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ABSTRACT:

The main purpose of this paper is to study the existence of polynomial inverse integrating factor and first integral, and non-existence
of limit cycles for all systems. Furthermore, we consider some applications.
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1. INTRODUCTION

First we give some basic concepts and results about
qualitative behaviour for autonomous ordinary differential
equations
x=Pxy),
y=0Qx,y), @)
where P(x,y) and Q(x,y) are functions of class C 1(U) and
U € R2. The periodic solution y of system (1) is an algebraic
limit cycle if it is a limit cycle and contained in some
irreducible invariant algebraic curve y = 0 of system (1),
otherwise it’s called non-algebraic limit cycle, (Calanchi, M.
and Ruf , B., 2002) and (Chavarriga, J., Giacomini, H. and
Gine, J., 1997).

Definition 1.1: A non-zero function V: U — Ris said to be
an inverse integrating factor of system (1)

in an open subset U S R? if V €C 1(U) ,V #0in U that
satisfies the equation

av v <6P 6Q> )

ax dy ax+ay @
In short notation, an inverses integrating factor of V(x,y)
system (1) satisfies

xV = Vdivy

The inverse integrating factor is the most important tool in
this work. We now give necessary conditions for a
polynomial vector field to have a polynomial inverse
integrating factor.

Definition 1.2: The system (1) is integrable on an open
subset U of R? if there exists a non-constant analytic function
H: U - R, called a first integral of the system on U, which
is constant on all solutions curves ¢(t) of system (1)
contained in U; i.e., H(¢(t)) = constant for all values of ¢
for which the solution ¢ (t) is defined and contained in U.

Theorem 1.3 (Chavarriga, J., Giacomini, H. and Gine , J.,
2000): The necessary and sufficient condition that a function
H is a first integral of the system (1) on U is that
H PaH 0H 0
X =P ox +Q ay
One of the classical tools in the classification of all
trajectories of a dynamical system is to find first integral. For
two dimensional vector fields a first integral completely
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determines its phase portrait. But usually it is very difficult to
detect a planar vector field is integrable or not.
9 aQ

We say that system (1) is integrable if div(y) = a_z + i 0. If
system (1) is integrable, then there exists a function H such that

Z—: =— ,‘;—]; = P, then any such H is a first integral of system (1)

(Ferragut, A., 2006).

Theorem 1.4 (Chavarriga, 2004.): Let H: U —» R be the first
integral of a system (1). Then system (1) has no limit cycle
contained in U.

The following theorem gives an important relation between
inverse integrating factor and first integral.

Theorem 1.5 (Ferragut, A., 2006): Let V be an inverse
integrating factor of system (1) defined in the open subset U =
RZ. Then,

1) The function % defined in U\{V = 0} is an integrating factor
of system (1). Moreover; the function

_ P&y Qxy) | @ P(xYy) : -

Hoy) == [5c55 T 16 o T axd Ty @¥)dx s afirst
integral of (1).

2) If system (1) has a first integral H, then the function

Vy(x,y) = 2= ==L s an inverse integrating factor of (1).
Toy  ox

c_p__ o o _am

Moreover, the system i==-2" jy=;=5" s

Hamiltonian in U\{V = 0}.

Theorem 1.6 (Ferragut, A., 2006): Let V: U — R be an inverse
integrating factor of (1). If y < U s a limit cycle of (1), then y
is contained in the set

Y={kxy) € U:V(x, y) = 0}
The existence of limit cycles was first detected by Poincare.

Definition 1.7: A closed trajectory ¢ in a phase portrait is called
a limit cycle if it is isolated from all other closed trajectories
more precisely, if there is a neighborhood of ¢ which contains
no other closed trajectories.

Definition 1.8: The geometrical representation of the qualitative
behaviour of (1) is called the phase-portrait.

Theorem 1.9 (Chavarriga, J., Llibre , J. and Sorolla , J., 2001):
If the system (1) has no singular point, then it has no limit cycles.
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Definition 1.10: A singular point for system (1) is a point
(%0, yo) such that f(xq,y0) = g(xX0,y0) = 0, asingular point
is a particular case of solution, where ¢¢(xq,¥0) = (X0, Vo)
forallt € R.

Definition 1.11: The associated linearized system (4) at
singular point (xg,y,) is given by the Jacobian matrix
Jxoy0) Where

ap opP\|

_[ox oy
](xo.y()) _l a0 90 |
ox dy

(x,¥)=(x0,50)
and the system

()= 1000 () ©

is said to be the linearization (or linearized system).

