

journals.uoz.edu.krd

Available online at sjuoz.uoz.edu.krd

Vol. 6, No. 3, pp. 118 –123, Sept.-2018

p-ISSN: 2410-7549

e-ISSN: 2414­6943

 118

A STATE OF ART SURVEY FOR OS PERFORMANCE IMPROVEMENT

Lailan M. Haji a, *, Subhi R.M. Zeebaree b, Karwan Jacksi a, Diyar Q. Zeebaree c

a Faculty of Science, University of Zakho, Zakho, Kurdistan Region, Iraq - (Lailan.haji, karwan.jacksi)@uoz.edu.krd
b Technical Informatics College-Akre, Duhok Polytechnic University, Kurdistan Region, Iraq – (subhi.rafeeq@dpu.edu.krd)

c School of Computing, Faculty of Engineering, University Teknologi Malaysia (UTM), Johor, Malaysia

Received: Jul. 2018 / Accepted: Sept., 2018 / Published: Sept., 2018 https://doi.org/10.25271/sjuoz.2018.6.3.516

ABSTRACT:

Through the huge growth of heavy computing applications which require a high level of performance, it is observed that the interest

of monitoring operating system performance has also demanded to be grown widely. In the past several years since OS performance

has become a critical issue, many research studies have been produced to investigate and evaluate the stability status of OSs

performance. This paper presents a survey of the most important and state of the art approaches and models to be used for

performance measurement and evaluation. Furthermore, the research marks the capabilities of the performance-improvement of

different operating systems using multiple metrics. The selection of metrics which will be used for monitoring the performance

depends on monitoring goals and performance requirements. Many previous works related to this subject have been addressed,

explained in details, and compared to highlight the top important features that will very beneficial to be depended for the best

approach selection.

KEYWORDS: OS performance, thread, multiprocessor, transaction memory.

1. INTRODUCTION

No matter how fast our hardware gets, the performance of our

system always matters. Personal Computers (PCs) were

introduced that gave users the ability to perform their programs

on demand without having to wait for the mainframe scheduler

to execute their programs. Accordingly, PCs were slowly

reducing the prominence of the mainframes while they are

dramatically getting more powerful (Zeebaree & Jacksi, 2015).

Programmers tend to add complexity and sophistication to their

systems for matching any hardware performance

improvements. So, there is always a need to design software

that achieves good performance on whatever hardware is

available to us. Perhaps the first and most important step in

determining the performance of any system is achieving clarity

about what anybody really cares about.

In a Massively Parallel Processing system, which contains a

large number of processors, there is increased competition for

accessing the common resources (Rashid, Sharif, & Zeebaree,

2018). The factor that is chosen to characterize the performance

of systems is called metrics. Obviously, their proper choice is

of critical importance. Just because some quantity is

measurable, however, does not make it a good metric.

Environment state in which applications run predominantly

needs to be monitored. For example, the online availability of

a server to receive clients’ requests might be of importance to

an application to know. By monitoring threads, a framework is

provided to monitor status changes in parts of a system which

cannot be monitored by listening for events. Performance

monitoring cycle consists of four stages which are: monitoring,

planning, developing and rating, as shown in Figure 1.

A monitor definition is a thread-safe object, module, or class

which wraps around a mutex so that more than one thread can

safely access a variable or a method. The defining characteristic

of a monitor is that its methods are executed with mutual

exclusion: in any point of the time, at max one thread has the

ability to execute any of its methods. The monitor can give the

* Corresponding author

This is an open access under a CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/)

threads the ability to wait for a particular situation by using one

or more condition variables (“Monitor (synchronization),”

2018).

Figure 1. Performance monitoring cycle

For justifying performance monitoring, there are different

reasons that execution tuning of a subsystem or an application

is as yet justified regardless of the exertion. Even in a period

where equipment is viewed as “shabby” and labor is viewed as

“costly”. The principal case is when PCs are obtained for a

huge number of coins so that even economies of only a couple

of percent can adjust for the pay rates of the general population

doing execution work. The other case is when PCs reaches the

thermal limit and maximum power to the point where no more

servers can be installed. But when farther capacity is wanted,

the user may either be forced to change the hardware with more

sophisticated ones (if it exists), or the performance has to be

modified to get as much performance as possible. The

additional motivation is, without a doubt, the personal pride of

the software designer/programmer. Typically, performance

analysis is needed to be performed during the entire

development cycle of an application, so that application does

not exhibit “inefficient” behavior or excessive consumption of

computing resources (Jarp, Jurga, & Nowak, 2008).

