
 

journals.uoz.edu.krd 

Available online at sjuoz.uoz.edu.krd 

 
Vol. 6, No. 3, pp. 112 –117, Sept.-2018 

 

 
p-ISSN: 2410-7549 
e-ISSN: 2414-6943 

 

 
This is an open access under a CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/) 
 112 

 

LOAD BALANCING AND THERMAL-AWARE IN GEO-DISTRIBUTED CLOUD DATA 
CENTERS BASED ON VLANS 

Mustafa I. Khaleel 

Dept. of Computer, College of Science, University of Sulaimani, Kurdistan Region – Iraq (mustafa.khaleel@univsul.edu.iq) 

Received: Jul. 2018 / Accepted: Sept. 2018 / Published: Sept. 2018                             https://doi.org/10.25271/sjuoz.2018.6.3.515 
  ABSTRACT:
Power consumption in datacenters has become an emerging concern for the cloud providers. This poses enormous challenges for the 
programmers to motivate new paradigms to enhance the efficiency of cloud resources through designing innovative energy-aware algorithms. 
However, balancing the weights over geographically dispersed datacenters has been shown to be essential in decreasing the temperature 
consumption per datacenter. In this paper, we have formulated a load balancing paradigm to exploit the idea of scheduling scientific workflows 
over distributed cloud resources to make system outcome more efficient. The proposed heuristic works based on three constraints. First, 
initiating cloud resource locality for tenants and calculating the shortest distance in order to direct module applications to the closet resources 
and conserving more bandwidth cost. Second, selecting the most temperature aware datacenters based on geographical climate to maintain 
electricity cost for the providers. Third, running multiple datacenters within the same geographical location instead of housing the entire 
workloads in a single datacenter. This allows providers to take a tremendous advantage of sustaining the system from degradation or even 
unpredictable failure which in turn will frustrate the tenants. Furthermore, applications are formulated as Directed Acyclic Graph (DAG)-
structured workflow. For the underlying cloud hardware, our model groups the cloud servers to communicate as if they were in the same 
physical location. Additionally, both modes, on-demand and reservation, are supported in our algorithm. Finally, the simulation showed that 
our method was able to enhance the utilization rates about 67% compared to the baseline model. 

Keywords—energy efficiency, directed a cyclic graph, workflow

1. INTRODUCTION 
Nowadays, Cloud computing systems provide the customers with a 
virtualized access to the resources that are geographically distributed 
around the world and offer them both on-demand and reservation 
mode. However, today modern datacenters require hundreds of 
thousands of Cloud-based VMs to retrieve the massive scheduled 
scientific application workflows which require instant data 
processing. This technique of distributing high dedicated 
communication bandwidth of cloud datacenters based on diversity 
helps the providers to satisfy their desires of lowering the risk of 
system frustrating and meanwhile regulating the electricity bills by re-
adjusting the direction of workloads to the most efficient resources. 
According to a statistic reported by both the Natural Resources 
Defense Council (NRDC) [1] and the U.S. Environmental Protection 
Agency (U.S. EPA) [2], just in 60 seconds, 204 million email 
messages are exchanged, 5 million searches are made on Google 
engine, 1.8 million “Likes" are generated on Facebook, 350,000 
tweets are sent on Twitter, $272,000 of merchandise is sold on 
Amazon, and 15,000 tracks are downloaded via iTunes. This is based 
on statistics collected from corporations such as Google, Facebook, 
Twitter, Amazon, and Apple just in 2013. However, the EPA center 
reported that even the most modern data centers consumed 61 billion 
kWh of electricity within one year [3,4]. As these agencies state that 
unbalanced mapping of scientific application workflows over cloud 
resources could be a cause of such unacceptable energy waste, 
equilibrium the weights over these units consider to be one of the most 
decisive issues facing today’s parallel computing system. However, it 
is the cloud provider’s desire to increment their profits and satisfy 
consumer’s requirements through establishing an effective strategy 
that can guarantee both the availability of data locality and regulate 
the rates of electricity bills. Since assigned workloads is a function of 
time, it can be changed over the time of day and day of week, our 
designation is to present a new vision of designing a paradigm of 
scheduling scientific workflows over cloud resources within three 
considerations. First, calculating the shortest distance for the tenants 
to access cloud resources and direct their modules to these resources 

based on cloud resources locality. This assists providers to utilize 
network bandwidth more efficient and decrease the problem of 
network congestion. Another consideration is to maintain the 
electricity consumption by datacenters based on geographical climate 
of the datacenter. This allows providers to send out the modules to the 
most temperature aware resources within a datacenter.  Finally, 
instead of scheduling the entire workflows to a single datacenter, we 
have initiated multiple datacenters within the same geographical 
location. This prevents the system from degradation and unexpected 
failures which in turn damages all the tenant’s requests. This all 
should be satisfied without degrading the Quality of Service (QoS). 
However, our module applications are formulated as Directed Acyclic 
Graph (DAG)-structured workflow and both on-demand and 
reservation modes are being supported.  

