Available online at sjuoz.uoz.edu.krd

Science Journal of University of Zakho

!\k Vol. 5, No. 2, pp. 221 -227, June-2017
of
Juoz

journals.uoz.edu.krd

siuch

p-ISSN: 2410-7549
e-ISSN: 2414-6943

FORECASTING THE ELECTRIC ENERGY SUPPLY IN DUHOK PROVINCE USING
PROPOSED METHODS BASED ON WAVELET ANALYSIS AND SARIMA METHODS

Qais Mustafa Abdulgader

Dept. Information Technology, Zakho Technical Institute, University of Duhok Polytechnic, Kurdistan Region, Iraq -
gais.mustafa@dpu.edu.krd

Received: Dec. 2016 / Accepted: May 2017 / Published: Jun. 2017 https://doi.org/10.25271/2017.5.2.372

ABSTRACT:

Many applications have been done in the field of using wavelet analysis for time series analysis. In this study, we used the quarterly
data of Electric Energy Supply in Duhok Province-Iraq in Megawatt which represents a sample size (46) observations during the
period 2004 and 2015.we aim to describe how wavelet de-noising can be used in time series forecasting and improve the forecasting
quality through presenting some proposed methods based on wavelet analysis and SARIMA method and applying on real data and
make comparison between methods depending on some statistical criteria.Results from the analysis showed the superiority of the
three proposed methods and showed that we can get more information from a series when using Wavelet-SARIMA method and
this leads to enhance the classical SARIMA model in forecasting. Furthermore, after many empirical experiments with many
wavelet families, it has been found that Daubechies, Coiflets, Discrete Meyer(dmey) and Symlet wavelets are very suitable when

denoising the data and out of these four wavelet families, the Daubechies and Discrete Meyer performed better.

KEYWORDS: SARIMA, Wavelet-SARIMA, De-noising, Time Series Forecasting, Thresholding.

1. INTRODUCTION

Electricity is one of the most powerful forces in our lives.
Electric energy supply forecasting is critically important in
operation of electricity system since it can provide supportive
information to help the system work securely and efficiently.
Moreover, good results in electric energy supply forecasting
can help significantly improve the economic factors of the
power network operation.

Wavelet analysis technique for time series could be a very
good tool for electric energy forecasting, which plays a
significant role in the planning of economic and safe process
for methods of modern energy. The process of reducing the
noise from the original data before analyzing the series is
important to get an improvement when modeling and
forecasting. The wavelet denoising method depending on
wavelet with a threshold is a robust mathematical tactic to
reducing the noise from the original data while keeping the
most amount of energy data that explains the actual data
(Mustafa, and Alzubaydi, 2013).

Many implementations have been done and proposed using
wavelet analysis in time series. Yi et al. (2008) suggested a
new model for Short Term Load Forecast STLF in the market
for electricity. The model was formed of a simulation
platform. The simulation results showed that the model can
make a sensible accuracy of forecasting in STLF. Aggarwal
et al. (2009) presented a joint Wavelet Transform WT and
Multiple Linear Regression MLR based method for price
profile forecasting in a single compromise real- time
electricity markets. the study ended that the proposed method
can be used for providing a forecast with a sensible degree of
accuracy and will be most useful during on-peak hours and
times of high volatility. Frimpong and Okyere (2010) have
developed a forecast model to predict the consumption of
monthly energy by using wavelet transform and radiate base
work neural network. A criterion Mean Absolute Percentage
Error MAPE of 7.94% was carried out when the forecast
model was examined over a 60-month interval. Moreno -

Chaparro, et al. (2011) have proposed an approach of forecasting
for the monthly electricity for the National Interconnected
System NIS of Colombia. The method pre-operation the time
series by employing a Multi-resolution Analysis MRA and using
Discrete Wavelet Transform DWT. The prediction was gained by
combining the forecast trend with the estimated gained by the
residual series combined with further components that removed
from pre-operation. Ming, et al. (2011) used characteristic
extraction representing rising trend, periodical waves, and
stochastic series for the purpose of forecasting the monthly
consumption of electric energy. The outcomes of the analysis
showed that the suggested method is preferable than those
classically used in terms of forecasting precision and anticipated
risks. Avdakovic, et al. (2012) used the linear regression and
wavelet transforms approach to assessing the relationship
between the Gross Domestic Product GDP, variations of air
temperature, and the consumption of the power. They showed
that forecasting the GDP and seasonal air temperature index
trends should be considered in mid and long-term forecasting and
power system planning. Avdakovic, et al. (2013) applied the
continuous wavelet transform CWT with Morlet wavelet for
performing the analysis of the hourly load of an actual power
system. The outcomes showed that this method of analyses can
confer a better insight into the essential characteristics of the
consumption and recognize the characteristic periods of the
power system load difference over the previous years, which can
be very motivating for power system designers.

