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ABSTRACT: 
The Kaup-Boussinesq system has been solved numerically by using two methods, Successive approximation method (SAM) and 
Adomian decomposition method (ADM). Comparison between the two methods has been made and both can solve this kind of 
problems, also both methods are accurate and has faster convergence. The comparison showed that the Adomian decomposition 
method much more accurate than Successive approximation method. 
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1. INTRODUCTION 

The partial differential equations originated from the study of 
surfaces in geometry and for solving a wide variety of problems 
in mechanics. During the second half of the nineteenth century, a 
large number of mathematicians became actively involved in the 
investigation of numerous problems presented by partial 
differential equations (Debnath, 2011). Many authors have 
worked on partial differential equations such as: (Hosseini, Ansari 
&Gholamin, 2012; Koparan et al., 2017). 
An American mathematician has initiated and developed the 
Adomian decomposition method (Adomian, 1986, 1994). 
Moreover, this method is very helpful for a number of areas such 
as: for solving ordinary and partial equations, linear and 
nonlinear, Algebraic equations, factional equations and integral 
differential equations (awawdah, 2016). Also, it has been applied 
to a wide class of deterministic and stochastic problems, linear 
and nonlinear, in physics, biology and chemical reactions etc. For 
nonlinear models, the method has shown reliable results in 
supplying analytical approximations that converge rapidly(Chen 
& Lu, 2004).The main advantages of the method are that it can be 
applied directly for all types of differential and integral equations, 
linear or nonlinear, homogenous or inhomogeneous, with 
constant coefficients or with variable coefficients. Another 
Advantages is that the method is capable of greatly reducing the 
size of computation work while still maintain high accuracy of 
the numerical solution (Somali & Gokmen, 2007). 
(Biazar & Ghazvini, 2009) State that one of the classical methods 
for finding the solution of integral equations is the Successive 
approximation method (SAM). Moreover, in the literature is 
called Picard iteration method. Scheme that one can use for 
solving initial value problems (Adam, 2015; Biazar & Ghazvini, 
2009). Many authors such as (Adam, 2015; Hashem, 2015; 
Javadi, 2014; Manaa, Easif, & Ali, 2017 ) have consideration to 
study linear and nonlinear PDEs by using SAM. In this work, 
ADM and SAM have been applied to solve the Kaup-Boussinesq 
system. 
A coupled system of nonlinear partial differential equation which 
derives as a sample for surface waves in the context of 
Boussinesq scaling is the Kaup-Boussinesq system, and also been  

 

 

derived for an internal wave system (Juliussen, 2014; Zhou, Tian 
& Fan, 2009).  

The KB-system (Zhou, Tian & Fan, 2009) : 

ut − vxxx − 2(vu)x = 0,       
vt − ux − 2vvx = 0.

}                                               (1) 

With the initial conditions: 

u(x, 0) =
w2

2
(1 + tanh (

wx

2
)) 

                  −
w2

4
(1 + tanh (

wx

2
))

2
, 

 v(x, 0) = −
w

2
(1 + tanh (

wx

2
)). 

Where u = u(x, t) indicate to the height of the water surface 

above a horizontal bottom, v = v(x, t) is related to the horizontal 

velocity field and w is constant. 

It is called the Kaup-Boussinesq system because they have been 

used Boussinesq scaling in the derivation, and it has been 

studying by (Kaup, 1975). It has also been used by (Broer, 1974). 

Also as it goes to the family of long-waves models established by 

Boussinesq, drawn-out by (Nwogu, 1993; Peregrine, 1967) and 

many others. 

In recent years, the KB system has been the subject for many 

other researches. (Zhou, Tian & Fan, 2009) Work on Solitary-

wave solution to a dual equation of the KB system. And 

(Aminikhah et al., 2016) work on travelling wave solution of 

nonlinear systems of PDEs by using the factional variable 

method.  

The aim of this paper is solving Kaup-Boussinesq system 
numerically using ADM and SAM and comparing them with the 
exact solution. Also the accuracy of the present methods at 
different values of 𝑥 and fixed time was discussed. 

2. DESCRIPTION OF THE METHODS 

2.1. Basic idea of the Adomian decomposition method: 
The principal algorithm of the Adomian decomposition method 
when applied to a general nonlinear equation has the form. 
(Adomian, 1986; Ruan & Lu, 2007). 
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Ltu + Ru + Nu = g .                                                         (2) 

The linear terms are decomposed into 𝐿𝑡 + 𝑅, where 𝐿𝑡 is 
given to be the operator of the highest order derivatives, 𝑅 is 
the reminder of the linear operator and g is the analytic 
function. While the nonlinear terms are represented by 𝑁𝑢. 

