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ABSTRACT: 

Many applications have been done in the field of using wavelet analysis for time series analysis. In this study, we used the quarterly 

data of Electric Energy Supply in Duhok Province-Iraq in Megawatt which represents a sample size (46) observations during the 

period 2004 and 2015.we aim to describe how wavelet de-noising can be used in time series forecasting and improve the forecasting 

quality through presenting some proposed methods based on wavelet analysis and SARIMA method and applying on real data and 

make comparison between methods depending on some statistical criteria.Results from the analysis showed the superiority of the 

three proposed methods and showed that we can get more information from a series when using Wavelet-SARIMA method and 

this leads to enhance the classical SARIMA model in forecasting. Furthermore, after many empirical experiments with many 

wavelet families, it has been found that Daubechies, Coiflets, Discrete Meyer(dmey) and Symlet wavelets are very suitable when 

denoising the data and out of these four wavelet families, the Daubechies and Discrete Meyer performed better. 

KEYWORDS: SARIMA, Wavelet-SARIMA, De-noising, Time Series Forecasting, Thresholding. 

1. INTRODUCTION 

Electricity is one of the most powerful forces in our lives. 

Electric energy supply forecasting is critically important in 

operation of electricity system since it can provide supportive 

information to help the system work securely and efficiently. 

Moreover, good results in electric energy supply forecasting 

can help significantly improve the economic factors of the 

power network operation. 

Wavelet analysis technique for time series could be a very 

good tool for electric energy forecasting, which plays a 

significant role in the planning of economic and safe process 

for methods of modern energy. The process of reducing the 

noise from the original data before analyzing the series is 

important to get an improvement when modeling and 

forecasting. The wavelet denoising method depending on 

wavelet with a threshold is a robust mathematical tactic to 

reducing the noise from the original data while keeping the 

most amount of energy data that explains the actual data 

(Mustafa, and Alzubaydi, 2013). 

Many implementations have been done and proposed using 

wavelet analysis in time series. Yi et al. (2008) suggested a 

new model for Short Term Load Forecast STLF in the market 

for electricity. The model was formed of a simulation 

platform. The simulation results showed that the model can 

make a sensible accuracy of forecasting in STLF. Aggarwal 

et al. (2009) presented a joint Wavelet Transform WT and 

Multiple Linear Regression MLR based method for price 

profile forecasting in a single compromise real- time 

electricity markets. the study ended that the proposed method 

can be used for providing a forecast with a sensible degree of 

accuracy and will be most useful during on-peak hours and 

times of high volatility. Frimpong and Okyere (2010) have 

developed a forecast model to predict the consumption of 

monthly energy by using wavelet transform and radiate base 

work neural network. A criterion Mean Absolute Percentage 

Error MAPE of 7.94% was carried out when the forecast 

model was examined over a 60-month interval. Moreno - 

Chaparro, et al. (2011) have proposed an approach of forecasting 

for the monthly electricity for the National Interconnected 

System NIS of Colombia. The method pre-operation the time 

series by employing a Multi-resolution Analysis MRA and using 

Discrete Wavelet Transform DWT. The prediction was gained by 

combining the forecast trend with the estimated gained by the 

residual series combined with further components that removed 

from pre-operation. Ming, et al. (2011) used characteristic 

extraction representing rising trend, periodical waves, and 

stochastic series for the purpose of forecasting the monthly 

consumption of electric energy. The outcomes of the analysis 

showed that the suggested method is preferable than those 

classically used in terms of forecasting precision and anticipated 

risks. Avdakovic, et al. (2012) used the linear regression and 

wavelet transforms approach to assessing the relationship 

between the Gross Domestic Product GDP, variations of air 

temperature, and the consumption of the power. They showed 

that forecasting the GDP and seasonal air temperature index 

trends should be considered in mid and long-term forecasting and 

power system planning. Avdakovic, et al. (2013) applied the 

continuous wavelet transform CWT with Morlet wavelet for 

performing the analysis of the hourly load of an actual power 

system. The outcomes showed that this method of analyses can 

confer a better insight into the essential characteristics of the 

consumption and recognize the characteristic periods of the 

power system load difference over the previous years, which can 

be very motivating for power system designers.  

Very recently, Li, et al. (2014) proposed a new method for load 

forecast, which combines wavelet transform and radical learning 

machine. Numerical testing showed that the suggested method 

can enhance the forecast performance with minimum 

computational cost by comparison with other methods. 

