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ABSTRACT: 

The aim of the present paper is to define and study a new class of groups, namely Wm-groups with a single binary operation based 

on axioms of semi commutativity, right identity and left inverse. Moreover, we introduce the notions of right cosets, quotient Wm-

groups, homomorphisms, kernel and normal Wm-subgroups in terms of Wm-groups, and investigate some of their properties. 
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1. INTRODUCTION 

Group theory and semi-group theory have developed in 

somewhat different directions in the past several decades. 

Group theory is the mathematical application of symmetry to 

an object to obtain knowledge of its physical properties. 

Group is the key part of it that acts in every area in which 

symmetry occurs. Lagrange, J. L. was usually credited with 

originating the theory of groups, which would become so 

important in 19th and 20th Century mathematics. Galois, E. 

work also laid the groundwork for further developments such 

as the beginnings of the field of abstract algebra, including 

area like group theory. Group theory is the tool that is used 

to determine symmetry and symmetry can help resolve many 

chemistry problems. 

 

It is known that, a group G is an algebraic structure consisting 

of a non-empty set equipped with an operation on its 

elements that satisfies, associative law, identity law and 

inverse law and if the operation is commutative, then G is 

said to be a commutative group or  an abelian group.    

2. WM-GROUPS SETS 

 

Definition 2.1. Let G be a non-empty set and * be a binary 

operation. Then, (G, ∗) is called a Wm-group if the following 

axioms hold: 
 

(1) r * m * n = m * r * n, for every r, m, n ∈ G  (semi 

commutativity). 

(2) There is an element [r] in G such that r = r * [r] for each 

r ∈ G. 

(3) There is an element r-1 ∈ G such that [r] = r-1  * r and    

r-1  = r-1  * [r] for each r ∈ G. 

(4) There is a unique solution in G to the equation                  

m * z = r, denoted by m-1 * r, for every r, m ∈ G. 

 
Example 2.2. Let G = {[r]= [m]= [m-1],  r = r-1, m, m-1} be a 

set and * be an operation on G defined as follows: 

 

                                                                 
*  Corresponding author 

 

∗ 
[r]= [m]=  

[m-1] 
r = r-1 m m-1 

[r]= [m]= 

[m-1] 

[r]= [m]=  

[m-1] 
r m m-1 

r = r-1 r = r-1 
[r]= [m]= 

[m-1] 
m-1 m 

m m m-1 r = r-1 
[r]= [m]= 

[m-1] 

Then, (G, ∗) is a Wm-group. 

 

Remark 2.3. It is clear that every commutative group is Wm-

group. 

Remark 2.4. Wm-groups and groups are independent in general. 

 

Example 2.5. Let A = {1, 2, 3} and let  

(
1 2 3
1 2 3

) = 1,                            (
1 2 3
2 1 3

) = (12) 

(
1 2 3
1 3 2

) = (23),                      (
1 2 3
3 2 1

) = (13) 

(
1 2 3
2 3 1

) = (123),                  (
1 2 3
3 1 2

) = (132) 

Then, S3 = {1, (12), (13), (23), (123), (132)} and thus (S3, ∘) is a 

group, but not Wm-group because (12) ∘ (13) ∘ (23) = (13) ≠ (13) 

∘ (12) ∘ (23) = (12). 

 

Example 2.6. Let G be the set of all integer numbers and ∗ be an 

operation on G defined by r ∗ m = −(r + m) for r, m ∈ G. Then, 

(G, ∗) is a Wm-group, but not a group. 

 

Proposition 2.7. Let (G, ∗) be a Wm-group. If   n * r = n * m, 

then r = m, for every r, m, n ∈ G. 

Proof.  Since n * m = n * m implies that m = n-1 * (m * n) by 

Definition 2.1 (4). But n * r = n * m, hence r = n-1 * (m * n). Thus, 

r = m. 

 

Proposition 2.8. Let (G, ∗) be a Wm-group. Then, r * (m-1 * n) 

= (m-1 * r) * n = m-1 * (r * n) for every r, m, n ∈ G. 