2. POLYNOMIAL INVERSE INTEGRATING
FACTORS AND FIRST INTEGRALS

In this section we give some results about the existence of
polynomial an inverse integrating factors and First integrals
for Quadratic polynomial systems.

In the first part of this work the Quadratic systems are the
polynomial real differential systems of type (1) of
degree m = 2. Our main objective is to classify some
Quadratic systems having a polynomial inverse integrating
factor V(x,y) .

Our result in this section is the following.

2.1 Method for computing polynomial inverse
integrating factors for Quadratic system
Consider the real planar Quadratic system
x—zz A j— ny] L_PZ(XY)
j=0i=
' (4

byj_ix'y/ ™t = Q,(x,y)

MN
M\

0i

Il
o

j

we assume thatP, and Q, have no common factors;
otherwise the system can be transformed into a quadratic one.
In order to find a polynomial inverse integrating factor of this
system. We denoted this equationby (2).
Next we describe the method we use to find polynomial
inverse integrating factors of degree k > 0.
Method 1. Since we are looking for real polynomial inverse
integrating factors of degree k € N, we write V (x, y) as

k

Vix,y) = Z Vi xtyd,

i+j=0
where V; ; € R. Equation (2) is a polynomial equation , since
P,(x,y),Q,(x,y) and V are polynomial functions, and it can
be written as a linear system with unknowns V; ;,i +j =
0,..,k

2.2 Existence of inverse integrating factor of Quadratic
polynomial systems:

Theorem 2.2: The linear system

X =a,x+ by
. )
Y =a,x + b,y

has inverse integrating factor V(x, y) = ay x + (b, —
a,)xy — byy? and if a, # b, the first integral is

H(x,y)
= Eln(—azx2 — xyb, + xya, + b;y?)
arctan( —xb, + a;x + 2byy >a1x
J—4a,x2b; — x2b? + 2x2b,a; — a?x?
J—4a,x?b; — x2b? + 2x2b,a, — a?x?
arctan —xb, + a;x + 2by

>xb2
J—4a,x2b; — x2b? + 2x2b,a, — a?x?
J—4a,x2b; — x2b% + 2x%b,a; — a?x?

Proof: let V(x, y) be an inverse integrating factor then by
Definitionl.1from eq. (2) is

ov ov. (0P 0Q

S~ (3

dx dy dx Ody
= (a; + b))V (6)
Solving quasi Imear equatlon(6) we have

dx _ dy _ dav

a,x + be B (a1 + bz)V

(ayx + b1}’) + (azx + bz)’)

a;x+ by
From (1) and (2)
dx  dy
a;x + by axx+byy
(ayx + byy)dy — (ayx + byy)dx =0
We get homogenous O.DE
dy _axx + b,y
dx  ax + by
by definition of homogenous, let w = %

Yy =wx
dy=wdx+xdw0rz—z=w+xi—w
dw  apx + bwx
dx a,x + bywx
dw  x(ay + bw)
dx ~ x(a, + byw)
dw _a; +bw _ay + byw —ayw — byw?
dx aq + b1W - aq + blw
dx a,+b,w
x a,+(b,—a,)w—b,w? dw (3)
Eq. (3) is separable equation
To solve Eq. (3) it is difficult integral for

w+x

w+x—

a, + b1W
f 5 dw
a21+ (bz - al)W - b1W
=—= ((Za
2 \/_azbl b2 + 2b2a1 !

bz + a, + 2b1W
—ayby — b% + 2bya, — a?
+ (_bz + al)W - az) J_azbl - b2 + 2b2a1 - a%)

+ 2b,) arctan( ) + In(byw?