Khandelwal, et al (2015) suggested new approach tactically uses 

the unique strengths of Discrete Wavelet Transform DWT, 

Autoregressive Integrated Moving Average ARIMA, and 

Artificial Neural Network ANN for improving the forecasting 

accuracy. Results of the study showed that the new approach 

obtains superior forecasting accuracies for each series. Rana and 

Koprinska (2016) offered Advanced Wavelet Neural Networks 

AWNN method for monthly, daily and hourly data’s and showed 
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that the new method can be used for forecasting of other time 

series for power systems implementations. Jakub and Jerzy 

(2016) presented a hybrid method for forecasting the energy 

demand based on DWT and ANN. The presented method 

showed that introduction of the DWT as a pre-operating tool 

for the ANN input can give better results of forecasting 

models. 

The main objective of this paper is to describe how wavelet 

de-noising can be used in time series forecasting and show 

the ability to minimize the noise from the main data and 

enhancing the forecasting quality when applying some 

proposed methods on real data and comparing the efficiency 

of the main classical ARIMA method and wavelet de-noising 

methodology. 

In this paper, two different methods were considered for 

building a suitable model through applying on Electric 

Energy Supply data. In the first method, the data is modeled 

using classical ARIMA methodology. In the second method, 

the data is modeled using some proposed methods based on 

wavelet analysis and SARIMA methods. Then, some 

performance measures were computed for each method and 

have used for evaluation and comparison. The remainder of 

this paper is prepared as the following: Section 2 gives the 

brief explanation of ARIMA model and wavelet analysis. 

Section 3 gives some explanations of wavelet de-noising. 

Section 4 deals with application and main results. In section 

5, we present some conclusions.     

2. BRIEF EXPLANATIONS OF ARIMA MODEL 

AND WAVELET ANALYSIS 

2.1 ARIMA Model 

ARIMA model has got very high interest in the scientific 

world. The model becomes popular by George Box, Gwilym 

Jenkins, and Gregory C. Reinsel in 1970s (George, et al., 

2008). It is well-known as ARIMA(p,d,q) and can express as: 

xt = ∑ ∅ixt−i

p

i=1

+ ∑ θjεt−j

q

j=1

+ εt                                (1) 

Where p is the order of the nonseasonal autoregressive, q is 

the order of the nonseasonal moving average, ∅i are called 

autoregressive coefficients, θj are moving average 

coefficients and εt  is the random error. First or second order 

of differencing is used if the original data is non-stationary. 

Often time series data containing seasonal variations. 

Monthly data series often shows a seasonal period of 12 

months while quarterly data series always present a period of 

4 quarters. Seasonality can be determined by examining 

whether the autocorrelation function of the data series with a 

specified seasonal order is significantly different from zero. 

For instance, if the autocorrelation coefficient of a monthly 

data series with new data series formed by a lag of 4 months 

is not significantly different from 0, the quarterly data series 

does not have a seasonality of 4 months; if the autocorrelation 

coefficient is significantly different from 0, it is very likely 

this monthly data series has a seasonality of 4 months. A 

seasonal ARIMA model can be built for a data series with 

seasonality. 

For a time series xt, its seasonality can be eliminated after D 

orders of differencing with a period of S. If a further d orders 

of regular differencing is still needed to make the data series 

stationary, a seasonal ARIMA can be built for the data series 

as follows: 

∅p(B)ΦP(Bs)(1 − B)d(1 − Bs)Dxt = θq(B)ΘQ(Bs)xt      (2) 

where P is the number of seasonal autoregressive parameter, 

Q is the seasonal moving average order, s is the period length 

(in quarters in this study), and D denotes the number of 

differencing passes. Then, we can express the model as 

SARIMA. For detecting the suitable model, we will use the 

Autocorrelation Function ACF and Partial Autocorrelation 

Function PACF. The pattern of the ACF/PACF plot gives us an 

idea towards which model could be the best fit for doing 

prediction. Also, we will use the Portmanteau test (i;e. Box-

Pierce test) for the randomness of time series. The process of 

building model includes the following steps; identifying model, 

estimating parameters, diagnosing, and forecasting. We refer the 

reader to (Makridakis, et al., 1998) for more details. 