Proof. Let z = m-1 * n and w = m-1 * r. Then, m * z = n,                       

m * w = r and m * w * n = r * n = r * m * z = m * r * z. By 

Proposition 2.7, w * n = r * z. Furthermore, m * r * z = m * r * 

(m-1 * n) = r * m * (m-1 * n) = r * n. Hence, r * z = m-1 * (r * n). 

 

Proposition 2.9. If (G, ∗) be a Wm-group, then, 

(1) [r] * m = m for every r, m ∈ G.  

(2) r * r-1 = [r] for every r  ∈ G. 

(3) [m-1] = [m] for every m ∈ G. 
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(4) (r-1) -1 = r for every r ∈ G. 

Proof. (1)  By Proposition 2.8, we have [r] * m = (r-1 * r) * 

m = r * (r-1 * m).  Let z = r-1 * m, then   r * z = m. Hence [r] 

* m = r * z = m. 

(2) r * r-1 = r * (r-1 * [r]) = [r]. 

(3) Since [m-1] = (m-1) -1 * m-1 implies that m-1 * [m-1] = m-1, 

but m-1 * [m] = m-1, then m-1 *[m-1] = m-1 = m-1 * [m]. By 

Proposition 2.7, [m-1] = [m]. 

(4) r−1 ∗ r = [r] = [r−1]. Thus, r = (r−1) −1 ∗ [r−1] = (r−1) −1. 

 

Proposition 2.10. Let (G, ∗) be a Wm-group. Then, (r* m)-1 

* n = m-1 * (r-1 * n) = r-1 * (m-1 * n) for every r, m, n ∈ G. 

Proof. Let z = r-1 * n. Then r * z = n and r * m * (m-1 * z) = r 

* z = n. Hence (r * m)-1 * n = m-1 * z = m-1 * (r-1 * n). Since r 

* m * (m-1 * z) = m * r * (m-1 * z), then r * (m-1 * z) = m-1 * 

n. Thus, r-1 * (m-1 * n) = m-1 * z = m-1 * (r-1 * n). 

 

Proposition 2.11. Let (G, ∗) be a Wm-group. Then for every 

r, m ∈ G, we have, 

(1) [r * m] = [m]. 

(2) (r * m) -1  = r-1 * m-1. 

(3) [[m]] = [m]. 

(4) [m-1] = [m] = [m]-1 

(5) r * m = m * r if and only if [r] = [m]. 

Proof. (1) Let r, m ∈ G. Since G is Wm-group, then there is 

z1 in G such that r-1 * z1 = m, that is, z1= (r-1) -1 * m implies 

that r * m = (r-1) -1 * m = z1 ∈ G. By Definition 2.1 (3) and 

Propositions 2.8 and 2.10, we have [r * m] = (r * m) -1 * (r * 

m) = r * ((r * m) -1 * m) = r * (r-1 * (r-1 * r)) = r-1 * m = [m]. 

(2) By Definition 2.1 and Proposition 2.10, we have                   

(r * m) -1 =  (r * m) -1 * [r * m]  = (r * m) -1 * [m] = r-1  * (m-1  

* [m]) = r-1  * m-1. 

(3) [[m]] = [m] *[m] -1, by Proposition 2.9 (1), [[m]] = [m] -1 

and [[m]]= (m * m-1) -1 = m-1 * m = [m]. 

(4) [m] -1 = [m] -1 * [[m]] = [m] -1* [m] = [[m]] = [m]. By 

Proposition 2.9 (3), [m-1] = [m] = [m] -1. 

(5) If r * m = m * r, then [r] = [m* r] = [r * m] = [m]. 

 

Conversely, if [r] = [m], then by Definition 2.1 (2), we have 

r * m = r * m * [m] = m * r * [m] = m* r * [r] = m * r. 

 

Proposition 2.12. Let (G, ∗) be a Wm-group. Then, for every 

r, z, w ∈ G, we have: 

(1) If r * z = r * w, then z = w * [z]. 

(2) If z = [z] * w, then r * z = r * w. 

(3) If r-1 * z = r-1 * w, then z = w * [z]. 

(4) If z = [z] * w, then r-1 * z = r-1 * w.  

Proof. We only prove (1) and (2), the other parts can be 

proved similarly. 

