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ABSTRACT: 
In this paper, Adomian and Adomian-Padé Technique are used to find approximate solutions for the Variable-Coefficient Variant 
Boussinesq System, and using Adomian-Padé Technique for Debug (Remove) The Gap (Complex Root). 
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1. INTRODUCTION  

Most of the phenomena that arise in mathematical physics and 
engineering fields can be modelled by ordinary or partial 
differential equations. They are ubiquitous in science and 
engineering, as well as economics, social science, biology, 
business, health care, etc., which most of them are nonlinear 
differential equations [1]. Also, we have the mathematical 
representations of many physical systems [2,3] It is not easy to 
obtain closed form solutions for such problems. In most cases, 
only approximate solutions either analytical ones or numerical 
ones can be obtained. For that reason, the nonlinear equations 
should be solved using special methods. 
In this paper, the ADM and  ADM- Padé are applied to, the 
Variable-Coefficient Variant Boussinesq System [4], 

𝑢𝒕 + 𝛼%(𝑡)𝑣* + 𝛽%(𝑡)𝑢𝑢* + 𝛾%(𝑡)𝑢** = 0 
(1) 𝑣𝒕 + 𝛼/(𝑡)𝑢𝑣* + 𝛽/(𝑡)𝑣𝑢* + 𝛾/(𝑡)𝑣** + 𝑝(𝑡)𝑢***

= 0 

where 𝛼1(𝑡),𝛽1(𝑡), 𝛾1(𝑡), 𝑖 = 1,2	 and 𝑝(𝑡)  are arbitrary 
functions of 𝑡 and all of them are smooth functions (analytic 
functions) of the time 	t  with 𝛾%(𝑡) , 𝛾/(𝑡)  and 	p(t) 
representing different diffusion strengths, where 	u = u(x, t) is 
the field of a horizontal velocity, 	v = v(x, t) is the amplitude 
describing the deviation from the equilibrium position of the 
liquid. 
Now, when we set 𝛼%(𝑡) = 𝑝(𝑡) = −1 2⁄ ,	𝛽%(𝑡) = 𝛼/(𝑡) =
𝛽/(𝑡) = 2 and 𝛾%(𝑡) = 𝛾/(𝑡) = 0, then the system (1) reduces 
to the Boussinesq-Burgers (B-B) system [5,6].The B-B 
equations are: 

𝑢> = −2𝑢𝑢* + 1 2? 𝑣*	, (2) 
		𝑣> = 1

2? 𝑢*** − 2(𝑢𝑣)*. 
The exact solitary wave solution of system (2) as in [7] are: 

         𝑢(𝑥, 𝑡) = BC
/
+ BC

/
tanhGBC

H>IC*IJK(L)
/

M, 
(3) 

         𝑣(𝑥, 𝑡) = ICH

N
sech/ GC*IBC

H>RJK	(S)
/

M, 

where 𝑐, 𝑘  are arbitrary constants and  0 < 𝑏 < ∞, with the 
initial conditions 

𝑢(𝑥, 0) = BC
/
+ BC

/
tanhGIC*IJK(L)

/
M, 

(4) 
										𝑣(𝑥, 0) =

−𝑘/

8 𝑠𝑒𝑐ℎ/ ]
𝑘𝑥 + 𝑙𝑛	(𝑏)

2 `. 

                                                        
*  Corresponding author 
This is an open access under a CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/) 
 

2. BASIC IDEA OF ADOMIAN DECOMPOSITION 
METHOD 

We will construct the ADM and we use the method to applied 
on the system of equations (2). 

Consider the system in an operator form 
                 𝐿>𝑢 + 𝐿*𝑣 + 𝑁%(𝑢, 𝑣) = 𝑔%		, (5) 
           𝐿>𝑣 + 𝐿*𝑢 + 𝑁/(𝑢, 𝑣) = 𝑔/			, 

With the initial conditions:  
𝑢(𝑥, 0) = 𝑓%(𝑥)	, 𝑣(𝑥, 0) = 𝑓/(𝑥). (6) 

Without loss of generality, 𝐿> and 𝐿*	are considered to be first 
order partial differential operators, 𝑁% and 𝑁/	 are nonlinear 
operators, and 𝑔% and 𝑔/	are source terms.  