2.2 Wavelet Analysis 

As a mathematical tool, wavelet analysis transforms the original 

signal (especially with time domain) into a varied domain for 

analysis and processing. This tool is very proper for the non-

stationary data, (i.e. mean and autocorrelation of the signal are 

not stable over time) and for this reason, most of the time series 

data is not stationary, that is why we used the wavelet transform 

(Al Wadia and Ismail, 2011). First, we look the Fourier 

transform, which decomposing the signals into sum of cyclical 

basis of indefinite lengths (ejw(t) = cos(wt) + jsin(wt)) and has 

the ability to transform the domain of the signal from time to 

frequency and vice versa. The formula of the Fourier transform 

is: 

X(f) = ∫ x(t)e−jw(t)dt                                    (3)

+∞

−∞

 

Where X(f) represents the Fourier transform of the signal x(t). 

The Fourier transform is basically an integral over time. Thus, we 

miss all information that varies with time. Thus, the formula 

becomes inactive for signal varies over time because it provides 

for us the information of frequency content. This leads to why the 

Fourier Transform expanded and modified to Gabor`s adaptation 

and called the Short-Time Fourier Transform STFT. It is 

expressed as: 

STFTX
(W)

(t`, f) = ∫ [x(t). w∗(t − t`)]
∞

t

. e−2πftdt        (4) 

 

Here, t` represents the shift factor, w(t) is the function of the 

window, and * is the complex joint. The STFT can give us a 

settlement of sorts between time and frequency information. The 

drawback here is that the accuracy is restricted by the size and 

shape of the window. For example, using many time pauses 

would give good time resolution but the very shortened time of 

each window would not give us perfect frequency resolution, 

especially for signals of lower frequencies (Fugal, 2009). The 

frequency component of a signal at a certain time cannot properly 

be specified. This is due to the Heisenberg`s uncertainty 

principle, which states that one cannot obtain simultaneous time 

and frequency Resolution (Gencay et al., 2002). For more details, 

we refer the reader to (Hubbard, 1996). This lack was overcome 

by the evolution of the wavelet transformation. Wavelet 

transforms let us variable-size windows. We can employ long 

time durations for more precise lower frequencies information 

and shorter intervals (allowing us to get more precise time 

information) for the higher frequencies (Fugal, 2009). The 

wavelet transform is expressed as follows: 

Ψ∗
ψ(x, s) = ∫ x(t). ψτ,s

∗ (t)d(t)                                (5) 

and: 

ψτ,s
∗ =

1

√s
ψ (

t − τ

s
)                                                     (6) 

Where s is called the binary dilation or scale variable and τ is the 

binary position or translation variable. When putting this 

description in equation (3) gives the definition of the CWT: 

CWTx
ψ(τ, s) =

1

√s
∫ x(t). ψ (

t − τ

s
) d(t)                      (7) 
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From equation 7, the transformed signal is a function of both 

variables, τ and s the translation and scale parameters 

respectively. The translation τ is proportionate to the time 

information and the scale s, is proportionate to the frequency 

information. To find the constitutive wavelets of the signal, 

the coefficients must be multiplied by the relevant 

transformation of the mother wavelet (Misiti, et al., 1996).  

For transforming wavelet to be calculated by using 

computers, it should use discrete quantities for the data. A 

continuous signal can be sampled thus a value is recorded 

after a discrete time duration. The DWT provides enough 

information for the analysis and composition of a signal but 

is useful, much more efficient. Discrete Wavelet analysis can 

be computed using the idea of filter banks. Filters of various 

cut-off frequencies resolve the signal at various scales. 

Resolution is varied by the filtering; the scale is varied by up-

sampling and down-sampling. If a signal is put via two filters: 

a high-pass filter keeps high-frequency information and loses 

low-frequency information while a low-pass filter keeps low-

frequency information and loses high-frequency information. 

Then the signal is decomposed into two parts effectively, 

high-frequency represents a detailed part, and low-frequency 

represents an approximation part. The sub signal created 

from the low filter will have the highest frequency equivalent 

to half that of the original. Depending on Nyquist sampling, 

this variation in frequency domain means that only half of the 

filtered samples need to be kept to perfectly rebuild the signal 

(i.e.; half of the samples are excessive). In other words, this 

means that downsampling can be applied to eliminate every 

second sample. The scale has now been multipled. The 

resolution has also been varied; obtaining better frequency 

resolution and reducing the time resolution is because of the 

filtering with down sampling. The approximation sub-signal 

can then be set via a filter bank, and this is renewed until the 

required level of decomposition has been accomplished. The 

DWT is obtained by combining the coefficients of the final 

approximation sub signal and the detail sub-signals. 