http://journals.uoz.edu.krd/
http://sjuoz.uoz.edu.krd/
https://doi.org/10.25271/sjuoz.2018.6.3.516
https://creativecommons.org/licenses/by-nc-sa/4.0/

L. M. Haji et al. / Science Journal of University of Zakho 6(3), 118-123, September.-2018

 119

The main challenge is that trendy languages and systems which

offer very low support for guaranteeing the properties of

concurrency correctness, multithreaded determinism, and

sequential consistency since the majority of the existing

approaches are not serviceable. Software-based and dynamic

methods slow programs by up to an order of magnitude since

synchronization is required for capturing and controlling the

dependences of cross-thread at nearly every access to probably

shared memory. A crucial challenge to programs of systems for

thread monitoring is “how to partition tasks of applications and

mapping them to one of many possible core-thread

configurations” to get the wanted performance in terms of

delay, power, resource consumption, and throughput.

When increasing the number of threads and cores, as a result,

the number of mapping choices increases exponentially. When

threads migrate, the relating information more often remains in

the first memory module and the migrated thread access it

remotely. Reallocating threads to a place near to where their

data are stored can help to mitigate those problems. The

objective of this paper is to show a modern and up-to-date view

of OS performance. This paper is organized as follows; Section

2 reviews each of the systems for performance-enhancing;

Section 3 provides a comprehensive review of the systems and

finally, we draw some conclusion in Section 4.

2. LITERATURE REVIEW

Performance metrics of the Operating system are linked to the

performance of processor, memory, network, and disk.

Performance requirements and monitoring goals are the criteria

for choosing the metrics that will be used for monitoring the

performance. Some of the OS performance evaluation metrics

are discussed.

2.1 Thread Mapping

Thread mapping is a widely known technique for memory

affinity. It places threads to specific cores to reduce memory

latency or alleviate memory contention. (Ju, Jung, & Che,

2015), offered a methodology for thread-level modeling to

meet the challenge of a way to value the performance of

assorted attainable mapping of program-task-to-core selections

throughout the initial programming section, once the feasible

program is nevertheless to be developed. The main idea was to

ignore the micro-architectural and instruction-level details and

only model thread-level activities, excluding those having a

major effect on the performance at thread-level. Moreover, the

modeling of thread-level is way coarser than instruction-level

modeling. By these features, the methodology is more

responsive for fast evaluation of the performance of a huge

number of mapping choices of the program-task-to-core within

the phase of initial programming.

Depending on a huge number of samples of code; case studies

are accessible in workbenches of IXP1200/2400; simulation

results showed that the maximal ongoing line rates predestined

using the simulation tool is 6% and it gets up to 8% by using

the queuing network of cycle-accurate. There is a component

which has not been tended to in their explanatory displaying

method, i.e., dynamic multithreading, the threads quantity may

shift at various stages of program execution.

(Petrucci et al., 2015a) offered an optimization approach that

consisted of an optimization model of Integer Linear

Programming (ILP), and a scheme to set the thread-to-core

dynamically. Analysis of simulation present performance gains

and energy savings for an assortment of workloads, as

compared with schemes of state-of-the-art. Benefiting from the

capabilities of Linux scheduling and performance-monitoring,

implementation and evaluation of a prototype of the approach

were done in thread assignment at the user level. According to

results of the simulation, the approach accomplishes huge

performance gains and energy savings for an assortment of

workloads; as well as; performs much better than other

proposed schemes of thread assignment that do not address

memory transfer speed requirements. For example, depending

on the workload the improvement of Energy Delay Product

(EDP) over the state-of-the-art is about 10% to 40%.

Furthermore, experimental evaluation and implementation of

the scheme was done on a real system of heterogeneous

multicore. The approach effectively fulfilled thread

performance and memory bandwidth requirements for a

diversity of workloads consisting of programs of SPEC

benchmark. The result showed that EDP gains the average of

15% to 35% maximum for an assortment of workloads. The

performance may defer significantly between different

configurations and mixtures of block and grid sizes, although

they may give the highest occupancy.