Very recently, Li, et al. (2014) proposed a new method for load
forecast, which combines wavelet transform and radical learning
machine. Numerical testing showed that the suggested method
can enhance the forecast performance with minimum
computational cost by comparison with other methods.
Khandelwal, et al (2015) suggested new approach tactically uses
the unique strengths of Discrete Wavelet Transform DWT,
Autoregressive Integrated Moving Average ARIMA, and
Artificial Neural Network ANN for improving the forecasting
accuracy. Results of the study showed that the new approach
obtains superior forecasting accuracies for each series. Rana and
Koprinska (2016) offered Advanced Wavelet Neural Networks
AWNN method for monthly, daily and hourly data’s and showed
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that the new method can be used for forecasting of other time
series for power systems implementations. Jakub and Jerzy
(2016) presented a hybrid method for forecasting the energy
demand based on DWT and ANN. The presented method
showed that introduction of the DWT as a pre-operating tool
for the ANN input can give better results of forecasting
models.

The main objective of this paper is to describe how wavelet
de-noising can be used in time series forecasting and show
the ability to minimize the noise from the main data and
enhancing the forecasting quality when applying some
proposed methods on real data and comparing the efficiency
of the main classical ARIMA method and wavelet de-noising
methodology.

In this paper, two different methods were considered for
building a suitable model through applying on Electric
Energy Supply data. In the first method, the data is modeled
using classical ARIMA methodology. In the second method,
the data is modeled using some proposed methods based on
wavelet analysis and SARIMA methods. Then, some
performance measures were computed for each method and
have used for evaluation and comparison. The remainder of
this paper is prepared as the following: Section 2 gives the
brief explanation of ARIMA model and wavelet analysis.
Section 3 gives some explanations of wavelet de-noising.
Section 4 deals with application and main results. In section
5, we present some conclusions.

2. BRIEF EXPLANATIONS OF ARIMA MODEL
AND WAVELET ANALYSIS

2.1 ARIMA Model

ARIMA model has got very high interest in the scientific

world. The model becomes popular by George Box, Gwilym

Jenkins, and Gregory C. Reinsel in 1970s (George, et al.,

2008). It is well-known as ARIMA(p,d,q) and can express as:
p q

X = z Qixt_i + z stt_]- + € (1)
i=1 j=1

Where p is the order of the nonseasonal autoregressive, q is
the order of the nonseasonal moving average, @; are called
autoregressive  coefficients, ©; are moving average
coefficients and g, is the random error. First or second order
of differencing is used if the original data is non-stationary.
Often time series data containing seasonal variations.
Monthly data series often shows a seasonal period of 12
months while quarterly data series always present a period of
4 quarters. Seasonality can be determined by examining
whether the autocorrelation function of the data series with a
specified seasonal order is significantly different from zero.
For instance, if the autocorrelation coefficient of a monthly
data series with new data series formed by a lag of 4 months
is not significantly different from 0, the quarterly data series
does not have a seasonality of 4 months; if the autocorrelation
coefficient is significantly different from 0, it is very likely
this monthly data series has a seasonality of 4 months. A
seasonal ARIMA model can be built for a data series with
seasonality.

For a time series xq, its seasonality can be eliminated after D
orders of differencing with a period of S. If a further d orders
of regular differencing is still needed to make the data series
stationary, a seasonal ARIMA can be built for the data series
as follows:

B (B)Pp(B%)(1 — B)4(1 — BS)Px; = 84(B)Oq(BY)x;  (2)
where P is the number of seasonal autoregressive parameter,
Q is the seasonal moving average order, s is the period length
(in quarters in this study), and D denotes the number of
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differencing passes. Then, we can express the model as
SARIMA. For detecting the suitable model, we will use the
Autocorrelation Function ACF and Partial Autocorrelation
Function PACF. The pattern of the ACF/PACF plot gives us an
idea towards which model could be the best fit for doing
prediction. Also, we will use the Portmanteau test (i;e. Box-
Pierce test) for the randomness of time series. The process of
building model includes the following steps; identifying model,
estimating parameters, diagnosing, and forecasting. We refer the
reader to (Makridakis, et al., 1998) for more details.