Using the same procedure of ADM, as in [8,9].Two recursive 
relations can be constructed as follows: 

         𝑢e(𝑥, 𝑡) = 𝑓%(𝑥) + 𝐿>I%𝑔%	, 

									𝑢CR%(𝑥, 𝑡) = −𝐿>I%(𝐿*𝑣C) − 𝐿>I%(𝐴C)	,			𝑘 ≥ 0, 
(7) 

and 𝑣e(𝑥, 𝑡) = 𝑓/(𝑥) + 𝐿>I%𝑔/	, 
(8) 

    𝑣CR%(𝑥, 𝑡) = −𝐿>I%(𝐿*𝑢C) − 𝐿>I%(𝐵C),				𝑘 ≥ 0	. 

3. PADÉ APPROXIMANTS METHOD 

The main advantage of Padé approximation over the Taylor 
series approximation is that the Taylor series approximation can 
exhibit oscillate which may produce an approximation error 
bound. Moreover, Taylor series approximations can never 
blow-up in a finite region. To overcome these demerits, we use 
the Padé approximation. The Padé approximation of a function 
is given by a ratio of two polynomials. The coefficients of the 
polynomial in both the numerator and denominator using the 
coefficients in the Tylor series expansion of the function. The 
Padé approximation of a function, symbolized by ijk(*)lm(*)

n or for 

simplicity iopn, is a rational function defined by [10] 

q
𝑀
𝑁
s =

𝑝e + 𝑝%𝑥 + 𝑝/𝑥/ +⋯+ 𝑝o𝑥o

1 + 𝑞%𝑥 + 𝑞/𝑥/ + ⋯+ 𝑞p𝑥p
	, (9) 
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where we considered 𝑞e = 1,  and the numerator and 
denominator have no common factors.  

There is a drawback when we truncated series solution which is 
correct in a very narrow region but we can’t rely on this 
globally, for that demerit, to extend the region of solution and 
obtain a better accuracy and better convergence, we will use 
ADM together with Padé approximants (ADM-Padé 
technique). 

The diagram below Fig. 1 shows the algorithm of ADM-Padé 
technique as in [11] 

Partial differential equation 

 

 

Truncated series solution  

 

 

Rational function approximation of the 
solution 

Or closed form solution  

Figure 1. Flowchart of the ADM-Padé technique. 

Now, when we obtain the truncated series solution of order at 
least iopn  in 𝑡  that we will use it to obtain Padé iopn (𝑥, 𝑡) 
approximate solution for  𝑢(𝑥, 𝑡) as in [12] using the procedure 
as in [12,13] we will get the ADM-Padé technique. 
If we write the coefficients of 𝑃o(𝑥) and 𝑄p(𝑥) as 

			𝑃o(𝑥) = 𝑝e + 𝑝%𝑥 + 𝑝/𝑥/ +⋯+ 𝑝o𝑥o,
𝑄p(𝑥) = 1 + 𝑞%𝑥 + 𝑞/𝑥/ + ⋯+ 𝑞p𝑥p	.

 (10) 

Finally,	we	get	such	a	formula	of	ADM-Padé technique	after	
solving	the	two	polynomials		𝑃o(𝑥)	and	𝑄p(𝑥),	 the	results	
of	ADM-Padé technique appear in equation (11).:	

q
𝑀
𝑁
s

=

𝑑𝑒𝑡
�
�

𝑎oIpR% 𝑎oIpR/ ⋯ 𝑎oR%
⋮ ⋮ ⋱ ⋮

𝑎o 𝑎oR% ⋯ 𝑎oRp
∑ 𝑎�Ip𝑥�o
��p ∑ 𝑎�IpR%𝑥�o

��pI% ⋯ ∑ 𝑎�𝑥�o
��e

�
�

𝑑𝑒𝑡 �
�

𝑎oIpR% 𝑎oIpR/ ⋯ 𝑎oR%
⋮ ⋮ ⋱ ⋮

𝑎o 𝑎oR% ⋯ 𝑎oRp
𝑥p 𝑥pI% ⋯ 1

�
�

	,	

(11
) 

4. APPLICATION  

In this section, we demonstrate the analysis of numerical 
methods [ADM & ADM-Padé] by applying methods to the 
system of nonlinear partial differential Equations (2)  

Note that all the numerical results for 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) that 
we calculate it by using ADM and ADM-Padé technique and all 
Figures and Tables , we used MATHEMATICA software due the 
simplicity and powerful manipulation. 

For numerical result of system (2) and using four terms 
approximation solution by ADM are: 

			𝑢(𝑥, 𝑡) = 𝑢e(𝑥, 𝑡) + 𝑢%(𝑥, 𝑡) + 𝑢/(𝑥, 𝑡) + 𝑢�(𝑥, 𝑡). 