2. RELATED WORK 
Improving the proportion of resource utilization over cloud 
infrastructure is the highest priority for cloud providers. These 
challenges motivate them to come up with some intelligent 
frameworks that can bargain both the makespan and the energy cost 
in terms of establishing cloud servers and consuming electricity bills. 
For decades, many researches have shown that such problematic 
issues could be addressed and resolved through balancing the 
workloads over cloud resources in a way that every computing node 
shares the overloads to turn out the system into more productive 
prototype. This will in turn assist the providers to boost the module’s 
execution process and meet the consumer’s requirements in order to 
modulate the electricity budget. A framework was proposed for 
balancing the requests made by consumers in web application based 
on the availability of renewable energy sources [5]. The Amazon 
Elastic Compute Cloud (EC2) service model was optimized in [6]. 
Based on the benchmarks for prototypical scientific applications, the 
test results was evaluated versus local compute clusters. However, A 
load-balanced heuristic was developed in [7] to bargain the weights 
over cloud infrastructure based on Simulated Annealing (SA) to 
superior First Come First Serve (FCFS), Round Robing, and local 
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search algorithms for instance Stochastic Hill Climbing (SHC) 
algorithm. This algorithm was applied in [8] to enhance the 
scheduling process of workloads over executed cloud-based VMs. 
with advanced virtualization techniques, offline solution alongside 
online solution plays a critical rule in most researches. A model based 
on online and offline solution was discussed in [9]. The system 
initiates with offline solution to determine the placement for module 
applications based on well-known method namely force-directed 
scheduling. Then, via online solution the module applications migrate 
and consolidate to other distributed resources without degrading the  
QoS. Furthermore, A DVFS temperature aware heuristic was 
developed in [10] to keep the temperature values at steady level 
between dual pre-defined thresholds. Load balancing methods was 
used in [11] to find equilibrium between executing module 
application and energy consumption in order to increase system 
throughput.  
 

3. SYSTEM FRAMEWORK AND ANALYTICAL MODEL 
 

3.1 System Framework 
 

To achieve better utilization rate over cloud resources and to be 
content with consumer’s requirements, cloud service providers are 
highly motivated to structure an intelligent cloud meta-mapper that 
can balance the scheduling workloads via cloud datacenters with on-
demand and pay-on-the-go services which are realized through 
virtualization technology [2] so that the consumers can access 
remotely their local resources from different geographical locations 
and  their needs at sensible cost in terms of electricity prices within 
QoS requirements [12-15]. Fig. 1 explains cloud system architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

 

 

 
 

Fig. 1: Cloud System Framework        

3.2 Cloud-based Load-Balancing Model 
According to previous researches, selecting the optimal equilibrium 
between workloads and energy consumption increases system 
throughput and resource utilization [16]. To adjust the energy 
consumption based on assigned workloads, we first classify the 
available datacenters based on geographical locations and 
temperature climate of these datacenters. Then, based on tenant’s 
location, assigned workflows transfer to the   closet datacenters to 
save more bandwidth cost within guarantee Quality of Service (QoS). 
This also assists providers to avoid network congestion as much as 
possible. However, these available datacenters might have different 
temperature climate. Taking electricity cost into consideration, the 
datacenter that can conserve more electricity bill will be selected. The 
fact that the electricity cost is a function of time [17] and it is changed 
based on weather climate, we concentrate on sending the heavier 
workloads to the datacenters that do not need to initiate more cooling 
systems. Moreover, we are mainly focusing on scheduling these 
workloads over these datacenters efficiently to balance both system 
throughput and energy consumption. To avoid the problem of the 
system degradation or even unpredictable failure which in turn will 
frustrate the tenants, we operate multiple datacenters within the same 
geographical location instead of housing the entire workloads in a 
single datacenter. The cloud-based load balancing model has been 
formulated mathematically in equations (1) and (2). However, the 
major steps of our paradigm is explained in algorithm 1 and the 
system flowchart is illustrated in figure 2 respectively. 
 