To select the most beneficially block size automatically,

(Connors & Qasem, 2017) proposed the construction of an ML-

based heuristic. For driving the tasks of feature selection,

training data generation, feature extraction, evaluation, model

training, and selection, the framework generates custom

scripts. Executing the scripts comes after generating the custom

Makefiles, then a ProgList file is created by the Configurer

which contain the needed information to create training data on

the target platform. Cross-fold validation is used to evaluate the

performance of the support vector machine (SVM) model

which by using the training set is trained. Using events of

dynamic performance as features and supervised Machine

Learning (ML) algorithms, the model foretells if the

performance will have an improvement for a given kernel if

any change in block size occurred. The researchers had the

problem of not having sufficient programs to build a training

dataset, that is sufficiently large and diverse which is a common

issue. As a conclusion of the research, they found that different

block sizes are needed due to subtle differences in a kernel’s

runtime behavior. Furthermore, choosing the block size of

thread is delicate to memory access patterns.

(Pandey & Sahu, 2018), have proposed an effective mapping

for virtual page to memory slice, used simulated annealing-

based thread to core mapping of multi-threaded application

onto 3D stacked memory chip-multiprocessor. To minimize the

cost of communication of the on-chip core to core, the

researchers mapped the multithreaded application’s N threads

to chip-multiprocessor’s N cores in the thread to the core

mapping process. Meanwhile, in memory mapping, they

minimized the cost of on-chip communication among all the

cores, of virtual page access. The virtual page slice mapping to

DRAM; comparing to the thread mapping to core; gets lower

priority. Sniper simulator (version 6.1) was used to evaluate the

methodologies of proposed mapping. The result of the

experiment demonstrated that overall on-chip communication

cost was reduced by the thread to the core mapping on an

average of 12% and up to 26%. The thread only mapping does

not improve the on-chip communication cost much; on the

other hand; the improvements are significant when thread

mapping is combined with the virtual page to DRAM slice

mapping. Also, virtual page to DRAM slice mapping is more

effective to reduce the overall traffic communication.

2.2 Thread Migration

Migration of thread/process enables fault tolerance, mobile

computing, data access locality, eased system administration,

and dynamic load distribution. Thread migration may be

achieved at the user level, kernel level, or application level.

(Shim, Lis, Khan, & Devadas, 2014) considered a mechanism,

hardware-level thread migration. They argued that the method

has the capability to better exploit of shared data locality for

NUCA (Non-Uniform Cache Architecture) designs by

adequately supplanting multiple round-trip remote cache

accesses by fewer migrations. Thread migrations should be

L. M. Haji et al. / Science Journal of University of Zakho 6(3), 118-123, September.-2018

 120

used judiciously because of the high migration cost; therefore,

a novel, on-line prediction scheme was proposed, to choose

between performing a thread migration at the instruction level

or to do a remote access (as in traditional NUCA designs). The

results illustrated that for a set of parallel benchmarks, the

proposed technique of thread migration predictor recorded an

18% improvement of the performance on average, also at best

by 2.3X over the standard NUCA design that only uses remote

accesses.

When deploying multi-threaded applications on-chip

multiprocessor (CMP) systems the majority of the designed

mechanisms for Non-Uniform Cache Architecture (NUCA)

were thread-oblivious. A novel NUCA design was proposed

by (Li, Li, Xue, Ouyang, & Shen, 2017) called (CARM), that

stands for thread Criticality Assisted Replication and

Migration. This approach divides the entire chip of CMP into

districts and then take advantage of thread’s criticality runtime

information. The thread’s criticality runtime information is

used by the CARM as hints for block replication and migration

adjustment in NUCA. The main aim of CARM is boosting the

execution of the parallel application by giving the critical

thread’s block replication and migration a priority over the non-

critical thread. The experiments were performed by using

Simics, that is a full-system simulator which is execution-

driven running Solaris OS on SPARC cores. According to the

experimental results, the execution time of a set of PARSEC

workloads is reduced by 13.7% compared with D-NUCA and

6.8% on average for Re-NUCA. Furthermore, the energy

consumption of CARM much less comparing with the

evaluated schemes.