𝑢(𝑥, 𝑡) = 
1
4�−tanh�

1
2
(𝑥 − log(2))�− 1� 

 
−	

1
16	sech

/ �
1
2
(𝑥 − log(2))� 

 
+
1
8 sinh

� �
1
2
(𝑥 − log(2))�csch�(𝑥 − log(2)) ∙ 𝑡/ 

                                  −	 %
��N

sech� ]%
/
(𝑥 − log(2))` (cosh(𝑥 −

log(2))− 2) ∙ 𝑡�, 
And 

			𝑣(𝑥, 𝑡) = 𝑣e(𝑥, 𝑡) + 𝑣%(𝑥, 𝑡) + 𝑣/(𝑥, 𝑡) + 𝑣�(𝑥, 𝑡). 

					𝑣(𝑥, 𝑡) = −
1
8𝑠𝑒𝑐ℎ

/ �
1
2
(𝑙𝑜𝑔(2) − 𝑥)� 

 
+
1
2𝑠𝑖𝑛ℎ

� �
1
2
(𝑥 − 𝑙𝑜𝑔(2))�𝑐𝑠𝑐ℎ�(𝑥 − 𝑙𝑜𝑔(2)) ∙ 𝑡 

 
−

1
128 𝑠𝑒𝑐ℎ

� �
1
2
(𝑥 − 𝑙𝑜𝑔(2))�(𝑐𝑜𝑠ℎ(𝑥 − 𝑙𝑜𝑔(2))

− 2) ∙ 	𝑡/ 

+
1
768 𝑡𝑎𝑛ℎ�

1
2
(𝑥 − 𝑙𝑜𝑔(2))�𝑠𝑒𝑐ℎ� �

1
2
(𝑥

− 𝑙𝑜𝑔(2))�(𝑐𝑜𝑠ℎ(𝑥 − 	𝑙𝑜𝑔(2)) − 5) ∙ 𝑡� 

For numerical result of system (2) and using four terms 
approximation, the i/

/
n order approximate solution by ADM-

Padé Technique are: 

𝑢(𝑥, 𝑡) =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

−⎝

⎜
⎜
⎜
⎜
⎜
⎛

�
��K�]�H(*IJ ¡(/))`R

¢ ��]�H(*IJ ¡(/))`
£

⎝

⎜
⎜
⎜
⎜
⎛
�(>HR%/>R�N)¢ ��]�H(*IJ ¡(/))`R

(>HR%/>R�N)¢ ��]¤H(*IJ ¡(/))`R

�>(>R�)�
��K�]¤H(*IJ ¡(/))`I

%% ��K�]�H(*IJ ¡(/))`
£

⎠

⎟
⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎞

⎝

⎜⎜
⎛
N

⎝

⎜
⎛
IN(>HI�)¢ ��(*IJ ¡(/))R
(>HR%/)¢ ��(/*IJ ¡(�))R
¨>HI/�> ��K�(*IJ ¡(/))R
�> ��K�(/*IJ ¡(�))R

�� ⎠

⎟
⎞

⎠

⎟⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

   

and 

𝑣(𝑥, 𝑡) =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛(sech/(12(𝑥 − log	(2)))((107𝑡

/ −
264)cosh	(𝑥 − log	(2)) +

(𝑡/ − 24) cosh(3𝑥 − log(8)) −
8((5𝑡/ + 6)cosh	(2𝑥 − log	(4)) +
4𝑡/ + 48𝑡 sinh(𝑥 − log(2)) −
21𝑡sinh	(2𝑥 − log	(4)) + 30)))
(16(143𝑡/cosh	(𝑥 − log	(2)) +
(24− 22𝑡/)cosh	(2𝑥 − log	(4)) +
(𝑡/ + 12) cosh(3𝑥 − log(8)) −

122𝑡/ +
246𝑡 sinh(𝑥 − log(2)) −
84𝑡 sinh(2𝑥 − log(4)) +
6𝑡 sinh(3𝑥 − log(8)) +

132cosh	(𝑥 − log	(2)) + 120)) ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

Now, Table 1 and 2 below shows the differences between exact 
solution and approximate solutions using ADM and ADM-Padé 
technique for 𝑢(𝑥, 𝑡)  and 𝑣(𝑥, 𝑡)  respectively, when 𝑥 = 0.4 
[arbitrary chosen] and 𝑡 ∈ [	0,1	]. 

