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ABSTRACT: 
Conjugate gradient method plays an enormous role in resolving unconstrained optimization problem, particularly for large scale. 
In this paper, a new conjugate gradient method for unconstrained optimization based on Dai-Liao (DL) formula by using Barzilai 
and Borwein step size. Our new method satisfies both descent and sufficient descent conditions. The numerical results show that 
the proposed algorithm is potentially efficient and performs better than with Polak and Ribiere (PR) algorithm, depending on 
number of iterations (NOI) and the number of functions evaluation (NOF). 
KEYWORDS: conjugate gradient, unconstrained optimization, Barzilai and Borwein step size, descent and sufficient descent 

conditions. 

1. INTRODUCTION  

The gradient method has great role in developing optimization 
techniques, and it has been associated with some well-known 
methods such steepest method for the unconstrained 
minimization (Dai and Liao, 2001). 
One of the important method which is designed to solve 
unconstrained optimization problem is called conjugate 
gradient method (CG). 
𝒎𝒊𝒏𝒇(𝒙)												∀	𝒙 ∈ 𝑹𝒏                             (1.1) 
Where	𝑓 ∶ 	𝑅/ 	→ 	𝑅,  𝑓 ∈ 𝐶2 and its gradient at point 𝑥4 
denoted by 𝑔4 = ∇𝑓	(𝑥4)  or𝑔4, especially when our dimension 
is large. Therefore, the nonlinear CG-method formula is given 
by: 
𝒙𝒊8𝟏 = 𝒙𝒊 + 𝝀𝒊𝒅𝒊,			𝒊 = 𝟎, 𝟏, 𝟐,…	                        (1.2)  
where 𝜆4 > 0 is a step size, and 𝑑4 is a search direction which 
is determined by: 

 	𝒅𝒊 = E
−𝒈𝟎																				𝒊𝒇																			𝒊 = 𝟎

−𝒈𝒊8𝟏 + 𝜷𝒊𝒅𝒊									𝒊𝒇																	𝒊 ≥ 𝟏								      (1.3) 

where 𝛽4 represents the conjugate gradient coefficient 
parameter. See ((Hestenes and Stiefel, 1952), (Polak and 
Ribiere, 1969), (Polyak, 1969), (Fletcher and Reeves, 1964), 
(Liu, and Storey, 1991), (Fletcher, 1987), (Dai and Yuan, 1996) 
and (Dai and Liao, 2001) to be familiar with some well-known 
classical formulas for	𝛽4.  The parameter 𝛽4 of the classical 
formula is determined as follows: 

𝜷𝒊𝑯𝑺 =
𝒈𝒊M𝟏𝑻 𝒚𝒊
𝒅𝒊
𝑻𝒚𝒊

                           (1.4) 

𝜷𝒊𝑷𝑹 =
𝒈𝒊M𝟏𝑻 𝒚𝒊
𝒈𝒊
𝑻𝒈𝒊

                           (1.5) 

𝜷𝒊𝑭𝑹 =
𝒈𝒊M𝟏𝑻 𝒈𝒊M𝟏
𝒈𝒊
𝑻𝒈𝒊

                        (1.6) 

𝜷𝒊𝑳𝑺 =
𝒈𝒊M𝟏𝑻 𝒚𝒊
S𝒈𝒊

𝑻𝒅𝒊
                           (1.7) 

                                                             
*  Corresponding author 
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𝜷𝒊𝑪𝑫 =
𝒈𝒊M𝟏𝑻 𝒈𝒊M𝟏
S𝒈𝒊

𝑻𝒅𝒊
                       (1.8) 

𝜷𝒊𝑫𝒀 =
𝒈𝒊M𝟏𝑻 𝒈𝒊M𝟏
𝒅𝒊
𝑻𝒚𝒊

                       (1.9) 

𝜷𝒊𝑫𝑳 =
𝒈𝒊M𝟏𝑻 	(𝒚𝒊S𝒕𝒔𝒊)

𝒅𝒊
𝑻𝒚𝒊

, where 𝒕 > 𝟎           (1.10) 