The overall filtration procedure has the effect of separating 

out smoother and smoother detail, if all the details are up-

sampled and added together then the main signal must be 

reduplicating. Employing a further analogy from Hubbard 

(Hubbard, 1996). This decomposition is like resolving the 

ratio 87/7 into parts of increasing detail, it means: 87 / 7 = 10 

+ 2 + 0.4 + 0.02 + 0.008 + 0. 0005. The detailed parts can 

then be built again to form 12.4285 which is close to the 

original number 87/7. 

3. BRIEF INTRODUCTION TO WAVELET BASED 

DENOISING  

Wavelet denoising procedure tries to eliminate the noise 

existent in the signal while preserving the signal features, 

regardless of its frequency content. The major idea of the 

wavelet denoising to get the perfect components of the signal 

from the noisy signal needs the estimation of the noise level. 

The estimated noise level is applied to threshold the small 

coefficient supposed as noise (Misiti, et al., 1996, Ergen, 

2012). It is not easy to model the signal because of the actual 

and nonstationary of the noise infecting it. Despite that, if the 

noise assumed as stationary, then we can represent an 

empirically recorded signal that is corrupted by additive 

noise as: 

 

s(i) = x(i) + σe(i)       i = 0,1,2, … , n − 1     (8) 

 

Where s(i) is a noisy signal, x(i) is noise free real signal and 

e(i) are independent normal random variables and σ is the 

density of the noise in s(i). The noise, in general, is modeled 

as stationary independent zero-mean white Gaussian 

variables. When this model is applied, the objective of noise 

elimination is to rebuild the original signal x(i) from a finite set 

of s(i) values without assuming a construction for the signal. 

The steps of the signal denoising based on DWT can be 

summarized as; decomposition of the signal, thresholding, and 

reconstruction of the signal which is in a practical manner 

reduced from noise (Burrus et al., 1998). The procedure is 

expressed in Figure.1 

 
Figure 1. Diagram of data de-noising using DWT. 

3.1 Threshold Selection 

The procedure of Threshold selection is important to which is 

directly influence the quality of output denoised signal. There are 

several familiar methods used for threshold estimation. Some of 

them are discussed here briefly. In this paper, the performance of 

three well-known criterion threshold estimation methods are 

investigated for electric energy supply data in Duhok Province -

Iraq contaminated by white Gaussian noise. The influence of 

wavelet decomposition level is also studied. These three methods 

are briefly described as follows (Cascio, 2007, Anestis, et al., 

2001, Pallavi and Raskar, 2015): 

3.1.1 Fixed Form: It is also called Universal Threshold and is 

defined by the following formula: 

δ(FT) = σ̂(MAD)√2 log(N)                                       (9) 

Where (N) represents the number of wavelet coefficients in each 

level, σ̂(MAD) is the estimate of the noise standard deviation and 

can be gained through applying a median absolute deviation 

(MAD) estimator to the N/2 wavelet coefficients at the first level 

of decomposition, merging a scale factor equal to (0.6745). 

 

3.1.2 Minimax: Threshold technique proposed by Donoho 

(1995) to improve the Fixed Form threshold and the conception 

is to find an estimator f̂ that gets the lowest of maximum risk, 

which means: 

R̂(F) = inf 
f̂ ,   f∈R̂(F)

sup R(f̂, f)                                         (10)    

Where:  

R(f̂, f) =
1

N
∑ E[f̂ − f]

2
                                               (11)

N

i=1

 

Where f=f(xi) and f̂ = f̂(xi), represents the vectors of real and 

estimated sample values. This estimator is the option that 

recognizes the minimum of the maximum Mean Square Error 

MSE gained for the worst function in each set. 

 

3.1.3 Rigorous SURE: This threshold describes a scheme 

that employs a threshARGMINold value 𝜆𝑗  at each resolution 

level j of the wavelet coefficients. The Rigorous SURE threshold 

denoising process is also known as SURE Shrink and employs 

the Stein's Unbiased Risk Estimate criterion to obtain an unbiased 

estimate. The threshold is computed as follows: 

λSURE = argmin0<λ<λ UNISURE (λ,
S(a, b)

σ
)             (12) 

Where SURE ( ) is defined as:  

 

SURE(λ; X) = n − 2  {i: |Xi| ≤ λ} + [min(|Xi|, λ)]2        (13) 
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and ♣ represents the cardinality of the set {i: |Xi| ≤ λ}. Note 

that for coefficients of discrete wavelet the variable X is 

varied to 
S(a,b)

σ
. 