2.3 Optimization Technique

The only level that the Performance Monitoring Counters

(PMC)s can be accessed directly is the OS privilege level. For

enabling the user-space and the end-user to access PMCs, tools

for kernel level access had to be created. To address this

inadequacy (Saez, Pousa, Rodriguez-Rodriguez, Castro, &

Prieto-Matias, 2017) developed PMCTrack. PMCTrack is a

novel tool that equips a simple mechanism for architecture-

independent for the Linux kernel that makes accessing the per-

thread PMC data possible for the OS scheduler. Although

PMCTrack is a tool which is OS-oriented, yet it allows the

monitoring data to be collected from userspace, which allows

the developers of the kernel to do some necessary debugging

and offline analysis to help the developers during the process

of designing the scheduler. Likewise, the device gives both the

OS and the user-pace PMCTrack segments with otherwise

measurements accessible in present-day processors and which

are not exposed straightly as PMCs, such as occupancy of

cache or consumption of energy.

With the aid of three case studies, they have shown the

flexibility and effectiveness of PMCTrack on various range

models and architectures of the processor. Three case studies

were analyzed on real multicore hardware, the three case

studies were: 1) scheduling on asymmetric single-ISA

multicore systems 2) measuring power and energy

consumption 3) cache monitoring. This data is likewise of

extraordinary esteem with regards to breaking down the

potential advantages of novel policies of scheduling on real

frameworks. The researchers analyzed various case studies that

demonstrated the simplicity, powerful features, and flexibility

of PMCTrack.

(Chen, Der Bruggen, & Chen, 2018) proposed to use; as an

additional option on the task level; the Mixed Redundant

Threading (MRT) which is a combination of Simultaneous

Redundant Threading (SRT) and Chip-level Redundant

Multithreading (CRT). In the coarse-grained approach, the

researchers considered on the system level SRT, CRT, and

MRT simultaneously, meanwhile the existent results apply

only SRT or CRT on the system level, not simultaneously. For

more system reliability optimization, two approaches for

reliability optimization were proposed to reduce the penalty of

system reliability in different degrees, in the time of scheduling

the hard real-time tasks on multi-cores. From the embedded

benchmark MiBench they chose seven tasks. According to the

result of the simulation; compared to the up-to-date techniques;

the system reliability is significantly improved.

Methodologies for software synthesis is provided to designers

of a real-time embedded system to exploit the techniques of

mixed redundancy effectively so that the penalty of system

reliability is decreased. In meantime, the timing constraints are

satisfied in multi-core systems. Existing state-of-the-art models

for user-level tasking and threading either is too specific to or

architectures or applications, or are not as flexible or powerful.

(Seo et al., 2018) presented Argobots, low-level threading,

low-level tasking and a lightweight framework, which was

designed as a performant substrate and portable for high-level

programming models. Argobots offers an execution model that

is carefully designed for balancing generality of functionality

and allowing specialization by high-level programming models

or end users by providing a rich set of controls. The system was

implemented using the C language. For all experiments, the

researchers used a 36-core (72 hardware threads) machine,

which has two Intel Xeon E5-2699 v3 (2.30 GHz) CPUs and

128 GB of memory. According to the experiment results and

evaluation:

1. Besides having richer capabilities Agrobots is

competitive with existing threading runtimes.

2. The production OpenMP runtimes have less efficient

interoperability capabilities, latency hiding

opportunities, and synchronization-reducing than the

proposed OpenMP runtime.

3. When MPI interoperates with Argobots instead of

Pthreads, it enjoys reduced synchronization costs and

better latency-hiding capabilities.

4. An I/O benefit with Argobots can oversee equipment

assets all the more effective and diminish obstruction

with collocated applications superior to do such an

administration with Pthreads.

2.4 Memory

Transactional memory programming paradigm is firstly

proposed (Herlihy, Eliot, & Moss, 1993) for replacing locks in

concurrent programming. (N Zhou, Delaval, Robu, Rutten, &

Méhaut, 2016), by using a Software Transactional Memory

(STM) system, investigated thread mapping regulation and

autonomic parallelism adaptation. In a parallel program, there

are two techniques for gathering the information of the

application profile. The first technique is that a master thread

can be used for recording the interesting information about

itself. The second technique is to use all threads to collect the

information.