Consider ‖. ‖ denotes the Euclidean norm and	𝑦4 = 𝑔482 − 𝑔4. 
The global convergence of above conjugate gradient methods 
is studied by many researchers see (Hager, and Zhang, 2006), 
(Liu, and Storey, 1991) and (Wolfe, 1969). To prove the 
convergence condition of these methods, we need the step size 
𝜆4 satisfies the following strong Wolfe conditions: 
𝒇(𝒙𝒊 + 𝝀𝒊𝒅𝒊) ≤ 𝒇(𝒙𝒊) + 𝜹𝝀𝒊𝒈𝒊𝑻𝒅𝒊                            (1.11) 
^𝒈(𝒙𝒊 + 𝝀𝒊𝒅𝒊)𝑻𝒅𝒊^ ≤ −𝝆𝒈𝒊𝑻𝒅𝒊																							(1.12)	
Where 0 < 𝛿 < 𝜌 < 1.  
However, the standard Wolfe conditions are employed to prove 
the convergence of numerical methods such as Qusi-Newton 
method (Wolfe, 1969): 
𝒇(𝒙𝒊 + 𝝀𝒊𝒅𝒊) ≤ 𝒇(𝒙𝒊) + 𝜹𝝀𝒊𝒈𝒊𝑻𝒅𝒊                      (1.13) 
𝒈(𝒙𝒊 + 𝝀𝒊𝒅𝒊)𝑻𝒅𝒊 ≥ 𝝆𝒈𝒊𝑻𝒅𝒊.                            (1.14) 
The majority studied characteristics of CG are its global 
convergence properties. The global convergence of Fletcher 
and Reeves (FR)is proved by (Zoutendijk, 1970).  Analyzed the 
global convergence of algorithm regarding the Fletcher and 
Reeves method by Wolfe condition (Al-Baali, 1985). Further, 
FR as a superior method was proved by (Powell, 1986). 
Furthermore, Neculai Andrei presented a collection of 
unconstrained optimization functions in 2008.   
This paper organized as follows: In section two, the new 
conjugate gradient (CG) algorithm is presented with its 
algorithm. In section three, the new conjugate gradient satisfies 
the descent condition and sufficient descent condition. In 
section four the numerical results, percentages, graphics and 
discussion are presented. Finally, we conclude in section five. 
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2. NEW CONJUGATE GRADIENT COEFFICIENT 

The aim of this section is to derive a new conjugate gradient 
coefficient known as 𝛽4def for unconstrained optimization 
from the Dai-Liao (DL) formula. 
2.1 The new CG coefficient (𝜷𝒊𝑵𝒆𝒘) 
Barzilai and Borwein (1988), proposed a new value of 𝜆4 
defined by 
𝝀𝒊 	=

𝒔𝒊𝑻𝒔𝒊
𝒔𝒊
𝑻𝒚𝒊

                            (2.1) 

Consider  𝒔𝒊 = 𝒙𝒊8𝟏 − 𝒙𝒊 = 𝝀𝒊𝒅𝒊 = −𝝀𝒊𝒈𝒊                      (2.2) 

By putting (2.2) in (2.1), we get 
𝝀𝒊∗ = 𝝀𝒊

𝒈𝒊𝑻𝒈𝒊
𝒅𝒊
𝑻𝒚𝒊

  

Let, 𝜷𝒊𝑵𝒆𝒘 =
𝝀𝒊
𝝀𝒊
𝜷𝒊𝑫𝑳                              (2.3) 

Now, we replace 𝜆4	by 𝜆4∗ in denominator of equation (2.3), and 
get new parameter as follows: 
𝜷𝒊𝑵𝒆𝒘 =

𝝀𝒊	𝒈𝒊M𝟏𝑻 	(𝒚𝒊S𝐭𝒔𝒊)

𝝀𝒊	
𝒈𝒊
𝑻𝒈𝒊
𝒅𝒊
𝑻𝒚𝒊

	𝒅𝒊𝑻𝒚𝒊
  

After some algebraic operations, we obtain  

𝜷𝒊𝑵𝒆𝒘 =
𝒈𝒊M𝟏𝑻 𝒚𝒊
𝒈𝒊
𝑻𝒈𝒊

− 𝒕 𝒈𝒊M𝟏
𝑻 𝒔𝒊
𝒈𝒊
𝑻𝒈𝒊

  

𝜷𝒊𝑵𝒆𝒘 = 𝜷𝒊𝑷𝑹 − 𝒕
𝒈𝒊M𝟏𝑻 𝒔𝒊
𝒈𝒊
𝑻𝒈𝒊

 , where 𝒕 > 𝟎                    (2.4) 

2.2 Outline of new CG algorithm ( 𝜷𝒊𝑵𝒆𝒘)  
Step 1: Given 𝑥l ∈ 𝑅/. 
Step 2: 𝑖 = 0, 𝑔l = ∇𝑓(𝑥l)	, 𝑑l = −𝑔l, if 	𝑔l = 0, stop. 
Step 3:  Compute 𝜆4 by using cubic line search to 
minimize	𝑓(𝑥4 + 𝜆4𝑑4), 