In accordance with estimating the threshold of a given level, 

wavelet coefficients of that level would be either hard or soft 

threshold. Hard thresholding represents the usual procedure 

of setting to zero the elements whose absolute values are 

lower than the threshold. Soft thresholding is an expansion of 

hard thresholding, first set to zero the elements whose 

absolute values are lower than the threshold, and then 

shrinking the nonzero coefficients to zero. The hard 

procedure produces discontinuities, while the soft procedure 

does not (Misiti, et al., 1996). It was concluded in (Bruce and 

Gao, 1996) that soft threshold has a smaller variance than the 

hard threshold. In this paper, we only focus at soft 

thresholding for enhancing the ARIMA model of the data set. 

Two performance measures representing the Root Mean 

Squared Error RMSE and Akaike`s Information Criterion 

AIC are used to evaluate the performance of all denoising 

algorithms and thresholding basics in denoising the electric 

energy supply signals. The two measures can be described 

respectively using following expression (Vijay and Anil, 

2013, Yaffee and McGee, 1999): 

RMSE = √
∑ (x − xe)i

2n
i=1

n − k
                                       (14) 

AIC = lnσe
2 +

2k

n
                                                     (15) 

 

Where n indicates the length of the signal or sample size, x is 

the original signal, x𝑒 represents the estimated signal gained 

from the denoised wavelet coefficients and k denotes the 

number of estimated parameters of the model. 

3.2 Classical ARIMA method and proposed methods 

The process of building models using traditional ARIMA 

method and proposed methods were discussed here, as 

presented in Figure 2. Concerning the first method, the noisy 

data is modelled by applying the Box - Jenkins methodology. 

In proposed methods, the process of wavelet denoising based 

on DWT were given and used through smoothing and 

filtering the time series data using a set of wavelet filters with 
some familiar threshold estimation methods such as Fixed 

Form, Minimax, and Rigorous SURE thresholding. The 

filtered series are modelled, as in the traditional method and 

we put it as improved model for forecasting. 

 
Figure 2. Building models using classical ARIMA method and 

proposed methods. 

4. APPLICATION AND MAIN RESULTS 

4.1 Application using classical ARIMA method 

The actual values of the quarterly Electric Energy Supply 

(megawatt) in Duhok-Province were selected as shown in 

figure (3). The data represents sample size 46 observations during 

the period 2004 and 2015. The source of the data is obtained from 

the General Directorate of Electric Power in Duhok Province – 

Iraq. Figure (4) from the left to the right side represents the ACF 

and PACF of the series. The ACF plot represent 

 

Figure 3. The quarterly data of Electric Energy Supply in Dohuk 

Province-Iraq in Mega Watts during the period 2004 and 2015. 

A bar chart of the correlation coefficients between a series and 

lags of itself. The PACF plot represents the partial correlation 

coefficients between the series and lags of itself. 

 

Figure 4. ACF and PACF of quarterly electric supply in Duhok 

Province during the period 2004 and 2015. 

Figure 3 obviously exhibits upward increasing trend with features 

of seasonality and suggests that the current time series is non-

stationary. From Figure 4, we can observe that the values of the 

ACF are gradually declining from a first - order autocorrelation 

coefficient to the end. The computed Portmanteau test of Box-

Pierce with fifteen lags takes a value of 190.67 (p-value = 0.00), 

which is highly significant, confirming the autocorrelation 

pattern. The PACF shows a large peak at lag 1 with a rapid 

decline thereafter. We will first take a seasonal difference. The 

seasonally differenced data also appeared that the series is still 

nonstationary, and so we took an extra first difference of non-

seasonal, as presented in Figure 5 and 6 respectively. 

 

 
Figure 5. Double-differenced (seasonal and non-seasonal) of Electric 

Energy Supply 

 
Figure 6. The values of ACF and PACF of double differenced (seasonal 

and non-seasonal) of Electric Energy data. 

After obtaining stationarity, we proceed to fit an SARIMA model 

to the doubled difference of the series. We apply the two 
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performance criteria; RMSE and AIC mentioned in 

theoretical part to select the suitable model order. Table1 

presents different models of SARIMA specifications and the 

estimated criteria values. 