Input:𝒲"  a workflow {𝒲#,𝒲%,𝒲&,… . . ,𝒲)}      
Input:	𝒟𝒞"			a datacenter {𝒟𝒞#,𝒟𝒞%,… . ,𝒟𝒞-}   
Output: balanced scheduled workflows   
 

SET Utilization Rate (𝑈𝑅) to 0  
FOR each datacenter in available 
datacenters 

COMPUTE Total electricity consumption 
cost.    

COMPUTE Total bandwidth delay link 

from the source to the destination.     

    IF Total > current UR (𝒲") THEN  
      SELECT the datacenter for 𝒲"          
       FOR each virtual node in that
   datacenter   
        
    COMPUTE weights over resources
     IF system capability > weight
       assign 𝒲" onto virtual node
     END IF     
        
  END LOOP 
    ELSE  
        SKIP datacenter and SELECT next  
    END IF  

    RETURN Total in Result  

END LOOP   

Algorithm 1: Cloud-Based Load Balancing Model 
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                           Fig. 2: System Flowchart 
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Where 𝒲a  is a workflow 𝑘  scheduled onto cloud resource 𝒱  and 
ℬ𝒟ℒ𝒮,ℒ  is the bandwidth delay link from the source to the 
destination. ℰℒ𝒞𝒱 is the electricity consumption of virtual local area 
network 𝒱. 𝒮𝒴𝒮YZI,𝒱	is the system capability of VLAN 𝒱	. 𝒫𝒱 is the 
power consumption of VLAN 𝒱 and ℛ is the rate which is measured 
by dollar sign. 

 

4. CLOUD BASED SCIENTIFIC WORKFLOW MODULE  
The reason that we modeled our module applications as scientific 
workflows is both the dependency and parallelism exist in this 
framework’s features which requires that cloud images distributed 
over a group of VMs. Although this type of scheduling could be a 
more problematic and challenging issue, the providers can get the 
advantage of gaining highest profit through increasing the efficiency 
of execution process. However, both types of scientific workflow 
(single module application and DAG-Structured workflow) are 
configured in this work-simulation; None of the modules can start 
their execution cycles until they receive the aggregate inputs from 
preceding tasks which then multiplied by their complexities as 
formulated in equation (3).  

 
                          

ℛc_,cd
𝒲B,𝒱 = :

𝛾(𝑢") × 	𝜉(𝜓")	
j𝒞𝒱∈𝒟𝒞Bkc_,cdlm∈𝒲B,𝒱

																													(3) 

 
 

																𝒮𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜 ∶ 	 𝑢" ∈ 	𝒞𝒫(𝒲") 

 

5. PROBLEM FORMULATION 
As our major concern in this experiment is to increase the cloud 
provider’s payoff through mapping the module applications based on 
consumer’s geographical locations, seeking and selecting an 
appropriate datacenter that can satisfy factors such as balancing 
weights over execution resources within sensible electricity cost 
could be a serious problematic. Based on aforementioned facts, we 
formulae our paradigm’s scheduling problem in equation (4) as: 

 

𝒮𝒞ℎ𝒱ℒ𝒜𝒩
𝒲4 : : 𝑚𝑎𝑥[𝒫ℱℱ(𝒲))]

)>#

𝒱ℒ𝒜𝒩

a>#

𝒞𝒟𝒞

													(4) 

 
 

           𝑆 = 	z
			𝒮𝒶𝑡𝑖𝑠𝑓𝑦	𝒲𝑒𝑖𝑔ℎ𝑡, ℬ𝑎𝑙𝑎𝑛𝑐𝑒													
𝒮𝒶𝑡𝑖𝑠𝑓𝑦	𝒮ℎ𝑜𝑟𝑡𝑒𝑠𝑡	𝒟𝑖𝑠𝑡𝑎𝑛𝑐𝑒											
𝒮𝒶𝑡𝑖𝑠𝑓𝑦	ℒ𝑜𝑤𝑒𝑠𝑡	ℰ𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦	ℬ𝑖𝑙𝑙		

 

 