For the first method, a little synchronization is required to

collect information, neither less, the collected information may

not symbolize the whole view. The latter technique symbolizes

the whole view from the collected information but it’s more

costly regarding the synchronization cost. The second

technique was selected. To collect the profile information they

implemented a monitor, the monitor also controls the race

condition and the dynamic parallelism. The implementation of

the monitor does not require any alteration to the applications.

Three parameters were measured from the STM system,

namely the physical time, the number of commits and the

number of aborts. Commits and aborts were the main variables

of the monitor. There were three entry points of the monitor:

threads initialization, during a transaction committing and

during a thread exiting.

L. M. Haji et al. / Science Journal of University of Zakho 6(3), 118-123, September.-2018

 121

The performance of various static parallelisms was examined

and the conclusion was that runtime regulation of parallelism

and thread mapping is necessary for the performance of STM

systems. The two models outperformed most of the static

thread number regarding the performance. The dynamic thread

control model shows positive performance rise against the

dynamic parallelism model on applications: EigenBench,

Yada, and Intruder, but it indicates performance degradation on

genome and vacation. If cache will be shared the downside will

appear which the competition among the requests from various

applications for cache resources, therefore over isolated

execution, the execution time will be increased of each

application.

Fair-Progress Cache Partitioning (FPCP) has been suggested

by (Vicent Selfa, Sahuquillo, Petit, & Gómez, 2017), this

approach is a low-overhead cache partitioning hardware-based

which can identify system fairness. By allocating; for all

applications; a cache partition, the interference can be

decreased with FPCP and modify the partition sizes at runtime.

This approach estimates modification partitions during

multicore execution when any application would have taken in

isolation. To estimate the execution time, the auxiliary circuitry

is used by FPCP for any application would have experienced if

that application is executed without co-runners. This approach

attempts to reduce system unfairness by narrowing the progress

differences among co-executing tasks. They used SPEC

CPU2006 benchmark suite, NAS Parallel Benchmark suite

(single-threaded runs) and the ref input set to run the

experiments. According to the result of the experiment, without

harming the performance, the FPCP approach reduces

unfairness by 48% compared to ASM-Cache, in four-

application workloads and when using the eight-application

workloads the unfairness is reduced by 28%.

(Lu, Yan, Zhou, Zhou, & Zeng, 2017) offered for parallel

programming; a new transaction memory model. In the multi-

thread paradigm, the data are conflicts. The transaction of data

firstly has to be aborted and secondly must be rolled back, and

finally should be executed repeatedly till the transaction

commits successfully. But in the new approach, the transaction

will be appended to the task queue’s tail when it aborts N times

due to data conflict. The researchers used the C++ language to

implement the suggested N-retry software transaction memory

(STM).

On the other hand, computers with an Intel i7-6700 processor

were used to run the hardware transaction memory (HTM) that

had 4 cores. The results of the experiment demonstrated the

offered transaction memory model improved the parallel

performance; on software transaction memory platform; by

25% and on hardware transaction memory platform the

improvement was by 11%. The result also showed a 40%

reduction on transaction aborts. meanwhile, up to nowadays,

there have not been any processor that gives direct support for

Thread-Level Speculation (TLS). Hardware backing for TLS

ought to have four key features: (a) detecting data conflict; (b)

transactions which are ordered; (c) storage of speculative type;

and (d) roll-back in case of detecting a conflict. The IBM

POWER8 and Intel Core Hardware Transaction Memory

(HTM) support three of these features, so they have the ability

to be utilized for supporting the TLS.

As to that, a comprehensive study of the implementation of

HTM that supports the loop parallelization with TLS and

characterize a careful evaluation of TLS’s implementation on

the HTM supplements which are offered in such machines have

been presented by (Juan Salamanca, Amaral, & Araujo, 2018).

The benchmark suites that were used for implementation were

the SPEC CPU 2006 and the Collective Benchmark (cBench)

which are running on IBM POWER8 and Intel Core. The

results indicate that by initializing TLS on top of HTM, some

loops may have up to 3.8x speed-ups. The experimental results

also revealed that false dependencies may effectively be

eliminated by the privatization of memory writes within

transactions which are also capable of enabling performance

gains with Thread-Level Speculation.