2.2 Wavelet Analysis

As a mathematical tool, wavelet analysis transforms the original
signal (especially with time domain) into a varied domain for
analysis and processing. This tool is very proper for the non-
stationary data, (i.e. mean and autocorrelation of the signal are
not stable over time) and for this reason, most of the time series
data is not stationary, that is why we used the wavelet transform
(Al Wadia and Ismail, 2011). First, we look the Fourier
transform, which decomposing the signals into sum of cyclical
basis of indefinite lengths (e/"® = cos(wt) + jsin(wt)) and has
the ability to transform the domain of the signal from time to
frequency and vice versa. The formula of the Fourier transform

IS:
400

X(f) = f x(De WO dt 3)

Where X(f) represents the Fourier transform of the signal x(t).
The Fourier transform is basically an integral over time. Thus, we
miss all information that varies with time. Thus, the formula
becomes inactive for signal varies over time because it provides
for us the information of frequency content. This leads to why the
Fourier Transform expanded and modified to Gabor's adaptation
and called the Short-Time Fourier Transform STFT. It is
expressed as:

STFTY (¢, f) = f oo[x(t).w*(t —t)].e7?dt  (4)
t

Here, t represents the shift factor, w(t) is the function of the
window, and * is the complex joint. The STFT can give us a
settlement of sorts between time and frequency information. The
drawback here is that the accuracy is restricted by the size and
shape of the window. For example, using many time pauses
would give good time resolution but the very shortened time of
each window would not give us perfect frequency resolution,
especially for signals of lower frequencies (Fugal, 2009). The
frequency component of a signal at a certain time cannot properly
be specified. This is due to the Heisenberg's uncertainty
principle, which states that one cannot obtain simultaneous time
and frequency Resolution (Gencay et al., 2002). For more details,
we refer the reader to (Hubbard, 1996). This lack was overcome
by the evolution of the wavelet transformation. Wavelet
transforms let us variable-size windows. We can employ long
time durations for more precise lower frequencies information
and shorter intervals (allowing us to get more precise time
information) for the higher frequencies (Fugal, 2009). The
wavelet transform is expressed as follows:

W (x,s) = f x(0. ts (DA ©
and:
1 t—T
lp‘r,szﬁlp( s ) (6)

Where s is called the binary dilation or scale variable and t is the
binary position or translation variable. When putting this
description in equation (3) gives the definition of the CWT:

CWTY (1,5) = % f (0.0 (t_TT) o %)
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From equation 7, the transformed signal is a function of both
variables, T and s the translation and scale parameters
respectively. The translation t is proportionate to the time
information and the scale s, is proportionate to the frequency
information. To find the constitutive wavelets of the signal,
the coefficients must be multiplied by the relevant
transformation of the mother wavelet (Misiti, et al., 1996).
For transforming wavelet to be calculated by using
computers, it should use discrete quantities for the data. A
continuous signal can be sampled thus a value is recorded
after a discrete time duration. The DWT provides enough
information for the analysis and composition of a signal but
is useful, much more efficient. Discrete Wavelet analysis can
be computed using the idea of filter banks. Filters of various
cut-off frequencies resolve the signal at various scales.
Resolution is varied by the filtering; the scale is varied by up-
sampling and down-sampling. If a signal is put via two filters:
a high-pass filter keeps high-frequency information and loses
low-frequency information while a low-pass filter keeps low-
frequency information and loses high-frequency information.
Then the signal is decomposed into two parts effectively,
high-frequency represents a detailed part, and low-frequency
represents an approximation part. The sub signal created
from the low filter will have the highest frequency equivalent
to half that of the original. Depending on Nyquist sampling,
this variation in frequency domain means that only half of the
filtered samples need to be kept to perfectly rebuild the signal
(i.e.; half of the samples are excessive). In other words, this
means that downsampling can be applied to eliminate every
second sample. The scale has now been multipled. The
resolution has also been varied; obtaining better frequency
resolution and reducing the time resolution is because of the
filtering with down sampling. The approximation sub-signal
can then be set via a filter bank, and this is renewed until the
required level of decomposition has been accomplished. The
DWT is obtained by combining the coefficients of the final
approximation sub signal and the detail sub-signals.