Eq. (3) has solution
ln(x)

=((2a
ZJ —4a,by — b% + 2bya, — a? !

b2 + aq + 2b1W
+ 2b,) arctan
\/_4'a2b1 - b22 + 2b2a1 - a%
+In(b;w? + (=b, + a))w

- az)\/—4a2b1 — b? + 2bya; — a? = In(c)

substitute w = i—’ in solution , we get
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In(x) + In(c)

1 1

> (2a,

2\/_4a2b1 - bzz + 2b2a1 - a%

—b, +a; + Zley
+ 2b,) arctan
\/_4a2b1 - bzz + 2b2a1 - a%
by?> (=b,+a
n 1n< 1}2’ n (=b, 1)y
x x

- az)\/—é}azbl —b%+2bya,—a? |=0

It is difficult to find y in the above solution
From Eqg. (1) and Eq. (3), we have this
dx _ dv 4
ax + by (a; +by)V )
substitute y in eq.(4) and solve, we get V(x, y) , but also it is
very difficult for solving. Hence, the method it is neglected
Eq. (6) is in the form. By Method 1, for k = 2, letV(x,y) =
Va0x? + 13Xy + Vo
(a1x + by) 2vyox + v11y)
+ (azx + by) (11X + 2v42Y)
= (ay + by) (V20x? + V11 XY + v52?)
2a4V20%% + a1V Xy + 2b1vy0xy + b1v11V? + apvy X2
+ 2a,V02xy + byvy1xXy + 2byvg,y?
= (ay + by)vyox? + (ay + by)vy Xy
+ (ay + by)vgay?
(2a,v30 + azvy1)x?
+ (a1v11 + 2b1v40 + 2a,7,
+ byv11)xy + (byvyy + 2byve2)y?
= (ay + by)vaox* + (ag + by)vy1xy
+ (@ + by)vgry?
The coefficients of x2,xy and y? are:
2a1v50 + av11 = (a1 + by)vg
a1v11 + 2b1vy0 + 205003 + bovyy = (ag + by)vyy
byvyy + 2byvg, = (ag + by)vo,
From the above system, we get;
(a; — b2)vy + azvyy + 0V, = 0
b1Vyo + 0vyq + ayvp, =0
0v;0 + byvyy + (b — a)ve, = 0

a,—by, a, 0 V20
( 2by 0 2a, )<U11) =0
0 b, b, —a,/ \Vo2
a,—b, a, 0
A, = ( 2b, 0 2a, )
0 by b, —a
A,V?% =0,

After solving the system
-b
bivyy = (ay — bp)vgz and vy = alb—lzvoz

O Vgy = —2—vy,

ai—b;
Zbl

ay — b,

~a,

_a1 — b, V11

v14 is independent constant.

Substitute v,y and vy, in V(x,y)

V(x,y) =(

byvyo +

U11=0

V20 =

—a; 2 1 2
al__ljbz V11 X° + U Xy + a; — b, v11Y°)
V(y) = —— = (@ + (by — a)xy = biy?)

a; — by

Choose v1; = —(ay — b,), we get the result
V(x,y) = azx? + (b, — a;)xy — by y>.

Theorem 2.3: The nonlinear system
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X = a0 X% + ag1xy + agyy?
T 2 o)
Y = byo x* + by1xy + by
has inverse integrating factor V(x, y) = by x° + (by; —
a20)x%y + (bop — a11)xy? — agy?, if aze # byy.

Proof: IetV(x, y) be an inverse integrating factor then by
Definition 1.1 from Eq. (2) is

ov ov. (0P 0Q

o= (o)

0x dy dx Ody

av av
(azo x* + ag xy + aoz}’z)a + (byo x* + byyxy + boz}’z)a

= (2a39 x + a;1y + byyx
+ 2bgy)V ()
Solving quasi linear equation (8) we have
dx dy

(azo x2 + agixy + agy?) (bzozifz + by1xy + bopy?)
74

" (a9 X + agqy + byyx + 2bgy)V
It is very difficult for solving this equation. Hence, the method it
is neglected eq. (7) is in the form. By Method 1, for k =3, let
V(x,y) = v30 % + v51x%y + 01Xy + vo3y°.
(az0 x* + ay1xy + ag2y?) (Bvzg X% + 201Xy + v1,¥%)
+ (bao X% + b1 Xy + bopy?) (v, x*
+ 2v1,xy + 3v43y%)
= (2az9 X + ag1y + by x + 2bgyy) (v30 x°
+ V1 X%y + vipxy? + v3y°)
after calculations
The coefficients of x*, x2y?,x3y, xy3 and y* are:
(azo — b1,1)V30 + Va1 =0
(2a11 — 2bg2)v30 + 2byovi, =0
3ao,V30 + (@11 = bo2) Va1 + 3by0v03 = 0
2a9,v21 + (—2a0 + 2by 1) Vg3 = 0
aoV12 + (—ag1 + bop) Vo3 = 0
From the above system, we get;

az0 — b1, by 0 0 V.
2a,, — 2by, 0 2b 0 -
’ ’ —b 3b Va1 | _
3a,, A1~ boz 0 2,0 v, 0
0 2a0,2 0 —Zaz’o + 2b1_1 Vos
0 0 Qo2 —ayy + b, Sx4
az0 — b1 by, 0 0
2(11'1 - 2b0,2 0 2b2,0 0
Az = 3ay, a11 — boz 0 3bayo
0 2ay, 0 —2a,0+2by,
0 0 Qo2  —aintboy /.,
A3V3 =0,