Table 1. SARIMA model comparison using criteria values 

Models RMSE AIC 

SARIMA (1,1,1)(2,1,2)4 30.2813 7.0819 

SARIMA(0,1,1)(2,1,2)4 32.1985 7.1612 

SARIMA(1,1,0)(2,1,2)4 32.2086 7.1618 

 

It is clear from table1 that, both performance criteria RMSE 

and AIC selected SARIMA(1,1,1)(2,1,2)4 model which 

having the smallest values of criteria compared with the 

others. Therefore, we conclude that the suitable and 

appropriate model is SARIMA(1,1,1)(2,1,2)4. The estimated 

model is presented in Table 2. 

Table 2.
 
Estimation of SARIMA(1,1,1)(2,1,2)4 

Parameters Estimates 
Standard 

Error 
t-ratio P-value 

AR(1) 0.6829 0.1304 5.2381 0.000008 

MA(1) 1.0466 0.007 149.821 0 

SAR(1) 0.5507 0.1608 3.4249 0.0016 

SAR(2) -0.7217 0.1366 -5.2822 0.000007 

SMA(1) 0.6589 0.1287 5.1204 0.000011 

SMA(2) -1.0483 0.0672 -15.5943 0 

 

After obtaining the estimation of the SARIMA(1,1,1)(2,1,2)4 

model, we have to check for obtaining randomness. Figure 7 

presents the ACF and PACF of residuals using 

SARIMA(1,1,1)(2,1,2)4 on series data. 

 
Figure 7. ACF and PACF of residuals using 

SARIMA(1,1,1)(2,1,2)4 on series data. 

Through looking at Figure 7, none of the autocorrelations 

coefficients of ACF and PACF are significant, which 

strongly suggesting that the time series may well is 

completely random (i.e.; white noise). Also, we did a test for 

randomness of residuals using a Portmanteau test (or Box-

Pierce test),
 
which has been mentioned in the theoretical part. 

The value of the test statistics was (8.3234) and the P-value 

was (0.3049)
 
indicating that we cannot reject the hypothesis 

that the series is random at the 95% or higher confidence 

level. 

4.2 Application of proposed methods 

The quarterly data of Electric Energy Supply was modeled 

using classical ARIMA methodology as 

SARIMA(1,1,1)x(2,1,2)4.The parameters were selected after 

careful modeling and fitting and depending on the 

performances criteria mentioned theoretical part. The 

performance measures RMSE and AIC of the above model 

were computed. Figure 8 presents wavelet analysis using 

Daubechies wavelet of order 6 with five levels multiresolution 

for the Electric Energy Supply for 46 sequential observations, 

where s represents the signal and it is equal to the sum of its 

approximation and of its fine details, a5 is approximation at level 

5 and d5; d4; d3; d2; d1 are the details at level 5,4,3,2 and 1. 

 
Figure 8. Five levels multiresolution wavelet analysis using Daubechies 

wavelet of order 6 wavelet for the quarterly data of Electric Energy 

Supply in Dohuk Province-Iraq. 

The original or noisy data of Electric Energy Supply denoised 

using wavelet denoising procedure mentioned in theoretical part 

(using MATLAB software, version 2013) with four different 

wavelet families. It is important here to say that after many 

empirical experiments with many wavelet families, it has been 

found that these wavelets perform better than others in terms of 

denoising the Electric data and they are (Fugal, 2009): 

1- Daubechies wavelet of order 3 and 6. 

2- Coiflets wavelet of order 4. 

3- Discrete Meyer (dmey) wavelet. 

4- Symlet wavelet of order 7. 

The shape of the above wavelet families presented in Figure 9. 

 
Figure 9. Shapes of different wavelets: (a) Daubechies of order 6, (b) 

Coiflet of order 4, (c) Discrete Meyer, (d) Symlet of order 7. 

The three proposed methods were applied to data through 

the following procedure: The threshold selection for de-

noising was depending on Fixed Form, Minimax, and 

Rigorous SURE as mentioned in theoretical part. The data 

was first analyzed for five multi-resolution levels for the 

selected wavelet, and denoised using different thresholds 

with soft thresholding. Then, the new series were modeled 

using SARIMA method and forecasting criteria were 

calculated and compared with those in the first method 

mentioned before. Table 3 summarizes the performance of 

the two criteria for the original data model using SARIMA 

method and proposed methods. 

From Table 3 one may note that the best estimation model 

for the original Electric data after careful modeling and 

fitting was SARIMA(1,1,1)(2,1,2)4. However, when 

proposed methods based on wavelet de-noising applied on 

the original data the forecasting errors have reduced and 

the new models have been improved depending on the 

performance measures. Comparing SARIMA method with 

the proposed method(1) we can see that the reduction is 

maximum when applying Fixed Form thresholding and 

using Discrete Meyer wavelet (i.e.; note from the Table 3 

good reduction in RMSE and AIC from 30.281 to 28.095 

and from 7.082 to 6.932, respectively).  
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Table 3. The performance measures for the original Electric data 

model using classical SARIMA method and proposed methods. 