3. DISCUSSION

Table 1 provides an overview of the different systems

explained in section II for measuring and even enhancing the

operating system performance. As illustrated in the table there

is a number of novel approaches been introduced as in (Li et

al., 2017), (Saez et al., 2017), (Seo et al., 2018), (V Selfa,

Sahuquillo, Petit, & Gómez, 2017) and (Lu et al., 2017) that

cover many metrics. The most important approach is Argobots

that proposed by (Seo et al., 2018) and includes several

features; low-level threading, low-level tasking, and a

lightweight framework. This approach depends on a rich set of

controls to provide an execution framework which is carefully

designed for balancing the generality of functionality and

allowing specialization by high-level programming models or

end users. Another important approach is the N-retry software

transaction memory presented by (Lu et al., 2017). In this

approach, the transaction will be appended to the task queue’s

tail when it aborts N times due to data conflict. The results of

this approach illustrate an improvement of 25% and 11% for

STM and HTM respectively.

Adding to the above approaches, there are other enhanced

approaches (as models) have been produced and work as

enhancements of existing models, these approaches proposed

by (Ju et al., 2015), (Petrucci et al., 2015a), (Connors & Qasem,

2017), (Pandey & Sahu, 2018), (Shim et al., 2014), (Chen et

al., 2018), (N Zhou et al., 2016), and (J Salamanca, Amaral, &

Araujo, 2018). Considering thread mapping metric, the

optimization model of Integer Linear Programming (ILP)

proposed by (Petrucci et al., 2015b) outperforms other

proposed thread assignment schemes that do not address

memory transfer speed requirements. Benefiting from the

capabilities of Linux scheduling and performance-monitoring,

the prototype of this model was implemented and evaluated at

the user level.

According to the simulation results, this approach

accomplishes huge performance gains and energy savings. As

for memory enhancement, (Juan Salamanca et al., 2018)

illustrated that by initializing TLS on top of HTM, some TLS

loops may have up to 3.8x speed-ups. Also revealed that false

dependencies may effectively be eliminated by the

privatization of memory writes within transactions, which are

also capable of enabling performance gains with Thread-Level

Speculation.

L. M. Haji et al. / Science Journal of University of Zakho 6(3), 118-123, September.-2018

 122

Table 1. Summary

Ref.
Depended Features

Year Metric Novelty Used hardware/software Result

(Ju et al.,

2015)
2015 Thread Mapping

IXP1200/2400

workbenches

The maximal sustainable line rates

estimated using the simulation tool 6%

and it gets up to 8% by using the
queuing network of cycle-accurate

(Petrucci
et al.,

2015a)

2015

An optimization model of ILP

and a scheme to set the

thread-to-core assignment
dynamically.

SPEC benchmark

programs

. The result showed that EDP gains of
average a 15% to 35% maximum for a

variety of workloads

(Connors

&

Qasem,
2017)

2017

Driving the tasks of feature

extraction, feature selection,
training data generation,

model training, evaluation,

and selection

Nvidia Tesla K40c GPU
on a Linux system that

had CUDA 7.5 installed.

They found that different block sizes
are needed due to subtle differences in

a kernel’s runtime behavior

(Pandey

& Sahu,

2018)

2017
Virtual page to memory slice
mapping

Sniper simulator (version
6.1)

The overall on-chip communication

cost was reduced by the thread to core
mapping on an average of 12% and up

to 26%.

(Shim et

al., 2014)
2014

A mechanism, hardware-level

thread migration

Pin and Graphite to
model the proposed

NUCA architecture

Predictor recorded an 18%

improvement of the performance on

average and at best by 2.3X over the
standard NUCA

(Li et al.,
2017)

2017
Runtime thread criticality
information

thread

Criticality

Assisted
Replication

and Migration

(CARM)

Simics, a set of PARSEC
workloads

Execution time is reduced by 13.7%
and 6.8% on average for Re-NUCA.

Furthermore, the energy consumption

of CARM much less compared with
the evaluated schemes.

(Saez et
al., 2017)

2017

Accessing the per-thread

PMC data for the OS

scheduler

PMCTrack
Linux kernel (v4.1.5)
equipped

Simplicity, flexibility and powerful
features of PMCTrack.