 
 
 
 

ADM series 

Padé approximants  
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Table 1. 

𝐮(𝒙, 𝒕) Exact ADM 
ADM-
Padéi𝟐

𝟐
n 

(𝟎.𝟒,𝟎. 𝟎) −0.2136167802 −0.2136167802 −0.2136167802 
(𝟎.𝟒,𝟎. 𝟐) −0.2259313809 −0.2259315158 −0.2259315227 
(𝟎.𝟒,𝟎. 𝟒) −0.2383650137 −0.2383670255 −0.2383672451 
(𝟎.𝟒,𝟎. 𝟔) −0.2508565991 −0.2508660199 −0.2508676709 
(𝟎.𝟒,𝟎. 𝟖) −0.2633439086 −0.2633712101 −0.2633780875 
(𝟎.𝟒,𝟏. 𝟎) −0.275764799 −0.2758253068 −0.2758460279 

 

Table 2. 
𝐯(𝒙, 𝒕)	 Exact	 ADM	 ADM-

Padéi𝟐
𝟐
n	(𝟎.𝟒,𝟎. 𝟎)	−0.1223525226	−0.1223525226	−0.1223525226	

(𝟎.𝟒,𝟎. 𝟐)	−0.1238414032	−0.1238409615	−0.1238409636	
(𝟎.𝟒,𝟎. 𝟒)	−0.1247292542	−0.1247220275	−0.1247220957	
(𝟎.𝟒,𝟎. 𝟔)	−0.1249985325	−0.1249612396	−0.1249617659	
(𝟎.𝟒,𝟎. 𝟖)	−0.1246438802	−0.1245241165	−0.1245263704	
(𝟎.𝟒,𝟏. 𝟎)	−0.1236723503	−0.1233761768	−0.1233831647	

Again, Table 3 and 4 shows the absolute error between the exact 
solution and approximate solutions by ADM, ADM-Padé 
technique for 𝑢(𝑥, 𝑡)  and 𝑣(𝑥, 𝑡)  respectively, when 𝑥 = 0.4 
and 𝑡 ∈ [	0,1	]. 

Table 3. 
𝐮(𝒙,𝒕) | Exact – ADM | | Exact – ADM-Padé | 

(𝟎.𝟒,𝟎.𝟎) 0 5.55112×10−17 
(𝟎.𝟒, 
𝟎.𝟐) 1.34874×10−7 1.418×10−7 

(𝟎.𝟒, 
𝟎.𝟒) 2.01176×10−6 2.23141×10−6 

(𝟎.𝟒, 
𝟎.𝟔) 9.42085×10−6 1.10718×10−5 

(𝟎.𝟒, 
𝟎.𝟖) 2.73014×10−5 3.41788×10−5 

(𝟎.𝟒, 
𝟏.𝟎) 6.05078×10−5 8.12289×10−5 

Least 
square 
error 

𝟒.𝟒𝟗𝟗𝟑𝟖×𝟏𝟎−𝟗 𝟕.𝟖𝟗𝟑𝟗𝟏×𝟏𝟎−𝟗 

 
Table 4. 

𝐯(𝒙, 𝒕)	 |	Exact	–	ADM	|	 |	Exact	–	ADM-
Padé	|	

(𝟎.𝟒,𝟎.𝟎)	 0	 0	
(𝟎.𝟒,𝟎.𝟐)	 4.41678× 10I�	 4.39585× 10I�	
(𝟎.𝟒,𝟎.𝟒)	 7.22664× 10I�	 7.15849× 10I�	
(𝟎.𝟒,𝟎.𝟔)	 3.72929× 10IÄ	 3.67666× 10IÄ	
(𝟎.𝟒,𝟎.𝟖)	 1.19764× 10I�	 1.1751× 10I�	
(𝟎.𝟒,𝟏.𝟎)	 2.96173× 10I�	 2.89186× 10I�	

Least square 
error 

𝟏. 𝟎𝟑𝟓𝟎𝟓
× 𝟏𝟎I𝟕	 9.88401× 10IN	

 
Also, the Fig. 2, Fig. 3 And Fig. 4 Below are the surfaces for the 
exact solution of B.B system, ADM and ADM-Padé technique 
respectively, when 𝑥 ∈ [−10,10] and 𝑡 ∈ [0,1]. 
Furthermore, Fig. 5(a) and Fig. 6(a) are the Zoom of the part 
that appear like the Gap [due the complex root] in the middle of 
the surfaces for the surface that solved numerically by ADM, 
we found that using ADM-Padé Technique are overcome these 
demerits and the Gap is disappeared as shown in Fig. 5(b) and 
Fig. 6(b) for 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡). 