(1) If r * z = r * w, then r-1 * r * z = r-1 * r * w and                         

[r] * z = [r] * w. Then, [r] * z * [z] = [r] * w * [z] and by 

Proposition 2.9 (1), z * [z] = w * [z]. Thus, by Definition 2.1 

(2), z = w * [z]. 

(2) If z = [z] * w, then r * z = r * [z] * w = r * w. 

 

Definition 2.13. Let G be Wm-group and φ ≠ S ⊆ G, then S 

is called a Wm-subgroup of G if S is a Wm-group. 

 

Proposition 2.14. Let G be Wm-group and φ ≠ S ⊆ G. Then, 

S is a Wm-subgroup of G if and only if m-1  * r ∈ S, for every 

r,  m ∈ S. 

Proof. Let S be a Wm-subgroup of G. Then, there is z0 in S 

such that m * z0 = r for every     r, m in S. But z0 is a solution 

to the same equation in G. Hence by Definition 2.1 (2), z0 = 

m-1 * r. 

 

Conversely, since * is semi commutativity on G, then * is 

also semi commutativity on S. Let [m]-1, r ∈ S, for all                

r, m ∈ S. If we take m = r, then [r] = r-1 * a ∈ S and if we take 

r = m, then [m] = m-1 * m ∈ S. Now for any m ∈ S as [m] ∈ S, 

we have m-1 = m-1 * [m] ∈ S. Let r, m ∈ S, implies that                      

m-1 * r ∈ S. Then, m * (m-1 * r) = r and m-1 * r is a solution in S 

to m * z = r. Since any other solution in S to m * z = r is also a 

solution in G, so m-1 * r is unique solution in S. Thus, S is a    

Wm-subgroup of G.  

 

Proposition 2.15. The union of two Wm-subgroups of a           

Wm-group is Wm-subgroup if and only if one is contained in the 

other. 

Proof. Suppose that S1 and S2 are two Wm-subgroups of a           

Wm-group G. If S1 ⊆ S2, then S1∪S2 = S2 and if S2 ⊆ S1, then         

S1∪S2 = S1.  In either cases we get (S1∪S2, ∗) is a Wm-subgroup 

of (G, ∗). 

 

Conversely, let S1 ⊈ S2 and S2 ⊈ S1, then there is an element             

r ∈ S1, but r ∉ S2, and there is an element m ∈ S2, but m ∉ S1. 

Now r, m ∈ S1∪ S2, then by Proposition 2.14, m-1 * r ∈ S1∪ S2, 

so either m-1 * r ∈ S1 or m-1 * r ∈ S2. If m-1* r ∈ S1, then m-1 * r * 

r-1 = m-1 ∈ S1, but (m -1)-1 ∈ S1
-1 implies that m ∈ S1, which is not 

true. Again, if m-1 * r ∈ S2, then m * m -1 * r = r ∈ S2, which is not 

true. Therefore, S1 ⊆ S2 and S2 ⊆ S1. 

 

Definition 2.16.  Let G be a Wm-group, S a Wm-subgroup of G 

and r ∈ G. Then, r * S = {r * s: s ∈ S} is called a left coset of S 

by r and S * r = {s * r: s ∈ S} is called a right coset of S by r. 

 

Proposition 2.17. Let G be a Wm-group and S a Wm-subgroup 

of G. Define a relation K on G as follows: rKm if and only if          

r = s * m for some s ∈ S. Then, K is an equivalence relation on G 

whose equivalence classes are precisely the right cosets of S by 

the elements of G. 

Proof.  Let s be an element in S. Then, s-1 * s = [s] ∈ S. Let                  

r ∈ G. Then, r = [s] * r and rKr. Moreover, if rKm, then r = s * m 

for some element s in S. Then m = s-1 * r. But   s-1 = s-1 * [s] ∈ S. 

Thus mKr. Now, if rKm and mKn then   r = s * m and m = g * n 

for s, g ∈ S. Then r = s * g * n and we have rKn. The equivalence 

relation K on G partitions G into disjoint equivalence classes. Let 

Er be the equivalence class of all elements of G equivalent to r. 

If z ∈ Er, then z = s * r for some s ∈ S and hence z ∈ S * r. 

 

Conversely, if z is any element of the right coset S * r, then              

z = s * r for some s ∈ S and z ∈ Er. 