6. PERFORMANCE EVALUATION 
We have simulated 10 different workflows to be dispatched over 
Cloud-based VMs in 10 different datacenters which are 
geographically distributed. Two factors to be considered when the 
paradigm has been programmed via Open Source Java-based 
CloudSim toolkit. The first one is selecting the shortest distance to the 
destination based on both virtual local area network and weather 
climate in these area networks while the second one is related to 
balancing the weights over cloud resources with take advantage of 
idle computing nodes. Within these two concerns, the provider can 
boost the resource utilization rates and do effective oversight of the 
financial reporting process. However, we compared our algorithm 
with another one namely “Baseline” algorithm. The last one is based 
on scheduling cloud module applications over cloud servers without 
equilibrium consideration. Furthermore, we have simulated 12 
different cases to make our outcome more precise. As illustrating and 
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drawing the total of 20 trials is not going to be practical and feasible, 
a partial of the results with the full coverage of the scenario has been 
explained. From the 10 datacenters that have been established, we 
have selected 6 source units based on their According to the plot (4-
a), our heuristic balanced the weights over cloud resources more than 
what baseline algorithm has gained. The value rates over datacenters 
[1-6] are very close in our method and conserved a tremendous 
amount of energy due to operate the idle severs to fulfil the 
equilibrium status with heavy weight resources while the baseline 
approach has unsteadied balance scale. On the other side, we have 
scheduled 6 different scientific workflows over two powerful 
datacenters as shown in fig. (4-b). Each one includes three different 
VLANs. When the workflows are mapped over VLANs [1-3] from 
datacenter-3, the two algorithms, our balanced heuristic and baseline 
one, showed a considerable distinction. The red spot in VLAN-1 
shows the idle resource when the module applications are being 
executed via baseline algorithm while in our algorithm for the VLAN-
1, there is still a small portion of idle nodes exist, but the majority are 
changed to active hosts and shared the resources with heavy weight 
nodes. For the rest of VLANs, there is no idle resources exist in our 
algorithm although the case gets worse for the baseline heuristic as 
shown in fig. (4-b). However, as mentioned before, regulating 
electricity consumption was one of our problematic issue. In our 
scheme, we took diversity geographical into account to meet both 
necessities the user’s data locality and electricity adjustment. Same 
previous scenario, we have scheduled batch of workflows over single 
datacenter and a per of workflow over batch of cloud datacenters as 
shown in fig. (5-a) and fig. (5-b) respectively to guesstimate the 
conclusion. The expenditure of electricity rate in our paradigm was 
very sensible. The rates were between (24.23 to 56.87$) in the first 
figure and (15.12 to 37.98$) in the next one. For the baseline heuristic, 
the rates were imperceivably. The first evaluation recorded the values 
of (34.56 to 77.89$) while the second one resumed (21.33 to 55.67$). 
Cloud provider’s profit is another constraint that has been adopted to 
evaluate the effectiveness of the both algorithms. As illustrated in fig. 
(6-a), after dispatching cloud module applications in scientific 
workflow-9 over six different datacenters, the load-balanced 
algorithm achieved better outcome compared to the baseline heuristic. 
The lowest rate our model resumed was (39.89$) while the highest 
one was (94.12$). For the baseline algorithm, the minimum was 
(21.56$) and the maximum was (64.12$). This attainment in our 
method is because of the equilibrium of assigned weights over cloud-
based VMs execution units in per cloud datacenter. Likewise, in fig. 
(6-b), six different workflows have been scheduled via datacenter-7 
with the same evaluation objective. Load-balanced algorithm had the 
ability to boost the interest to (44.78$) in workflow-4 and (37.89$) in 
workflow-3. For the baseline model, the tiptop was (34.23$) and 
(25.56$) in both workflows (3 and 4). Furthermore, in table 1, we 
have illustrated each of the volume of cloud scientific workflows, the 
number edges in entire assigned workflows ,geographical locations of 
cloud datacenters based on datacenter’s weather climate, and the 
volume of available datacenters that can execute cloud module 
applications. The entire edges that have been applied in our simulation 
were 1295 edges and the computing nodes that haven operated to 
execute module applications were 900 nodes in 27 different 
datacenters. However, the statistical analysis results for the cloud 
datacenters are explained in table 2 and the statistical analysis results 
for assigned workflows in table 3.   