(Chen et
al., 2018)

2018
Decreasing system reliability
penalty

 Benchmark MiBench

The result of simulation; compared to

the state-of-the-art techniques; showed
that the system reliability is

significantly improved

(Seo et
al., 2018)

2018

Low-level threading, low-

level tasking and a

lightweight framework

Argobots

A 36-core (72 hardware

threads) machine, which

has two Intel Xeon E5-
2699 v3 (2.30 GHz)

CPUs and 128 GB of

memory.

Richer capabilities, reducing latency,
reduced synchronization costs and

better latency-hiding capabilities

(Naweilu
o Zhou,

Delaval,
Robu,

Rutten, &

Mehaut,
2016)

2016
Thread mapping regulation
and autonomic parallelism

adaptation

EigenBench, yada and

intruder

The two models outperformed most of
the static thread number regarding the

performance.

(V Selfa

et al.,
2017)

2017 Cache partitioning

Fair-Progress
Cache

Partitioning
(FPCP)

SPEC CPU2006
benchmark suite, NAS

Parallel Benchmark suite
(single-threaded runs)

Reduces unfairness by 48% compared

to ASM-Cache, in four-application

workloads and when using the eight-
application workloads the unfairness is

reduced by 28%.

(Lu et al.,

2017)
2017 Transaction memory model

N-retry

software

transaction
memory

C++ language, computer
with an Intel i7-6700

processor

Improved; on software transaction

memory platform; the parallel

performance by 25% and on hardware
transaction memory platform the

improvement was by 11%. The result

also showed a 40% reduce on
transaction aborts

(Juan

Salamanc

a et al.,
2018)

2018
Hardware transaction

memory

SPEC CPU 2006 and the

Collective Benchmark
(cBench) which are

running on IBM

POWER8 and Intel Core.

Some loops may have up to 3.8x speed-

ups. And also alse dependencies may
effectively be eliminate by

privatization of memory writes within

transactions

L. M. Haji et al. / Science Journal of University of Zakho 6(3), 118-123, September.-2018

 123

4. CONCLUSION

From the comparison table illustrated in section 3, it can be

concluded that a very active approach with important novelty

has been proposed by Sangmin Seo. This approach covered

most important metrics includes; low-level threading, low-

level tasking, and a lightweight framework. Also, it is

suggested to depend on models such as that produced by

Petrucci and Salamanca to measure and improve the

performance of the addressed operating systems and

privatization of memory writes within transactions in order to

accomplish huge performance gains and energy savings.

REFERENCES

Chen, K. H., Der Bruggen, G. Von, & Chen, J. J. (2018). Reliability

Optimization on Multi-Core Systems with Multi-Tasking and

Redundant Multi-Threading. IEEE Transactions on

Computers, 67(4), 484–497.

Connors, T. A., & Qasem, A. (2017). Automatically Selecting

Profitable Thread Block Sizes for Accelerated Kernels. 2017
IEEE 19th International Conference on High Performance

Computing and Communications; IEEE 15th International

Conference on Smart City; IEEE 3rd International Conference
on Data Science and Systems (HPCC/SmartCity/DSS), 442–

449.

Herlihy, M., Eliot, J., & Moss, B. (1993). Transactional Memory:
Architectural Support For Lock-free Data Structures.

Proceedings of the 20th Annual International Symposium on

Computer Architecture, 289–300.
Jarp, S., Jurga, R., & Nowak, A. (2008). Perfmon2: A leap forward in

performance monitoring. Journal of Physics: Conference

Series, 119(4), 1–6.
Ju, M., Jung, H., & Che, H. (2015). A Performance Analysis

Methodology for Multicore, Multithreaded Processors. IEEE

TRANSACTIONS ON COMPUTERS, 63(2), 276–289.
Li, J., Li, M., Xue, C. J., Ouyang, Y., & Shen, F. (2017). Thread

criticality assisted replication and migration for chip

multiprocessor caches. IEEE Transactions on Computers,
66(10), 1747–1762.

Lu, K., Yan, C., Zhou, H., Zhou, D., & Zeng, X. (2017). A Novel N-

Retry Transactional Memory Model for Multi-Thread
Programming. 2017 IEEE International Symposium on Parallel

and Distributed Processing with Applications and 2017 IEEE

International Conference on Ubiquitous Computing and
Communications (ISPA/IUCC), 814–821.