After solving the system

(a1,1 - bo,z)

—b,
V3o =7—— Vo, V12 =5 < Va1
(azo —by1) ' (azo —by,1) '

Qo2

Vo3 = —————>—< V21, Vp1 = —(az0 — b11)
(azo —by1) '

Substitute vzg, v415, Vg3 and v, in V(x,y), we get the result

V(x, Y) = byo x3 + (11 — az0)x?%y + (boz — aq1)xy?
— agzy?.
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3. APPLICATION IN A CHEMICAL REACTION OF
NON-EXISTENCE OF LIMIT CYCLES FOR
QUADRATIC SYSTEM

3.1 Two autocatalysing molecules that form a complex:

we have two molecules X, Y which induces their own
production mediated by molecules A and B.X and Ycan also
form a complex C (= XY ).Again assume that there is a
surplus of A and B, resulting in their Concentrations being
constant. Since the dynamics of X and Y does not depend on
the complex C, it will also be left out of the analysis, illustrate
of the system (9). A chemical reaction leading to a limit
cycle: Consider the reaction

X+Y-2X

A+X-2X

B+Y->2Y
This is a modification of a reaction system suggested by
Schnakenberg (Mustafa, 2005).

Theorem 3.2: The relevant differential equations are

X=X 4y X2 4+ xy + agry?
©

Y ==y — agz X* — Xy — a3y
Where a,, and a,, are appropriate constant.

Proof: The fixed points of system (9) are

-1
(%0, 70) = (0.0), <a20 +1+ag, azp+1+ aoz)
The linearization of the system at (x, o) is
P, P
1=(q. o)
Qx Qy (x0,¥0)
_ (14 2a30x t+y x + 2a0y
h ( —2a02x =y _1_7‘_2@20}’)
So the matrix A at (0,0) become:-
1 0
A= (o _1)
and by characteristic equation we get: det(A—3I) =0

G 2)-2G PI=o

1=+1
the system (9) has a singular point at the origin and the
linearization at the origin is

(x0,0)

X =X,
y=-y 1o
and the phase portrait of the system (10) is
eryyyNuRtl IR
0700000
e "///i'/ i{: »'f r r': 1‘ li
s /070 NN
rrsss Lt LT
sz /7 30N
e NI
A AN
_ 7 I
Y NE
Nl -
l"-._.f p
INEAYS
Y?k/////v;;
U.S“— ; J ,ff VAV AV AP AV
\\1 17777777
mrrsz7ss777
JI"|‘ 'f ."{ .f'f r’f /////f
W t177277,7777
AT 1171777777

Fl'gure 1. The phase portraits for the system (10)

. -1 -1
So the matrix A at( , ) become:
Ap0+a02+1 " azot+ag,+1
Qo2 — A0 —1—2ay,
a20+1+a02 a20+1+a02
A=
2a02 +1 Qz0 — Qg2

a20+1+a02 a20+a02+1
and by characteristic equation we get:

Qo2 ~ Azo —1-2ap,
a20+1+a02 a20+1+a02 _1(1 O) -0
2a02 +1 A0 — Qg2 0 1

Ayo + 1+ ap;
< Qo2 — A0 —l)( A0 — Qo2 —J\)
Ayo + 1+ ap, ayo+1+ap
-1 - 2ay, 2a9, +1 _
_(a20+1+a02)(a20+1+a02)_
(@92)? — (az0)* + lz(azo +1+ap,)?
(azo + 1+ agz)?
4(ap2)? +4ap, +1
(azo +1+ag2)?
2o —2a02020 — 3(ag2)? + (az0)? — 4ag, — 1
(az0 + 1+ apy)?