(i.e.) 	𝑓482 ≤ 𝑓4	. 
Step 4: Updating new point based on Eq. (1.2) 
Step 5: Compute	𝑔482, if  ‖𝑔482‖ ≤ 10Sn stop. 
              else determine  𝑠4 = 𝑥482 − 𝑥4	and 𝑦4 = 𝑔482 − 𝑔4 
Step 6: Evaluate 𝑑482 by Eq. (1.3), where 𝛽4 is computed by 
(2.4). 
Step 7: If ‖𝑔482‖p ≤ 	

^qr
sqrMt^
l.p

 is satisfied go to step 2, 
              else 
              𝑖 = 𝑖 + 1 and go to step 3 

3. THE PROOF OF THE DESCENT AND THE 
SUFFICIENT DESCENT CONDITION OF 
THE NEW CG ALGORITHM  

Clearly, any conjugate gradient coefficient should satisfy both 
the decent and sufficient decent conditions. Therefore, in this 

section, we are going to show that new conjugate gradient 
𝛽4def satisfies the descent and the sufficient descent conditions.   
Theorem 3.1 Suppose that the sequence {𝑥4} is generated by 
(1.2), then the search direction (1.3) with 𝛽4def given as (2.4), 
satisfies the descent condition. i.e. 
𝒅𝒊8𝟏𝑻 𝒈𝒊8𝟏 ≤ 𝟎                        (3.1) 
Proof: By combining the equations (1.3) and (2.4), we obtain  
𝒅𝒊8𝟏 = −𝒈𝒊8𝟏 + (𝜷𝒊𝑷𝑹 − 𝒕

𝒈𝒊M𝟏𝑻 𝒔𝒊
𝒈𝒊
𝑻𝒈𝒊

)𝒅𝒊                     (3.2) 

After multiplying both sides of the equation (3.2) by	𝑔482w , the 
following formula is obtained 
𝒈𝒊8𝟏𝑻 𝒅𝒊8𝟏 = −‖𝒈𝒊8𝟏‖𝟐 + 𝜷𝒊𝑷𝑹𝒈𝒊8𝟏𝑻 𝒅𝒌 − 𝒕

𝒈𝒊M𝟏𝑻 𝒔𝒊
𝒈𝒊
𝑻𝒈𝒊

𝒈𝒊8𝟏𝑻 𝒅𝒊  

Since 𝑠4 = 𝜆4𝑑4 

𝒈𝒊8𝟏𝑻 𝒅𝒊8𝟏 = −‖𝒈𝒊8𝟏‖𝟐 + 𝜷𝒊𝑷𝑹𝒈𝒊8𝟏𝑻 𝒅𝒌 − 𝒕𝝀𝒊
	y𝒈𝒊M𝟏𝑻 𝒅𝒊z

𝟐

𝒈𝒊
𝑻𝒈𝒊

        (3.3) 

If	𝑑4w𝑔482 = 0, then the equation (3.3) gives𝑔482w 𝑑482 =
−‖𝑔482‖p ≤ 0. Then the proof is completed. 
On the other hand, if	𝑑4w𝑔482 ≠ 0. Hence, the first two terms of 
equation (3.3) are equal or less than zero because the PR 
algorithm satisfies the descent condition, i.e. 
−‖𝒈𝒊8𝟏‖𝟐 +	

(𝒈𝒊M𝟏𝑻 𝒚𝒊)(𝒈𝒊M𝟏𝑻 𝒅𝒊)
𝒈𝒊
𝑻𝒈𝒊

≤ 𝟎, 

Clearly 𝑡, 𝜆4, 𝑔4w𝑔4 and	(𝑔482w 𝑑4)p	are positive. Here, we obtain 
the third term of equation (3.3) less than or equal to zero. Hence  

𝒈𝒊8𝟏𝑻 𝒅𝒊8𝟏 = −‖𝒈𝒊8𝟏‖𝟐 + 𝜷𝒊𝑷𝑹𝒈𝒊8𝟏𝑻 𝒅𝒊 − 𝒕𝝀𝒊
	y𝒈𝒊M𝟏𝑻 𝒅𝒊z

𝟐

𝒈𝒊
𝑻𝒈𝒊

≤ 𝟎 .∎ 

Theorem 3.2 Assume that  𝑑482 given by (1.3) and (2.4) and 
the step size 𝜆4 is obtained by (1.11) and (1.12) then, the 
sufficient descent condition is satisfied, i.e. 
𝒅𝒊8𝟏𝑻 𝒈𝒊8𝟏 ≤ −𝒄‖𝒈𝒊8𝟏‖𝟐                            (3.4)	
Proof:  It is clear that 	the first two terms of equation (3.3) are 
equal or less than to zero. Therefore, the equation (3.3) can be 
written as follows: 