Then we get  

Ltu = g − Ru − Nu.                                                          (3) 

Where Lt =
∂

∂t
  .                                                                 (4) 

Presuming that the inverse of operator Lt exists, it can be 
written as: 

Lt
−1(∙) = ∫ (∙)dt

t

0

 

Applying Lt
−1 on the both sides of the equation (2) we get: 

Lt
−1Ltu = Lt

−1(g) − Lt
−1(Ru) − Lt

−1(Nu),                  
u(x, t) = u(x, 0) + Lt

−1(𝑔) − 𝐿𝑡
−1(Ru) − Lt

−1(Nu), 

Where 𝑢0 = u(x, 0) + Lt
−1(g),                             

Then  

𝑢(𝑥, 𝑡) = 𝑢0 − Lt
−1(Ru) − Lt

−1(Nu). 

The standard Adomian decomposition method defines the 
solution u(x, t) as the infinite series of the form: 

u(x, t) = ∑ ul(x, t)∞
l=0 . 

Also, Nu which is usually represented by the sum of series, 
and it is the nonlinear operator  

Nu = ∑ Al
∞
l=0 . 

Where Al is Adomian’s polynomial of (u0 + u1 + u2 +
⋯ + ul) which is defined as 

Al =
1

l!
[

dl

dλl N(∑ λkl
k=0 uk)]

λ=0
, l ≥ 0.                             (5)  

 
2.2. Basic idea of the Successive Approximation 

Method: 

One can use this method for solving any initial value problems 
(Yang et al., 2014) 

Let 

u′ = f(t, u),     u(t0) = u0.                                                (6) 

It begins by realizing that any solutions to (6) should also 
be a solution of: 

u(t) = u0 + ∫ f(s, u(s))ds
t

0
 . 

While we have: 

uM(t) = u0 + ∫ f(s, uM−1(s))ds
t

0
.                                    (7) 

A sequence of solution is constructed iteratively to be much 
closed to the exact solution. And SAM based on the integral as 
follows: 

u0(t) = u0 

To get u1 we must put initial approximation into equation 
(7): 

u1(t) = u0 + ∫ f(s, u0)ds
t

0
. 

By the same way for u2, u3, …  

3. NUMERICAL APPLICATIONS: 

The following example is solved numerically by the 
presented methods: 

                  ut − vxxx − 2(vu)x = 0, 

                         vt − ux − 2vvx = 0. 

With the initial conditions: 

u(x, 0) =
w2

2
(1 + tanh (

wx

2
)) −

𝑤2

4
(1 + tanh (

wx

2
))

2
, 

And 

v(x, 0) =
−w

2
(1 + tanh (

wx

2
)). 

Where w = 1.5, and with soliton solutions (Aminikhah et 

al., 2016): 

u(x, t) =
w2

2
(1 + tanh (

w(x−wt)

2
))  

           −
w2

4
(1 + tanh (

w(x−wt)

2
))

2

 , 

And 

v(x, t) =
−w

2
(1 + tanh (

w(x−wt)

2
)), 

  
3.1. The solution of the nonlinear Kaup-Boussinesq 

system by ADM: 

By the KB system (1): 

Ltu = Lxxx(v) + 2v(Lxu) + 2u(Lxv),                             (8) 

Ltv = Lxu + 2v(Lxv).                                                      (9) 

When Lx =
∂

∂x
 ,and  Lxxx =

∂3

∂x3
 . 

 Lt
−1, which is the inverse operator provided that it exists, is 

defined as: 

Lt
−1(∙) = ∫ (∙)dt

t

0
. 

Then apply Lt
−1 to (8) and (9) we get: 

𝑢(x, t) = u(x, 0) + Lt
−1(Lxxxv) + Lt

−1(2vLxu) 

               +Lt
−1(2uLxv), 

v(x, t) = v(x, 0) + Lt
−1(Lxu) + Lt

−1(2vLxv), 

By using initial conditions we get: 

u(x, t) = u0(x) + Lt
−1(Lxxxv) + Lt

−1(2vLxu) 

               +Lt
−1(2uLxv), 

v(x, t) = v0(x) + Lt
−1(Lxu) + Lt

−1(2vLxv). 

Usually the solutions u(x, t) and v(x, t) are defined as an 
infinite series 

∑ u(x, t) = u0(x)∞
l=0 + Lt

−1(Lxxx ∑ vl)
∞
l=0   

                       +2Lt
−1(∑ Al) + 2Lt

−1(∑ Bl)
∞
l=0

∞
l=0 , 

∑ v(x, t) = v0(x)∞
 l=0 + Lt

−1(Lx ∑ ul)
∞
l=0   

                        +2Lt
−1(∑ Cl)

∞
l=0 . 