Method Kind RMSE AIC 

Classical 

SARIMA 

Method SARIMA(1,1,1)(2,1,2)4 30.281 7.082 

Original data 

Proposed 

Method(1) 
Daubechies(6) 28.401 6.954 

Fixed Form 

Thresholding 
Coiflet(4) 28.62 6.97 

De-noised data Discrete Meyer(dmey) 28.095 6.932 

  Symlet(7) 28.72 6.98 

Proposed 

Method(2) 
Daubechies(6) 29.291 7.01 

Minimax 

Thresholding 
Coiflet(4) 29.38 7.02 

De-noised data Discrete Meyer(dmey) 28.916 6.99 

  Symlet(7) 29.45 7.03 

Proposed 

Method(3) 
Daubechies(3) 29.184 7.008 

Rigorous 

SURE 

Thresholding 

Coiflet(4) 30.418 7.03 

De-noised data Discrete Meyer(dmey) 30.066 7.068 

  Symlet(7) 29.808 7.05 

 

Table 4. Forecast values of Electric Energy Supply data using 

classical SARIMA(1,1,1)(2,1,2)4 and the proposed methods 

Period 
Classical 

SARIMA Method 

Proposed 

Method(1) 

Proposed 

Method(2) 

Proposed 

Method(3) 

Quart

ers 

SARIMA(1,1,1)(2

,1,2)4 

Fixed 

Form 

Threshold

ing 

Minimax 

Threshold

ing 

Rigorous 

SURE 

Thresholdi

ng 

  Original Data 

Discrete 

Meyer(dm

ey) 

Discrete 

Meyer(dm

ey) 

Daubechie

s(3) 

  Forecast Forecast Forecast Forecast 

2015 

Q3 
596.514 597.975 597.109 591.559 

2015 

Q4 
610.634 612.155 612.298 606.11 

2016 

Q1 
696.381 691.519 694.429 690.331 

2016 

Q2 
549.193 551.281 552.685 550.554 

2016 

Q3 
641.633 640.177 643.087 635.51 

2016 

Q4 
658.069 657.013 660.525 651.723 

2017 

Q1 
748.907 742.125 747.916 740.768 

2017 

Q2 
596.591 602.751 603.151 596.805 

2017 

Q3 
692.372 691.276 695.763 684.405 

2017 

Q4 
709.723 709.807 714.274 701.747 

 

Comparing SARIMA model with the proposed method 

(2) we can see that the reduction is maximum when 

applying Minimax thresholding and using Discrete 

Meyer wavelet (note from the Table 3 the good 

reduction in RMSE and AIC from 30.281 to 28.916 and 

from 7.082 to 6.989, respectively). Finally, Comparing 

SARIMA model with the proposed method (3) we can 

observe that the reduction is maximum when the data 

was Rigorous SURE thresholding using Daubechies 

wavelet of   order 3 (note from the table (3) the good 

reduction in RMSE and AIC from 30.281 to 29.184 and 

from 7.082 to 7.008, respectively). The forecast values of 

classical model and proposed methods are presented in 

Table 4. 

5. CONCLUSIONS 

This study leads to the following conclusions: 

1- The suitable model using classical method was 

SARIMA(1,1,1)(2,1,2)4.  

2- Further information could be gained from a series when 

applying wavelet denoising method and this leads to 

enhance the classical method. 

3- The three proposed methods were better than classical 

SARIMA method for forecasting the Electric Energy Supply 

data depending on performance measures and among them, 

the proposed method (1) depending on Fixed Form 

Thresholding was the best one. 
4- It was found that Daubechies, Coiflets, Discrete 

Meyer(dmey) and Symlet wavelets are very suitable when 

denoising the Electric Energy Supply data and out of these 

wavelet families, the Daubechies and Discrete Meyer 

performed better. 
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 بیی  ل كرنا پێلاست ب شلوڤهر پشت بهها دهوكێ ب كارئینانا رێكێن پشنیاركرى ل سهبایێ ل پارێزگهى كارهپێدانێ یا وزهستهرهپێشبینكرنا كه
 SARIMA ل رێكاگه