 

Proposition 2.18. Let G be a Wm-group and S a Wm-subgroup 

of G. The operation * defined on G|S as follows: (S * r) * (S * m) 

= S * (r * m) so that G|S is a Wm-group under operation *.  

Proof. First, we show that this operation is well-defined. Let         

S * r = S * r' and S * m = S * m'. Then, r = s * r' and m = g * m' 

for s, g ∈ S. Then r * m = s * r' * g * m' = s * g * r' * m' and we 

have r * m ∈ S * r' * m', that is, r * m and r' * m' are in the same 

right coset. This shows that the induced operation is well defined.  

 

Semi commutativity of * is immediate consequences of 

definition. If S * r is any element of G|S, then S * [r] = S * r-1 * r 

= S * r-1 * S * r = [S * r] and S * [r] ∈ G|S. Now for any S * r ∈ 

G|S as S * [r] ∈ G|S, we have S * r-1 * S * [r] = S * r-1 * [r] = S * 

r-1 ∈ G|S. Finally, if S * r and S * m are elements of G|S, then S 

* m * S * (m-1 * r) = S * (m * (m-1 * r)) = S * r and we have a 

solution in G|S to the equation (S * m) * (S * z) = S * r. This 

solution is unique, for if (S * m) * (S * z) = S * r = (S * m) * (S 

* w), then m * z = s * m * w for s ∈ S. Then m * z = m * s * w 

and by Proposition 2.7,      z = s * w, whence S * z = S * w. 

 

Definition 2.19. Let G1 and G2 be two Wm-groups. A mapping 

f: G1 → G2 is called a homomorphism if for every r, m in G1,          

f (r * m) = f (r) * f (m). 

If f is injective, then f is called an isomorphism. 
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Proposition 2.20. Let f: G1 → G2 be a homomorphism. Then, 

for every r, m ∈ G, we have: 

(1) f(m-1 * r)= f(m)-1 * f(r).  

(2) [f(r)] = f([r]).  

(3) f(r-1) = f(r)-1. 

Proof.  (1) f(m) * f(m-1* r) = f(m * (m-1 * r)) = f(l). Hence, 

f(m-1 * r) = f(m)-1 * f(r). 

(2) f([r]) = f(r-1 * r) = f(r)-1  * f(r) = [f(r)]. 

(3) f(r-1) = f(r-1 * [r]) = f(r)-1  * f([r]) = f(r)-1 * [f(r)] = f(r)-1. 

 

Proposition 2.21. Let f: G1 → G2 be a homomorphism. Then,  

(1) f(S) = {f(s)| s ∈ S} is a Wm-subgroup of G2 for any      

Wm-subgroup S of G1. 

(2) f-1(S') = {z ∈ G| f(z) ∈ S'} is a Wm-subgroup of G1 for 

every Wm-subgroup S' of G2. 

Proof. (1) If f(s) and f(g) in f(S), then s, g ∈ S and                   

f(g)-1 * f(s) = f(g-1 * s) ∈ f(S).  

(2) If z, w ∈ f-1(S'), then f(z) ∈ S' and f(w) ∈ S', whence      

f(w)-1 * f(z) = f(w-1 * z) ∈ S' and w-1 * z ∈ f-1(S'). 

 

Definition 2.22. Let G be a Wm-group and S a Wm-subgroup 

of G. Then, S is called a normal Wm-subgroup of G if            

[z] ∈ S, for every z ∈ G. 

 

Proposition 2.23. Let G be a Wm-group, S a Wm-subgroup 

of G and r ∈ G. Let r-1 * S * r = {r-1 * s* r| s ∈ S}. Then, S is 

normal Wm-subgroup in G if and only if r-1 * S * r ⊆ S for 

every r ∈ G. 

Proof. Let S be normal in G, then r-1 * s * r = s * r-1 * r = s * 

[r] ∈ S for any s ∈ S. Hence, r-1 * S * r ⊆ S.  

 

Conversely, let r ∈ G, then [r] = r-1 * r = r-1 * [s] * r ∈ r-1 *S*r 

for at least one s ∈ S. Therefore, [r] ∈ S. 