Monitor (synchronization). (2018). In Wikipedia. Retrieved from

https://en.wikipedia.org/w/index.php?title=Monitor_(synchron
ization)&oldid=860252631

Musiphil. (n.d.). Monitor. Retrieved from

https://en.wikipedia.org/wiki/Monitor_(synchronization)
Pandey, R., & Sahu, A. (2018). Efficient Mapping of Multi-threaded

Applications onto 3D Stacked Chip-Multiprocessor.

Proceedings - 2017 IEEE 19th Intl Conference on High

Performance Computing and Communications, HPCC 2017,

IEEE 15th Intl Conference on Smart City, IEEE 3rd Intl

Conference on Data Science and Systems, 324–331.

Petrucci, V., Loques, O., Mossé, D., Melhem, R., Gazala, N. A., &
Gobriel, S. (2015a). Energy-Efficient Thread Assignment

Optimization for Heterogeneous Multicore Systems. ACM

Transactions on Embedded Computing Systems, 14(1), 1–26.
Petrucci, V., Loques, O., Mossé, D., Melhem, R., Gazala, N. A., &

Gobriel, S. (2015b). Energy-Efficient Thread Assignment

Optimization for Heterogeneous Multicore Systems. ACM
Trans. Embed. Comput. Syst., 14(1), 15:1--15:26.

Rashid, Z. N., Sharif, K. H., & Zeebaree, S. (2018). Client / Servers

Clustering Effects on CPU Execution-Time , CPU Usage and
CPU Idle Depending on Activities of Parallel-Processing-

Technique Operations “. INTERNATIONAL JOURNAL OF

SCIENTIFIC & TECHNOLOGY RESEARCH, 7(8), 106–111.
Saez, J. C., Pousa, A., Rodriguez-Rodriguez, R., Castro, F., & Prieto-

Matias, M. (2017). PMCTrack: Delivering performance

monitoring counter support to the OS scheduler. Computer
Journal, 60(1), 60–85.

Salamanca, J, Amaral, J. N., & Araujo, G. (2018). Using Hardware-

Transactional-Memory Support to Implement Thread-Level
Speculation. IEEE Transactions on Parallel and Distributed

Systems, 29(2), 466–480.

Salamanca, Juan, Amaral, J. N., & Araujo, G. (2018). Using Hardware-
Transactional-Memory Support to Implement Thread-Level

Speculation. IEEE Transactions on Parallel and Distributed

Systems, 29(2), 466–480.
Selfa, V, Sahuquillo, J., Petit, S., & Gómez, M. E. (2017). A Hardware

Approach to Fairly Balance the Inter-Thread Interference in

Shared Caches. IEEE Transactions on Parallel and Distributed
Systems, 28(11), 3021–3032.

Selfa, Vicent, Sahuquillo, J., Petit, S., & Gómez, M. E. (2017). A

Hardware Approach to Fairly Balance the Inter-Thread
Interference in Shared Caches. IEEE Transactions on Parallel

and Distributed Systems, 28(11), 3021–3032.

Seo, S., Amer, A., Balaji, P., Bordage, C., Bosilca, G., Brooks, A., …

Beckman, P. (2018). Argobots: A Lightweight Low-Level

Threading and Tasking Framework. IEEE Transactions on

Parallel and Distributed Systems, 29(3), 512–526.
Shim, K. S., Lis, M., Khan, O., & Devadas, S. (2014). Judicious Thread

Migration When Accessing Distributed Shared Caches. IEEE

Computer Architecture Letters, 13(1), 53–56.
Zeebaree, S. R. M., & Jacksi, K. (2015). Effects of Processes Forcing

on CPU and Total Execution-Time Using Multiprocessor

Shared Memory System. INTERNATIONAL JOURNAL OF
COMPUTER ENGINEERING IN RESEARCH TRENDS, 2(4),

275–279.

Zhou, N, Delaval, G., Robu, B., Rutten, É., & Méhaut, J. (2016).
Autonomic Parallelism and Thread Mapping Control on

Software Transactional Memory. In 2016 IEEE International

Conference on Autonomic Computing (ICAC) (pp. 189–198).
Zhou, Naweiluo, Delaval, G., Robu, B., Rutten, E., & Mehaut, J. F.

(2016). Autonomic parallelism and thread mapping control on
software transactional memory. In Proceedings - 2016 IEEE

International Conference on Autonomic Computing, ICAC

2016 (pp. 189–198).