 :ێنیكولێل ایكورت

ب  هاتنه كولینێ دا داتایێن چارێك سالانهكرنا زنجیرێن كاتى.دڤێ ڤهكرنا پێلا بچیك بۆ شلوڤهنجامدان د بوارێ شلوڤهئه جێكرن هاتینهك جێ بهلهگه
د ناڤ ماوا  دانه 46 بارهكێ ب قهیهدهژ بژار و ژى بریتى یهئه (مێگاواتى)عیراق ب  –ها دهوكێ بایى ل پارێزگهى كارهپێدانێ یا وزهستهرهكارئینان یێن كه

یێ و ب كارئینانا وێ د پێشبینكرنا زنجیرێن كاتى و چاككرنا (ڵههه)تیا پێلا بچیك د كێمكرنا ما باسكرنا چونیهرهب مه .2015و  2004را ناڤبه سالێن د
جێكرنا وان و جێبه SARIMAكرنا پێلا بچیك و رێكین مایا شلوڤهر بنهند رێكێن پشنیاركرى ل سهو ژى ب رێكا پێشكێشكرنا چهكوالیتا پێشبینكرنێ ئه

كرنێ نجامێن شلوڤهئه رێن ئامارى.ند پێڤهمایێن چهر ینهكرن ل سه را وان رێكان دا بهێتهراوردى د ناڤ بهسا بهروهو هه قینهر داتایێن راستهل سه رێكان
مێ ب كارئینانا پێلا بچیك ژ زنجیرێ ل دهئینان  ستڤهب ده سا دیار كر كو پتر پێزانین دشێن بهێنهر وهر سێ رێكێن پشنیاركرى و ههستى ههدیار كرن باڵاده

وڵدانێن ك ههلهندێ و پشتى گهیا كلاسیكى بۆ پێشبنكرنێ.ژ بلى وێ چه SARIMAدكێشیت بو چاككرنا مودێلا و ژى خۆ ڤهئه SARIMAل رێكا ل گه
 ,Dauchies, Coiflets, Discrete Meyer(dmey)) ن یچیكسا دیاربى كو پێلێك خێزانێن پێلا بچیك وهلهل گهنجامدان ل گهوێن هاتین ئهتاقیكرنێ ئه

Symlets) و ژى  یێ ژ داتایا و ژ ناڤ وان چوار پێلێن بچیك كارێ دوو ژ وان ئه(ڵههه)مێ ژێبرنا ل ده ك یێن گونجاینهلهگه(Dauchies, Discrete Meyer 

(dmey)) .یێ باشتر بى 
 

 

 
 SARIMAالتنبؤ بتجهيز الطاقة الكهربائية في محافظة دهوك باستخدام طرق مقترحة بالإستناد إلى تحليل المويجة وطرق 

 

 خلاصة البحث:

لطاقة م إستخدام بيانات ربع سنوية لتجهيز اإن العديد من التطبيقات قد تم إنجازها في مجال تحليل المويجة في تحليل السلاسل الزمنية. في هذا البحث ت
. إستهدفنا وصف قدرة المويجة في تقليل 2015و  2004مشاهدة خلال الفترة من  46العراق بالميكاوات والتي تمثل عينة حجمها -الكهربائية في محافظة دهوك

من خلال تقديم بعض من الطرق المقترحة بالإستناد إلى تحليل  الضوضاء وإستخدامها في التنبؤ بالسلاسل الزمنية ومن ثم تحسين جودة التنبؤ و ذلك
أظهرت نتائج التحليل تفوق  و تطبيقها على بيانات حقيقية وإجراء مقارنة بين الطرق بالإعتماد على بعض المعايير الإحصائية. SARIMAالمويجة وطريقة 

 SARIMAالحصول عليها من خلال السلسلة الزمنية عند إستخدام المويجة مع طريقة  الطرق المقترحة الثلاثة وكذلك أظهرت أن المزيد من المعلومات يمكن
التقليدي في التنبؤ.إضافةً إلى ذلك وبعد العديد من المحاولات التجريبية مع العديد من عائلات المويجة فقد  SARIMAوهذا يؤدي إلى تحسين نموذج 

)تبين أن المويجات  Dauchies, Coiflets, Discrete Meyer( dmey) ,Symlets)  مناسبة جداً عند إزالة الضوضاء من البيانات ومن بين هذه المويجات
)الأربعة كانت المويجتان  Daubechies, Discrete Meyer( dmey) أدائهما أفضل. (

 