 

Corollary 2.24. Let G be a Wm-group, S a Wm-subgroup of 

G and r ∈ G. Then, S is a normal Wm-subgroup in G if and 

only if r * S * r-1 ⊆ S for every r ∈ G. 

Proof.  The proof is similar to Proposition 2.23. 

 

Definition 2.25. Let G1 and G2 be two Wm-groups. If               

f: G1 → G2 is a homomorphism, then the kernel of f is defined 

as {r ∈ G1| f(r) = f([r])} and is denoted by K. 

 

Proposition 2.26. Let f: G1 → G2 be a homomorphism and 

K be a kernel of f. Then, K is a normal Wm-subgroup of G1. 

Proof.  Let r, m ∈ K. Then, f(m-1 * r) = f(m) -1 * f(r) =       

f([m])-1 * f([r]) = f([m]-1) * f([r]) = f([m]-1  * [r]) = f([m] * 

[r]) = f([r]) = f([m-1 * r]). Thus, K is a Wm-subgroup of G. 

Moreover, if z ∈ G1, then by Proposition 2.11 (3),                    

f([z]) = f([[z]]) and thus [z] ∈ K. Therefore, K is a normal 

Wm-subgroup of G1. 

 

Proposition 2.27. Let f: G1 → G2 be a homomorphism and 

K be a kernel of f. Then, 

(1) If S is a normal Wm-subgroup of G and K ⊆ S, then f(S) 

is a normal Wm-subgroup of G2 and f-1(f(S)) = S.  

(2) If S' is a normal Wm-subgroup of G2, then f-1(S') is a 

normal Wm-subgroup of G1 such that K ⊆ f-1(S') and  

f(f-1(S')) = S'. 

Proof.  (1) By Proposition 2.21 (1), f(S) is a Wm-subgroup 

of G2. Let w ∈ G2. Then w = f(z) for some z ∈ G1 and [w] = 

[f(z)] = f([z]) ∈ f(S), whence S is normal in G1. Hence f(S) is 

a normal Wm-subgroup of G2. Let z ∈ f-1(f(S)), so f(z) ∈ f(S). 

Then f(z) = f(s) for some s ∈ S and f(s)-1 * f(z) = f(z)-1 * f(z). 

Then, f(s-1 * z) = f(s)-1 * f(z) = f(z)-1 * f(z) = [f(z)] = f([z]) = 

f([s-1 * z]) implies that s-1 * z ∈ K. Since K ⊆ H, we have        

s-1 * z = s1 ∈ S and z = s * s1, hence f-1(f(S)) ⊆ S. On the other 

hand if z ∈ S, then f(z) ∈ f(S) and z ∈ f-1(f(S)). Therefore,       

f-1(f(S)) = S.   

(2) By Proposition 2.21 (2), f-1(S') is a Wm-subgroup of G1. 

Moreover, if z ∈ G1, then f([z]) = [f(z)] ∈ S'. Thus [z] ∈ f-1(S') 

and f-1(S') is a normal in G1. Let p ∈ K. Then, f(p) = f([p]) = [f(p)] 

∈ S' and p ∈ f-1(S'). Thus, K ⊆ f-1(S'). Let w ∈ f(f-1(S')). Then       

w = f(z), where z ∈ f-1(S'). Thus, w ∈ S'. On the other hand for 

any w ∈ S' we have w = f(z) for some z ∈ G1 and z ∈ f-1(S'). Then,    

w = f(z) ∈ f(f-1(S')) and we have f(f-1(S')) = S'. 

 

Proposition 2.28. Let S and R be Wm-subgroups of a Wm-group 

G, then 

(1) S ∩ R is a Wm-subgroup of G. 

(2) If S is normal in G, then S ∩ R is normal in R. 

(3) If S and R are normal in G, then S ∩ R is normal in G. 

Proof. (1) Let z, w ∈ S ∩ R. Then, w-1 * z ∈ S and w-1 * z ∈ R 

and hence w-1 * z ∈ S ∩ R.  

(2) If S is normal in G, then for any p ∈ R, [p] ∈ R and [p] ∈ S. 

Thus, [p] ∈ S ∩ R. 