With taking into consideration the value of this Gap [Complex 
root], we found it by using MATHEMATICA software, for 
𝑢(𝑥, 𝑡) direction the value was: 

𝑥 = 𝐿𝑛(2) + 2[𝜋𝑖 + 2𝜋𝑖𝑐% +
%
/
𝐿𝑛(2 ±È3)], where  𝑐% ∈ ℤ 

  
(a) 	𝒖(𝒙, 𝒕) (b)		𝒗(𝒙, 𝒕) 

Fig. 2 The surfaces of exact solutions. 
 
 

  
(a) 	𝒖(𝒙, 𝒕) (b)		𝒗(𝒙, 𝒕) 

Fig. 3 The surfaces of ADM solutions. 
 

  

(a) 	𝒖(𝒙, 𝒕) (b) 	𝒗(𝒙, 𝒕) 
Fig. 4 The surfaces of ADM-Padé 

solutions. 

  
(a) ADM 	𝒖(𝒙, 𝒕) (b) ADM-Padé			𝒖(𝒙, 𝒕) 

Fig. 5 The zoom surfaces 
 

  
(a) ADM 	𝒗(𝒙, 𝒕) (b) ADM-Padé			𝒗(𝒙, 𝒕) 

Fig. 6 The zoom surfaces 

And for 𝑣(𝑥, 𝑡) direction the value was: 
𝑥 = 𝐿𝑛(2) + 2[2𝜋𝑖𝑐% + 𝜋𝑖 +

%
/
𝐿𝑛(5 − 2√6)],where  𝑐% ∈ ℤ 

The Curves in Fig. 7 and Fig. 8 shows us how the ADM and 
ADM-Padé curves  is close to the exact solution curve, when 
𝑥 = 𝟎.𝟒 and 𝑡 ∈ [0,1], but as 𝑡 increase we see the ADM curve 
blow up and diverges from the exact solution curve while 
ADM-Padé curve preserve his path with the exact solution 
curve. 
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Figure 7. The curves of 𝑢(𝑥, 𝑡). 

  

Figure 8. The curves of	𝑣(𝑥, 𝑡). 
 
Finally, the Bar chart in Fig. 9.and Fig. 10. Show that the 
comparison between least square error between ADM and 
ADM-Padé technique of 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) respectively when 
𝑥 = 0.4 and 𝑡 ∈ [0,1], of course the Less one  will be better and 
accurate value which tends to the exact solutions curve. 

5. CONCLUSION 

In this paper the Variable-Coefficient Variant Boussinesq 
system was solved numerically by using Adomian 
Decomposition Method, Adomian-Padé technique, as an 
example we took the (B-B) equation and we found that ADM is 
more accurate than ADM-Padé for 𝑢(𝑥, 𝑡) direction as shown 
in Tables {1,3} and Fig. 9, while ADM-Padé is more accurate 
than ADM for 𝑣(𝑥, 𝑡) direction as shown in Tables {2,4} and 
Fig. 10. [We want to emphasize here that the values is different 
for 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) directions when we calculated at this 
specific interval of 𝑡 ∈ [0,1], but as we mentioned above when 
we increased 𝑡 the tables {1,2,3 and 4}, Fig. 7, Fig. 8 and Bar 
Charts {9,10} will be tilts to the ADM-Padé technique due the 
blow up of ADM curve as 𝑡 increased. In general, ADM-Padé 
technique is more efficient and stable than ADM when 𝑡 
increased. A point of view, this conclusion satisfied to solve this 
type of System of Non-Linear Partial Differential Equations]. 
Moreover, ADM-Padé technique Debug(Remove) The Gap 
(Complex Root) as shown in Fig. 4, Fig. 5(b) and Fig. 6(b) that 
appear after solving the equation by using ADM as shown in 
Fig. 3, Fig. 5(a) and Fig. 6(a), the work we look forward to and 
develop to include all types of equations that contain the 
complex roots after solving it by numerical methods to avoid 
such a kind of Gap (Complex Root) that appear in surfaces. In 
addition, to use the ADM-Padé technique with all types of 
equations and numerical methods. 

 
Figure 9. Bar chart of 𝑢(𝑥, 𝑡)  

 

 
Figure 10. Bar chart of 𝑣(𝑥, 𝑡) 
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