra of the pristine and thermally annealed films of Gag3.

Figure 3 shows the XRD patterns recorded
for the films that demonstrated the merged and
broadened absorption spectrum, i.e., annealed
films at 235 and 255 °C, respectively. The
crystalline portion was found to appear only for
the films annealed at 255 °C with its intense

893

diffraction peak at angle of 26 = 15.9°, which
corresponds to a periodicity of about d = 0.557
nm. This can be considered to be one of the
reasons for the decrease in the intensity of the
absorption spectra shown in Fig. 2.
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Figure (3): The XRD patterns for the Gag3 films annealed at 235 and 255 °C.

Figure 4 shows the images of field emission
scanning  electron  microscopy (FESEM)
captured for the Gag3 films annealed at
temperatures 235 and 255 °C. The surface
morphology is seen strongly being affected by
the temperatures, where 235 °C is the most
appropriate annealing temperatures for the clear
formation of nanorods from the film. This
growth of nanorods can be interpreted by means
of molecular migration (Kumar, et al., 2008), as
the Gag3 molecules migrate and pile up by
acquiring enough thermal energy from the
appropriate heat treatment. It was observed that

at 235 °C, the conformational change towards
amorphous nanorod formation was responsible
for the optical absorption to show a broad
spectrum. However, upon hard heating and
annealing at higher temperature of 255 °C, Gag3
rods are no longer fortified, they were degraded
and cross linked along with the formation of
crystalline portion in the film, as it was
discussed before. This nano-surface degradation
of the film has led to considerable drop in the
optical absorption spectra of Gag3 films (see
Fig. 2).
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Figure (4): FESEM pictures of annealed Gag3 films at (a) 235 °C and (b) 255 °C.

CONCLUSIONS

The optical absorption properties of Gag3
thin film was modified by means of
nanostructure formation under the influence of
thermal annealing in the temperature range from
85 °C to 255 °C. The results showed significant
enhancement in the absorption behaviour of the
films at 235 °C and 255 °C that could be of
practical interest for OLED and/or OSC devices
fabrication. This improvement was ascribed to
the formation of Gag3 nanostructures upon
annealing. It was seen that at high annealing
temperature of 255 °C, the film demonstrated
relatively lower absorption intensity. This was
attributed to the formation of partial crystallinity,
cross linking and degradation of the Gag3
nanorods, as they were asserted by XRD and
FESEM techniques. We conclude that, Gag3 can
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be a promising material to be applied in both of
the OLED and OSC devices upon controlling its
nanostructure morphology through annealing
process. Further works can be suggested to be
done by annealing Gag3 films within different
time intervals and exploiting them in the organic
electronics technology.
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