(2PN + [2AY) +1

2002079 —

— 4 —2a02020 — 3(a02)? + (az0)? — 4ag; — 1
2= (azo + 1+ agz)?
11,2
= +; V=2a92a20 — 3(ag2)? + (a20)% — 4ag, — 1
- [25X0) -+ Qo2 + 1
and to get a limit cycles the Eigen values must be pure imaginary
ey, = +ip
So we can rewrite :«1‘ =atifw where 11’2 =0+
7a20+a02+1 V2a02az0 + 3(ag2)? — (az0)? +4ag +1 i
a=0,
1
B = \/2‘102‘120 +3(ag2)* — (az0)? +4ap, +1

azo tap; +1
Suppose that R = 2a02a20 + 3(a02)2 - (a20)2 + 4'a02 +1
1
-—— VR
k azo tap, +1
2a02a20 + 3(a02)2 - (a20)2 + 4'a02 +1+0
-1 » Qo2 * az;_l

Now to get imaginary part i =+v—1 we have two choices:-
if 2ag,a,0 + 3(ag)? — (az0)? + 4ag, > —1then R >0
If 2a02a20 + 3((102)2 - (azo)z + 4(102 < -1 then R<O

if azg+ag, # -1

if [2AY) * —Aayg

The linear system (9) has the polynomial inverse integrating
factor

V(x, }’) = ((apz — az0)(x +y) — 1)((2apz — D(az +
oz + 1)(agz x* = (ag2 — azo — Dxy + agy?) +
2ag,((azo + agz — 1) (x + y) + 1)) and the first integral is
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2 2 2 2 2 2 2
- ln(xy + ag2Y° + Qopx” + 200,05 0Xy — 4XYQo — Az0002Y° — XYA3 0 + 205 ,02,0%
+5ad,xy + 2a3,a,0y% — 243 ,xy — az0002%% + 203 ,x% + 2a3 ,¥* — 3ad ,x* — 3ad,y?
+2a0’2a2‘0x + 2a0‘2a2‘0y + 2a0’2x + za(z)’zy - 2a0’2x - 2a0 2y + Zao’z)

H(x,y) = -
( Zao'z - 1)(3a0'2 —-1- azyo)(az 0 + a02 - 1)
OB RS OO NN N NN NN Y
2In(agx + g2y — az0x — azey — 1) \\ AR ~\\\\\\\\.\\\\\\
(8500~ B 020+ Do~ 20 AT A,
ln((ao’z—az'o)x+ao’2y—a2’oy—1) \ \ \ﬁ \ \‘i \ \ \xy\ \q e \Q\Q\Q\\\\Q\\
6a2, —5ag, — 2 1 —ay,) AR R R R AR R R R
( %02 0.2 Go28z0 + G20 F )(%,z az,a) RRIRTRR § \ A R R NN NN
AR R R R RN AN TSN N
ARNEEY B/ R R R
N\ \\ @\ L 18 7 A )
3.2 Some applications of system (9) };::“; " @ iz‘ ii :OE\:\:\Q\\::\AE::
321 Case 1: If we take ap; = 0.9,a,, = 0.01 then the iié:ix\;ii:ﬁ:—:”\l\ﬁ . \fi\
system become R T T N e N Y
% =x+0.01x2 + xy + 0.9y (1) N RN ) 0N
y=-y—09x%—xy —0.01y? NN NN NN N e S S Y
Then the fixed points are (0,0) and (— —1) T TR T T T T T T A i S X
1917191 . R R T T T ¥ A L VR
And the Eigen values for the pomt(m E) are: R O A N T D e
3, , = £1.389941428, and the phase portrait of the system R RN N NN \_\“\‘ i Salhe
e Figure 3. The phase portrait for the system (12)
(11)is
The system (12) has the polynomial inverse integrating factor
= P R R R ! V(x, y)=—x?—xy—y*—2x—2y—2
PEPTIR o S — SRR\ W Wi Y and the first integral is
e e Sa e e e Y N Yy H@x,y)=y—-In(x2+xy+y?+2x+2y+2) +x—x2
Ii, L o . —5 krm‘x : \ \x\ V) TR —xy—yz—zx—Zy—Z
A A TSR NS RN AR 3.23 Case 3: If we take ag, = 1,a,0 = 0 then the system
e % SRR R become
g JO % %:\»g«\\ D PR
i/ /o o SRR R N \ \ ) yzy (13)
7/ 7 % BN NN Y y=-y-—x" =Xy .
bl Y A ZARRRNER T\ \1Y) Then the fixed points are (0,0) and (7 —) and the Eigen values
_0 _l 7 ’/‘g o : l-& " ¥ T
. i I : \ ' N AP A © x& ? \ ﬁ | for the point (7,7) are: 3, = 1+1.414 and the phase portrait
L N~ 2/ LRURLE of the system (13) is
N8 \ \“ ~ ‘5-2;: / / Us1E ! /‘/’\~*>Jv-9»a~DAQ“«*&"»\&\A\\\\A\&\&
\ \ \ﬁ a = t'/t/;/i / /4/? 4 ‘1 " r'1 b/’/ / 4 ——b- k*b'ib”b>\'&"\&‘\&\&\\\\\(\Q
NN\ Ss==2 77/ 4§/ R NN
; \:\ NS e A Y A8 a5 PO A S RN NN N N T
i\\‘ N 20T E TELTEEE S A
AN, o/ 7/ 1 7 A2 A NN
- _ S A A PR NN NN NN
Figure 2. The phase portrait for the system (11) L i A A AT Y N R N Y
VA A AN A AN VA
vf,"t‘,xf/’f'/."// \«\\\\\Q“q;g?
| / (i & . X LV T
3.22 Case 2: If we take ag, = ay, = 1 then the system f l’“r L 1 1{7 % ‘\‘Q/?;/ A !
y < ANIXW b v v
becomz=x+x2+x+2 EERRIN\ O’ /720 \RRER
ST rory (12) VY NN\ 7 2N |
y=-y—x*—xy—y? VNN N RS Z T A TN
Then the fixed points are (0,0) and (—1 )and the Eigen NN NN 7 22 2 AN
. 303 NANNN NS w7 2 A2 A AN |
values for the point (?,?) are: 3 , = +1 and the phase N el v e A A A A AN
portrait of the system (12) is NN NN aa—e—b v ¥ ¥ A A A A T
g \\\g‘\a‘\a'»w—bwlﬂ-’,.v_,x/l/’/"/’//’ Sl