Then find Al which are Adomain polynomials by using 
equation (5). 

While we have  

u0 = u0(x), 

v0 = v0(x). 

Then  

              ul+1 = Lt
−1(Lxxxvl + 2Al + 2Bl), 

              vl+1 = Lt
−1(Lxul + 2Cl). 

Where l ≥ 0. 

 
3.2. The solution of nonlinear Kaup-Boussinesq 

system by SAM: 

We apply successive approximation method to approximate 
solution of the Kaup-Boussinesq system by integrating both 
sides of the equation (1): 

u(x, t) = u0(x) + ∫ (
∂3v(x,s)

∂x3 + 2v(x, s)
∂u(x,s)

∂x
  +

t

0

                 2u(x, s)
∂v(x,s)

∂x
) ds, 
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v(x, t) = v0(x) + ∫ (
∂u(x,s)

∂x
+ 2v(x, s)

∂v(x,s)

∂x
)

t

0
ds.        

Then the general successive approximation method for the 
Kaup-Boussinesq system is in the form:  

uM(x, t) = u0(x) + ∫ (
∂3vM−1(x,s)

∂x3 )
t

0
ds   

                  + ∫ (2vM−1(x, s)
∂uM−1(x,s)

∂x
)

t

0
ds 

                  + ∫ (2uM−1(x, s)
∂vM−1(x,s)

∂x
)

t

0
ds,                   (10)  

 vM(x, t) = v0(x) + ∫ (
∂uM−1(x,s)

∂x
)

t

0
ds 

                  + ∫ (2vM−1(x, s)
∂vM−1(x,s)

∂x
) ds

t

0
.                  (11)               

Where M = 1,2,3, … 

Put M = 1 into the equations (10) and (11), we should get 
u1(x, t) and v1(x, t) by substituting u0(x) and v0(x) which 
are the initial approximations: 

u1(x, t) = u0(x) + ∫ (
∂3v0(x,s)

∂x3
)

t

0
ds  

                 + ∫ (2v0(x, s)
∂u0(x,s)

∂x
)

t

0
ds 

                 + ∫ (2u0(x, s)
∂v0(x,s)

∂x
)

t

0
ds, 

v1(x, t) = v0(x) + ∫ (
∂u0(x,s)

∂x
)

t

0
ds  

                + ∫ (2v0(x, s)
∂v0(x,s)

∂x
)

t

0
ds. 

Put M = 2 into the equation (10) and (11) to get u2(x, t) and 
v2(x, t)        

We will do the same steps for M ≥ 3. 

 
3.3. Applying the Adomian Decomposition  Method: 

From the example we get: 

ul+1 = Lt
−1(Lxxxvl) + Lt

−1(2Al) + Lt
−1(2Bl)

 vl+1 = Lt
−1(Lxul) + Lt

−1(2Cl)
}               (12)  

First for l = 0, find u1 and v1 

2A0 = 2 (
1

0!
[

d0

dλ0 𝑁(∑ λ00
k=0 u0)]

λ=0
), 

       = 2 (v0
𝜕𝑢0

𝜕𝑥
), 

       =
w4

4
tanh (

wx

2
) sech2 (

wx

2
)  

          +
𝑤4

4
 tanh2 (

wx

2
) sech2 (

wx

2
). 

2B0 = 2 (
1

0!
[

d0

dλ0 N(∑ λ00
k=0 u0)]

λ=0
), 

        =  2 (u0
𝜕𝑣0

𝜕𝑥
), 

        =
−w4

8
sech2 (

wx

2
)  +

𝑤4

8
 tanh2 (

wx

2
) sech2 (

wx

2
). 

Lxxx(v0) =
−w4

4
tanh2 (

wx

2
)  sech2 (

wx

2
) +

w4

8
 sech4 (

wx

2
). 

Then 

u1 =
w4

8
sech4 (

wx

2
) t +

𝑤4

4
tanh (

wx

2
) sech2 (

wx

2
) t  

        − 
𝑤4

8
sech2 (

wx

2
) t +

𝑤4

8
tanh2 (

wx

2
)  sech2 (

wx

2
) t. 

Now for v1  

2C0 =
w3

4
sech2 (

wx

2
) +

𝑤3

4
tanh (

wx

2
) sech2 (

wx

2
). 

Lx(u0) =
−w3

4
tanh (

wx

2
) sech2 (

wx

2
). 