The overall filtration procedure has the effect of separating
out smoother and smoother detail, if all the details are up-
sampled and added together then the main signal must be
reduplicating. Employing a further analogy from Hubbard
(Hubbard, 1996). This decomposition is like resolving the
ratio 87/7 into parts of increasing detail, it means: 87 /7 = 10
+2+ 0.4 +0.02 +0.008 + 0. 0005. The detailed parts can
then be built again to form 12.4285 which is close to the
original number 87/7.

3. BRIEF INTRODUCTION TO WAVELET BASED
DENOISING

Wavelet denoising procedure tries to eliminate the noise
existent in the signal while preserving the signal features,
regardless of its frequency content. The major idea of the
wavelet denoising to get the perfect components of the signal
from the noisy signal needs the estimation of the noise level.
The estimated noise level is applied to threshold the small
coefficient supposed as noise (Misiti, et al., 1996, Ergen,
2012). It is not easy to model the signal because of the actual
and nonstationary of the noise infecting it. Despite that, if the
noise assumed as stationary, then we can represent an
empirically recorded signal that is corrupted by additive
noise as:

s(i) = x(i) + oe(i)

Where s(i) is a noisy signal, x(i) is noise free real signal and
e(i) are independent normal random variables and o is the
density of the noise in s(i). The noise, in general, is modeled
as stationary independent zero-mean white Gaussian

i=012,..,n—1 (8)

variables. When this model is applied, the objective of noise
elimination is to rebuild the original signal x(i) from a finite set
of s(i) values without assuming a construction for the signal.

The steps of the signal denoising based on DWT can be
summarized as; decomposition of the signal, thresholding, and
reconstruction of the signal which is in a practical manner
reduced from noise (Burrus et al., 1998). The procedure is
expressed in Figure.1
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Figure 1. Diagram of data de-noising using DWT.
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3.1 Threshold Selection

The procedure of Threshold selection is important to which is
directly influence the quality of output denoised signal. There are
several familiar methods used for threshold estimation. Some of
them are discussed here briefly. In this paper, the performance of
three well-known criterion threshold estimation methods are
investigated for electric energy supply data in Duhok Province -
Iraq contaminated by white Gaussian noise. The influence of
wavelet decomposition level is also studied. These three methods
are briefly described as follows (Cascio, 2007, Anestis, et al.,
2001, Pallavi and Raskar, 2015):

3.1.1  Fixed Form: Itis also called Universal Threshold and is
defined by the following formula:

8FD =& mapyy/ 2 log(N) ©))

Where (N) represents the number of wavelet coefficients in each
level, 6map) is the estimate of the noise standard deviation and
can be gained through applying a median absolute deviation
(MAD) estimator to the N/2 wavelet coefficients at the first level
of decomposition, merging a scale factor equal to (0.6745).

3.1.2 Minimax: Threshold technique proposed by Donoho
(1995) to improve the Fixed Form threshold and the conception
is to find an estimator T that gets the lowest of maximum risk,
which means:

R(F) =_ inf supR(f 1) (10)
f, feR(F)
Where:
1 N
RE D ZNZ E[t—f]° (11)
i=1

Where f=f(xi) and f = f(xi), represents the vectors of real and
estimated sample values. This estimator is the option that
recognizes the minimum of the maximum Mean Square Error
MSE gained for the worst function in each set.

3.1.3 Rigorous SURE: This threshold describes a scheme
that employs a threshARGMINold value 4; at each resolution
level j of the wavelet coefficients. The Rigorous SURE threshold
denoising process is also known as SURE Shrink and employs
the Stein's Unbiased Risk Estimate criterion to obtain an unbiased
estimate. The threshold is computed as follows:

S(a,b)
=)

Asurg = argming< <) yniSURE <7h (12)

Where SURE () is defined as:
SURE(;X) =n—2 % {i:1X;] <2} + [min(X;, D]Z  (13)
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and % represents the cardinality of the set {i: |X;| < A}. Note

that for coefficients of discrete wavelet the variable X is

varied to M.