(3) If both S and R are normal in G, then for any r ∈ G, [r] ∈ S, 

[r] ∈ R and thus [r] ∈ S ∩ R. 

 

Proposition 2.29. If S and R are Wm-subgroups of a Wm-group 

G such that S ⊆ R and S is normal in G, then R is normal in G. 

Proof. Let r ∈ G. Then, [r] ∈ S and [r] ∈ R. 

 

Definition 2.30. Let S and R be Wm-subgroups of a Wm-group 

G. Then, S * R denotes the subset {s * p| s ∈ S, p ∈ R} of G. 

 

Proposition 2.31. Let S and R be Wm-subgroups of a Wm-group 

G, then 

(1) S * R is a Wm-subgroup of G. 

(2) If S is normal in G, then S * R is normal in G. 

(3) If S and R are normal in G, then S * R = R * S. 

Proof. (1) Let z, w ∈ S * R. Then z = s * g and w = p * u, where 

s, p ∈ H and g, u ∈ R. Then, w-1 * z = (p * u)-1 * s *g = p-1 * u-1 * 

s * g = (p-1 * s) * (u-1 * g) ∈ S * R. Thus, S * R is a Wm-subgroup 

of G. 

(2) Since R is non-empty, p1 ∈ R for some p1 and thus [p1] ∈ R, 

whence S ⊆ S * R. If S is normal in G, then by Proposition 2.29, 

S * R is normal in G. 

(3) If S and R are normal in G, then by Corollary 2.24, for s * p 

∈ S * R we have s * p = s * p * [p] = p * s * [p] = p * s * p * p-1 

= p * p * s * p-1 ∈ p * R * S * p-1 ⊆ R * S, and similarly p * s = p 

* s * [s] = s * p * [s] = s * p * s * s-1 = s * s * p * s-1 ∈ s * S * R 

* s-1 ⊆ S * R, for p * s ∈ R * S. Therefore, S * R = R * S. 

 

Proposition 2.32. [G] = {r ∈ G| r = [r]} is a normal Wm-subgroup 

of a Wm-group G, and [G] = {[r]| r ∈ G}. 

Proof. Let z, w ∈ [G]. Then w-1 * z = [w] -1 * [z] = [w] * [z] = [z] 

= [w-1 * z]. Furthermore, if z ∈ G, then [z] = [[z]] and [z] ∈ [G], 

whence [G] is normal in G and [G] = {[r]| r ∈ G}. 

 

Remark 2.33. The Wm-subgroup [G] = {r ∈ G| r = [r]} is said to 

be the trivial Wm-subgroup of a Wm-group G. 

 

Additional Reading 

We refer the reader to the books (Adhikari and Adhikari 2003, 

2004; Clifford and Preston 1961) for further details. 
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 یێ گروپێت ئاڵوگورى لاواز كێ تازهشێوازه
 

 :ێنیكولێل ایكورت
ست كرن نیا پشتبهكا تهل كریارهدگه Wm-groupنیاسین ب  یێ گروپا كو دهێته كێ تازهكرن و خوێندنا  شێوازهب بێناسه كولینێ رابونهئارمانجا ڤێ ڤه

, Wm-groupی ێن  كوسیتا راستێ, كولكهسا دێ رابین ب پێشكێشكرنا بیرۆكهروهبێ. ههیێ چهپێچاوانه نێ راستێ, دژهوێستى ئاڵوگورى, بێلایهنهڵگهببه
 كرن.تێت ڤێ گروبى دێهێتهند سالوخهو لدوماهیێ دیفچونا چه Wm-groupكرن ب پێناسه یێت هاتینه Wm-subgroupروك و نورمال  هومومورفیزم, ناڤه

 
 

 خلاصة البحث:
مع عمليص ثنائيص الوحيدة اعتماداَ على البدنهيات شةةبه تبدنليص,  Wm-group الهدف من هذه البحث هو تعرف و دراسةةص فةةني  دند من الزمر معرفص بال

الاعتيادي تحددها  Wm-subgroup , التشاكل, النوات و Wm-group مفاهيم كوسيت الانمن, القسمصمحاند الانمن و المعكوس الانسر. وكذلك نحن نقدم 
  واخيراَ التحقيق في بعض خصائصها.Wm-group بال 