Figure 4. The phase portrait for the system (13)

The system (13) has the polynomial inverse integrating factor

V(x, y) = 2x + 2y — 2 and the first integral is

1, 1 1 1, 1
H(x,y)zzy —Ey—zln(x+y—1)—zx X
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3.24

system becomes
x=x+xt+xy—vy?
y=-y+x?

Case 4: If we take ay, =

2
Xy =y,
Then the fixed points are (0,0) and (—1,—1) and the Eigen

—1,a,, = 1 then the

(14)

values for the point (—1,—1) are: 3, , = ++/3 iandthe
phase portrait of the system (14) is
D e e P e G ARy / /| I R S VL WL
N Sa e g d VA )/ RSN G N
NN S o Y SRR
AN AN ” J’ YN M e
P AR e A N N
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Figure 5. The phase portrait for the system (14)

The system (14) has the polynomial inverse integrating

factor

V(x, y) = (—2x =2y — 1)(-

+2y—2
and the first integral is

1
H(x,y) = %ln(Zx +2y+

3x2 4+ 9xy — 3y? + 2x
)

1
1)+ Eln(3x2 — 9xy + 3y?

—2x—-2y+2)

3.25
system become
J'c=x—x2+xy+y2

Case 5: If we take ay, = 1,a,, = —1 then the

(15)

y=-y—x2—xy+y?

Then the fixed points are (0,0) and (—1,—1) and the Eigen

values for the point (—1,—1)

are: 3, = ++V5 andthe

phase portrait of the system (15) is
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Figure 6. The phase portrait

—

or the system (15)

The system (15) has the polynomial inverse integrating factor

V(x, y) = Qx+2y—1)(—x%+xy —y? —2x—2y +2)and
the first integral is

H(x,y) = gln(x2 —xy+y?+2x+2y—2) —%ln(Zx +
2y—1)

Proof: To prove this Theorem3.2 and all cases for finding
polynomial inverse integrating factor is similar to the proof of
Theorem 2.2.and Theorem 2.3.

4. CONCLUSION

We can conclude the following theorem.
From Theorem 2.2.and Theorem 2.3.

1) For system (1), ifP and Q are homogenous
polynomials of the same degree, then the polynomial
function V(x,y) = xQ — yP is a polynomial inverse
integrating factor.

2)  If a non-zero homogenous polynomial is an inverse
integrating factor of the system (1), then it has no limit
cycles.

3) All above cases for the system (9) has no limit cycles
by Theorem 1.4 and Theorem 1.6.
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