o

In accordance with estimating the threshold of a given level,
wavelet coefficients of that level would be either hard or soft
threshold. Hard thresholding represents the usual procedure
of setting to zero the elements whose absolute values are
lower than the threshold. Soft thresholding is an expansion of
hard thresholding, first set to zero the elements whose
absolute values are lower than the threshold, and then
shrinking the nonzero coefficients to zero. The hard
procedure produces discontinuities, while the soft procedure
does not (Misiti, et al., 1996). It was concluded in (Bruce and
Gao, 1996) that soft threshold has a smaller variance than the
hard threshold. In this paper, we only focus at soft
thresholding for enhancing the ARIMA model of the data set.
Two performance measures representing the Root Mean
Squared Error RMSE and Akaike’s Information Criterion
AIC are used to evaluate the performance of all denoising
algorithms and thresholding basics in denoising the electric
energy supply signals. The two measures can be described
respectively using following expression (Vijay and Anil,
2013, Yaffee and McGee, 1999):

?zl(x - Xe)i2

RMSE =
S n—k

(14)
2k
AIC = Inc2 + — (15)

Where n indicates the length of the signal or sample size, x is
the original signal, x. represents the estimated signal gained
from the denoised wavelet coefficients and k denotes the
number of estimated parameters of the model.

3.2 Classical ARIMA method and proposed methods

The process of building models using traditional ARIMA
method and proposed methods were discussed here, as
presented in Figure 2. Concerning the first method, the noisy
data is modelled by applying the Box - Jenkins methodology.
In proposed methods, the process of wavelet denoising based
on DWT were given and used through smoothing and
filtering the time series data using a set of wavelet filters with
some familiar threshold estimation methods such as Fixed
Form, Minimax, and Rigorous SURE thresholding. The
filtered series are modelled, as in the traditional method and
we put it as improved model for forecasting.

Input noisy data Input noisy data Input noisy data Input noisy data
(Electricity data) (Electricity data) {Electricity data) (Electricity data)
k'3
k3 9
k2 I ~ ~ \
De-noise using
Build model using De-noise using De-noise using owt
ARIMA Method oWt oWT
\ (3)Rigorous SURE
: (1JFixed Form Thresholding (2)Minimax Thresholding Thresholding
\ J J A J
k3 T T
Build model using Build madel using Build model using
ARIMA method ARIMA methad ARIMA method
Forecast model
T k.3 ) k3
Improved madel for Improved model for Impravrd madel far
forecasting forecasting forecating
—

Figure 2. Building models using classical ARIMA method and
proposed methods.

4. APPLICATION AND MAIN RESULTS

4.1 Application using classical ARIMA method

The actual values of the quarterly Electric Energy Supply
(megawatt) in Duhok-Province were selected as shown in
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figure (3). The data represents sample size 46 observations during
the period 2004 and 2015. The source of the data is obtained from
the General Directorate of Electric Power in Duhok Province —
Iraq. Figure (4) from the left to the right side represents the ACF
and PACIf of the se.ries. The ACF plot represent .

800 [ =

600

400

200

Electric Energy Sypply(Mega Watt)

0 10 40 50

20 30
Yearly Quarters

Figure 3. The quarterly data of Electric Energy Supply in Dohuk
Province-Iraq in Mega Watts during the period 2004 and 2015.

A bar chart of the correlation coefficients between a series and
lags of itself. The PACF plot represents the partial correlation
coefficients between the series and lags of itself.

1F 1
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S 1= azf
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Figure 4. ACF and PACF of quarterly electric supply in Duhok
Province during the period 2004 and 2015.

Figure 3 obviously exhibits upward increasing trend with features
of seasonality and suggests that the current time series is non-
stationary. From Figure 4, we can observe that the values of the
ACF are gradually declining from a first - order autocorrelation
coefficient to the end. The computed Portmanteau test of Box-
Pierce with fifteen lags takes a value of 190.67 (p-value = 0.00),
which is highly significant, confirming the autocorrelation
pattern. The PACF shows a large peak at lag 1 with a rapid
decline thereafter. We will first take a seasonal difference. The
seasonally differenced data also appeared that the series is still
nonstationary, and so we took an extra first difference of non-
seasonal, as presented in Figure 5 and 6 respectively.

100" v v v v =
60 |- -

20 3

Adjusted Data

o 10 20 30 40 50
Yearly Quarters

Figure 5. Double-differenced (seasonal and non-seasonal) of Electric
Energy Supply

O

R
B o
== = —m e [

] DEHDDD__D_DDD

ACF for Adjusted Data
PACF for Adjusted Data

o 3 § o " M 0 3 6 9 n 1
lag

lag
Figure 6. The values of ACF and PACF of double differenced (seasonal
and non-seasonal) of Electric Energy data.