𝒈𝒊8𝟏𝑻 𝒅𝒊8𝟏 ≤ −(𝒕𝝀𝒊
	y𝒈𝒊M𝟏𝑻 𝒅𝒊z

𝟐

𝒈𝒊
𝑻𝒈𝒊‖𝒈𝒊M𝟏‖𝟐

)  ‖𝒈𝒊8𝟏‖𝟐                  (3.5) 

Which means (3.4) holds where	𝑐 = 𝑡𝜆4
	yqrMt

s �rz
�

qr
sqr‖qrMt‖�

.∎ 

4. NUMERICAL RESULTS 

In this section, we examine the implementation of the new CG 
method. The tests include well-known nonlinear problems 
standard test functions (Andrei, 2008), with different 
dimensions	4 ≤ 𝑛 ≤ 5000. The FORTRAN 95 language is the 
program which is used to write the numerical algorithm.  

 
Table 1. Comparison between new CG and PR methods 

Test 
Function 𝑛 

CG (PR) CG  (New) 
NOI NOF NOI NOF 

Wood 

4 
100 
500 

1000 
5000 

29 
30 
30 
30 
30 

67 
69 
69 
69 
69 

26 
27 
27 
27 
28 

60 
62 
62 
62 
64 

Central 

4 
100 
500 

1000 
5000 

22 
22 
23 
23 
30 

159 
159 
171 
171 
270 

22 
22 
22 
23 
23 

158 
158 
158 
171 
171 

Cubic 

4 
100 
500 

1000 
5000 

15 
16 
16 
16 
16 

45 
47 
47 
47 
47 

13 
13 
13 
13 
14 

37 
37 
37 
37 
39 
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Edger 

4 
100 
500 

1000 
5000 

5 
5 
6 
6 
6 

14 
14 
16 
16 
16 

5 
5 
5 
5 
5 

14 
14 
14 
14 
15 

Rosen 

4 
100 
500 

1000 
5000 

30 
30 
30 
30 
30 

85 
85 
85 
85 
85 

27 
27 
27 
29 
29 

74 
74 
74 
74 
74 

Mile 

4 
100 
500 

1000 
5000 

37 
44 
44 
50 
50 

116 
148 
148 
180 
180 

35 
41 
41 
41 
47 

107 
139 
139 
139 
170 

Powell 

4 
100 
500 

1000 
5000 

40 
43 
46 
46 
50 

120 
135 
150 
150 
180 

31 
38 
38 
41 
41 

84 
117 
117 
134 
134 

Total 976 3514 871 3034 

The numerical results in Table (1) illustrate that, the new 
conjugate gradient method is more efficient than standard (PR) 
method with respect to NOI and NOF. Indeed, in central 
function we have not seen any deference in terms of NOI 
when	𝑛 ≤ 500, yet there is a small deference in terms of NOF. 
However, for the other functions the result of the new CG is 
more efficient starting from the very beginning iterations. 
Finally, it is clear that the new CG is reliable function compare 
with the standard one.      

Table 2. Comparison improvement ratio between the 𝛽4def 
and PR methods 

Tools CG (PR) CG (New) 

NOI 100% 89.2418% 

NOF 100% 86.3404% 

Clearly, in Table 2 the NOI and NOF of the PR method are 
about 100%. That means, the new method has improvement of 
10.7582% compared with standard method in NOI and 
13.6596% in NOF. Generally, the New (CG) method was 
improved by 12.2089% compared with PR method. 

5. CONCLUSION 

Numerous studies of conjugate gradient lead to several of new 
methods. In this paper, a modified (CG) method for solving 
nonlinear unconstrained optimization in formula (2.4) based on 
Dai-Liao (DL) formula by Barzilai and Borwein step size is 
presented. We found that the new conjugate gradient satisfies 
both conditions (descent and sufficient descent) and it is 
reliable for functions up to 4 variables. Limited numerical 
experiments and comparisons show that, the new algorithm is 
better than CG (PR) according to the NOI and NOF. In future 
one can use our new CG in neural network in order to 
investigate the efficiency of its behavior. 
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