7. CONCLUSION 
Cloud providers are always interested in executing as many modules 
as possible over less cloud hardware. This increases system 
throughput and decreases energy consumption by computing servers 
per datacenter. Efficiently balancing the weights over geographically 
dispersed datacenters is a critical constraint to achieve the efficiency 
of system outcome. A load balancing model was proposed in this 
paper to satisfy three major objectives. First, calculating the shortest 
distance to the cloud resources so that tenants can direct their module 

applications to these resources. Second, selecting the most 
temperature aware datacenters based on geographical climate to 
maintaining electricity bills. Third, running multiple datacenters 
within the same geographical location instead of housing the        entire 
workloads in a single datacenter to avoid system degradation or even 
unpredictable failure which in turn will frustrate the tenant’s requests. 
To evaluate the effectiveness of our heuristic, we compared the 
algorithm with the baseline algorithm and the results have shown that 
our paradigm satisfied the aforementioned requirements and 
enhanced the utilization rates about 67%. 

 

 

 

 

 

 

 

 

 

  

Fig. 4 (a): Electricity ($) vs. Datacenters  

 

Fig. 5 (a): Profit ($) vs. Datacenters  

 

0.
32

0.
46

0.
72

0.
7

0.
29

0.
25

0.
55

0.
65

0.
89 0.
92

0.
58

0.
51

D C - 1 D C - 2 D C - 3 D C - 4 D C - 5 D C - 6

Baseline Load Balance

0

0.5

1

1.5

2

Vlan-1 Vlan-2 Vlan-3 Vlan-1 Vlan-2 Vlan-3

W-7 W-8 W-9 W-7 W-8 W-9

DC-3 DC-5

Active VMs Balance VMs Idle VMs

39
.7
8

44
.5
6

66
.4
5 77
.8
9

51
.2
1

34
.5
6

24
.2
3

29
.0
8

47
.1
2 56
.8
7

35
.5
6

27
.4
3

D C - 1 D C - 2 D C - 3 D C - 4 D C - 5 D C - 6

Baseline Load Balance

Fig. 3 (a): weight vs datacenters 

 

Fig. 3 (b): balanced cloud resources 
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Workflow 
ID 

Geographical 
Location 

Datacenter 
Order 

     
  WF -1  Cal., LA., AZ. DC -7 

WF -2 NY., WA., Ph. DC -3 

WF -3 IL., ARK., KY. DC -8 

WF -4 LN., IRL., CE. DC -2 

WF -5 BZ., SW., IR. DC -4 

WF -6 SU., DH., ER. DC -6 

WF -7 ZA., KF., BG. DC -9 

WF -8 ST., TS., NS. DC -1 

WF -9 SO., YT., ST.  DC-5 

EDG:1295 27 DCs 900 Nodes 

ID 
UR 

 

Electricity Profit 
LBH   BLH LBH   BLH LBH   BLH 

 
 

 

DC1 
 

0.55 0.32 24.23 39.78 56.98 23.55 
 

DC2 
 

0.65 0.46 29.08 44.56 63.08 31.23 
 

DC3 
 

0.89 0.72 47.12 66.45 87.56 58.89 
 

DC4 
 

0.92 0.70 56.87 77.89 94.12 64.12 
 

DC5 
 

0.58 0.29 35.56 51.21 47.89 33.45 
 

DC6 
 

0.51 0.25 27.43 34.56 39.89 21.56 

25
.6
7

36
.7
8 43
.3
3

55
.6
7

26
.7
8

21
.3
3

15
.1
2 23
.8
9 31
.6
7 37
.9
8

18
.8
9

12
.4
5

W F - 1 W F - 2 W F - 3 W F - 4 W F - 5 W F - 6

Baseline Load Balance
23
.5
5

31
.2
3

58
.8
9

64
.1
2

33
.4
5

21
.5
6

56
.9
8

63
.0
8

87
.5
7

94
.1
2

47
.8
9

39
.8
9

D C - 1 D C - 2 D C - 3 D C - 4 D C - 5 D C - 6

Baseline Load Balance

Table 1: Distributed Cloud Datacenters  
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Fig. 5 (b): profit ($) vs workflows  
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Workflow ID WF-1 WF-2         WF-3 WF-4 WF-5 WF-6 
Algorithm LBH   BLH LBH   BLH LBH   BLH LBH   BLH LBH   BLH LBH   BLH 

] 

Electricity 
Cost 15.12 25.67 23.89 36.78 31.67 43.33 37.98 55.67 18.89 26.78 12.45 21.33 

Provider 
Profit 19.34 12.44 26.76 18.88 37.89 25.56 44.78 34.23 24.54 19.76 17.89 12.43 

Table 3: Workflow Statistical Analysis Result 

 
 