After obtaining stationarity, we proceed to fit an SARIMA model
to the doubled difference of the series. We apply the two
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performance criteria; RMSE and AIC mentioned in
theoretical part to select the suitable model order. Tablel
presents different models of SARIMA specifications and the
estimated criteria values.

Table 1. SARIMA model comparison using criteria values

Models RMSE  AIC

SARIMA (1,1,1)(21,2)4 302813 7.0819
SARIMA(0,1,1)(2,1,2)4 32.1985 7.1612
SARIMA(L,1,0)(2,1,2)4 322086 7.1618

It is clear from tablel that, both performance criteria RMSE
and AIC selected SARIMA(1,1,1)(2,1,2)4 model which
having the smallest values of criteria compared with the
others. Therefore, we conclude that the suitable and
appropriate model is SARIMA(1,1,1)(2,1,2)4. The estimated
model is presented in Table 2.

Table 2. Estimation of SARIMA(1,1,1)(2,1,2)4
Standard

Parameters Estimates Error t-ratio P-value
AR(1) 0.6829 0.1304 5.2381 0.000008
MA(1) 1.0466 0.007 149.821 0
SAR(1) 0.5507 0.1608 3.4249 0.0016
SAR(2) -0.7217 0.1366 -5.2822 0.000007

SMA(1) 0.6589 0.1287 5.1204 0.000011
SMA(2) -1.0483 0.0672 -15.5943 0

After obtaining the estimation of the SARIMA(1,1,1)(2,1,2)4
model, we have to check for obtaining randomness. Figure 7
presents the ACF and PACF of residuals using
SARIMA(1,1,1)(2,1,2)4 on series data.

" 3 . y 2 s £ 3 § 3 it i
™ be

Figure 7. ACF and PACF of residuals usi'ng
SARIMA(1,1,1)(2,1,2)4 on series data.

Through looking at Figure 7, none of the autocorrelations
coefficients of ACF and PACF are significant, which
strongly suggesting that the time series may well is
completely random (i.e.; white noise). Also, we did a test for
randomness of residuals using a Portmanteau test (or Box-
Pierce test), which has been mentioned in the theoretical part.
The value of the test statistics was (8.3234) and the P-value
was (0.3049) indicating that we cannot reject the hypothesis
that the series is random at the 95% or higher confidence
level.

4.2 Application of proposed methods

The quarterly data of Electric Energy Supply was modeled
using classical ARIMA methodology as
SARIMA(1,1,1)x(2,1,2)4.The parameters were selected after
careful modeling and fitting and depending on the
performances criteria mentioned theoretical part. The
performance measures RMSE and AIC of the above model
were computed. Figure 8 presents wavelet analysis using

Daubechies wavelet of order 6 with five levels multiresolution
for the Electric Energy Supply for 46 sequential observations,
where s represents the signal and it is equal to the sum of its
approximation and of its fine details, a5 is approximation at level
5 and d5; d4; d3; d2; d1 are the details at level 5,4,3,2 and 1.
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Figure 8. Five levels multiresolution wavelet analysis hsing Daubechies
wavelet of order 6 wavelet for the quarterly data of Electric Energy
Supply in Dohuk Province-Irag.
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The original or noisy data of Electric Energy Supply denoised
using wavelet denoising procedure mentioned in theoretical part
(using MATLAB software, version 2013) with four different
wavelet families. It is important here to say that after many
empirical experiments with many wavelet families, it has been
found that these wavelets perform better than others in terms of
denoising the Electric data and they are (Fugal, 2009):

1- Daubechies wavelet of order 3 and 6.

2- Coiflets wavelet of order 4.

3- Discrete Meyer (dmey) wavelet.

4- Symlet wavelet of order 7.

The shape of the above wavelet families presented in Figure 9.

; — - |
= C 0 = =

by Coifa

Figure 9. Shapés of aifferent wavelets: (a) Daubechies of order 6, (b)
Coiflet of order 4, (c) Discrete Meyer, (d) Symlet of order 7.

(d) Symiet?

The three proposed methods were applied to data through
the following procedure: The threshold selection for de-
noising was depending on Fixed Form, Minimax, and
Rigorous SURE as mentioned in theoretical part. The data
was first analyzed for five multi-resolution levels for the
selected wavelet, and denoised using different thresholds
with soft thresholding. Then, the new series were modeled
using SARIMA method and forecasting criteria were
calculated and compared with those in the first method
mentioned before. Table 3 summarizes the performance of
the two criteria for the original data model using SARIMA
method and proposed methods.

From Table 3 one may note that the best estimation model
for the original Electric data after careful modeling and
fitting was SARIMA(1,1,1)(2,1,2)4. However, when
proposed methods based on wavelet de-noising applied on
the original data the forecasting errors have reduced and
the new models have been improved depending on the
performance measures. Comparing SARIMA method with
the proposed method(1) we can see that the reduction is
maximum when applying Fixed Form thresholding and
using Discrete Meyer wavelet (i.e.; note from the Table 3
good reduction in RMSE and AIC from 30.281 to 28.095
and from 7.082 to 6.932, respectively).
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Table 3. The performance measures for the original Electric data
model using classical SARIMA method and proposed methods.

Method Kind RMSE AlC

Classical
SARIMA
Method

SARIMA(1,1,1)(2,1,2)4 30.281 7.082

Original data

Proposed

Method(1) Daubechies(6)

28.401 6.954

Fixed Form

Thresholding Coiflet(4) 28.62 6.97

De-noised data Discrete Meyer(dmey) 28.095 6.932

Symlet(7) 28.72 6.98
Proposed .
Method(2) Daubechies(6) 29.291 7.01
Minimax .
Thresholding Coiflet(4) 29.38 7.02
De-noised data Discrete Meyer(dmey) 28.916 6.99
Symlet(7) 29.45 7.03
Proposed .
Method(3) Daubechies(3) 29.184 7.008
Rigorous
SURE Coiflet(4) 30.418 7.03

Thresholding

De-noised data Discrete Meyer(dmey) 30.066 7.068

Symlet(7) 29.808 7.05

Table 4. Forecast values of Electric Energy Supply data using
classical SARIMA(1,1,1)(2,1,2)4 and the proposed methods

Period Classical Proposed Proposed Proposed
SARIMA Method Method(1)  Method(2)  Method(3)
Fixed Minimax Rigorous
Quart  SARIMA(L,1,1)(2 Form Threshold SURE
ers 1,2)4 Threshold in Thresholdi
ing 9 ng
Discrete Discrete .
Original Data Meyer(dm  Meyer(dm Daubechie
s(3)
ey) ey)
Forecast Forecast Forecast Forecast
28%55 596514 597.975  507.100  591.559
2815 610.634 612.155  612.208 606.11
28116 696.381 691.519 694.429 690.331
2826 549.193 551.281 552.685 550.554
281;6 641.633 640.177 643.087 635.51
28:‘[16 658.069 657.013 660.525 651.723
28117 748.907 742.125 747.916 740.768
28127 596.501 602751  603.151  506.805
28137 602.372 691.276  695.763  684.405
2817 709.723 709.807 714.274 701.747

Comparing SARIMA model with the proposed method
(2) we can see that the reduction is maximum when
applying Minimax thresholding and using Discrete
Meyer wavelet (note from the Table 3 the good
reduction in RMSE and AIC from 30.281 to 28.916 and
from 7.082 to 6.989, respectively). Finally, Comparing
SARIMA model with the proposed method (3) we can
observe that the reduction is maximum when the data
was Rigorous SURE thresholding using Daubechies
wavelet of order 3 (note from the table (3) the good
reduction in RMSE and AIC from 30.281 to0 29.184 and
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from 7.082 to 7.008, respectively). The forecast values of
classical model and proposed methods are presented in
Table 4.

5. CONCLUSIONS

This study leads to the following conclusions:

1- The suitable model using classical
SARIMA(L,1,1)(2,1,2)4.

2- Further information could be gained from a series when
applying wavelet denoising method and this leads to
enhance the classical method.

3- The three proposed methods were better than classical
SARIMA method for forecasting the Electric Energy Supply
data depending on performance measures and among them,
the proposed method (1) depending on Fixed Form
Thresholding was the best one.

4- 1t was found that Daubechies, Coiflets, Discrete
Meyer(dmey) and Symlet wavelets are very suitable when
denoising the Electric Energy Supply data and out of these
wavelet families, the Daubechies and Discrete Meyer
performed better.

method  was
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