Then 

v1 =
w3

4
sech2 (

wx

2
) 𝑡. 

By the same way find u2, v2 and so on 

 
3.4. Applying the Successive Approximation 

Method: 

By applying SAM to the example we get: 

uM(x, t) = u0(x) + ∫ (
∂3vM−1(x,s)

∂x3
)

t

0
ds  

                  + ∫ (2vM−1(x, s)
∂uM−1(x,s)

∂x
)

t

0
ds    

                  + ∫ (2uM−1(x, s)
∂vM−1(x,s)

∂x
)

t

0
ds ,                 (13) 

vM(x, t) = v0(x) + ∫ (
∂uM−1(x,s)

∂x
)

t

0
ds  

                  + ∫ (2vM−1(x, s)
∂vM−1(x,s)

∂x
)

t

0
ds ,                 (14) 

When we put M = 1 into the equations (13) and (14) to 
obtain the solution of u1(x, t) and v1(x, t): 

u1(x, t) = u0(x) + ∫ (
∂3v0(x,s)

∂x3 )
t

0
ds   

                 + ∫ (2v0(x, s)
∂u0(x,s)

∂x
)

t

0
ds 

                 + ∫ (2u0(x, s)
∂v0(x,s)

∂x
)

t

0
ds, 

Then 

u1 =
w2

4
−

𝑤2

4
tanh2 (

wx

2
) +

w4

8
sech4 (

wx

2
) t  

         +
w4

4
tanh (

𝑤𝑥

2
) sech2 (

wx

2
) t −

w4

8
sech2 (

wx

2
) t  

         +
w4

8
 tanh2 (

wx

2
) sech2 (

wx

2
) t. 

Also 

v1(x, t) = v0(x) + ∫ (
∂u0(x,s)

∂x
)

t

0
ds  

                + ∫ (2v0(x, s)
∂v0(x,s)

∂x
)

t

0
ds, 

Then  

v1 =
−w

2
−

w

2
tanh (

wx

2
) +

w3

4
sech2 (

wx

2
) t. 

By the same way find u2, v2 and so on 
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Figure (1): Exact solution for u(x, t) Figure (2): Solution for u(x, t) by ADM              Figure (3): Solution for u(x, t) by SAM 

Figure (4): Exact solution for v(x, t) Figure (5): Solution for v(x, t) by ADM             Figure (6): Solution for v(x, t) by SAM

 

 

Figure (7): Absolute errors between Exact solution and ADM 
for 𝑢(𝑥, 𝑡) 

 

Figure (8): Absolute errors between Exact solution and SAM  
for 𝑢(𝑥, 𝑡)

Figure (9): Absolute errors between Exact solution and ADM 
for 𝑣(𝑥, 𝑡) 

Figure (10): Absolute errors between Exact solution and SAM 
for 𝑣(𝑥, 𝑡).

104 



S. A. Manaa and N. M. Mosa / Science Journal of University of Zakho 7(3), 101-107, September-2019 

 
 

Figure (11): Zooming curves for Exact, ADM and SAM for 
𝑢(𝑥, 𝑡) when 𝑥 ∈ [1.52, 1.72], 𝑤 = 1.5 and                            

𝑡 = −0.3091 

Figure (12): Zooming curves for Exact, ADM and SAM for 
𝑣(𝑥, 𝑡) when 𝑥 ∈ [ 1.52, 1.72], 𝑤 = 1.5 and                              

𝑡 = −0.3091 

Table (1): Absolute errors between Exact and approximation solutions by ADM and SAM when  

𝑥 ∈ [−10, 10] and 𝑡 = −0.3091 for 𝑢(𝑥, 𝑡) 

 

 

 

 

 

 

 

 

 

 

 

t x EXACT ADM |EXACT-ADM| SAM |EXACT-SAM| 

 

- 0.3091 

 

-6.16 

-5.96 

-5.76 

-5.56 

-5.35 

-5.15 

-4.95 

 

1.52 

1.72 

1.92 

2.12 

2.32 

2.53 

2.73 

 

5.56 

5.76 

5.96 

6.16 

6.36 

6.57 

6.77 
 

 

4.36628557E-04 

5.91094413E-04 

8.00166671E-04 

1.08311727E-03 

1.46599271E-03 

1.98397309E-03 

2.68453380E-03 

 

1.04612682E-01 

7.92777994E-02 

5.96886222E-02 

4.47200203E-02 

3.33823149E-02 

2.48507369E-02 

1.84618344E-02 

 

2.69727744E-04 

1.99227120E-04 

1.47151324E-04 

1.08686258E-04 

8.02751673E-05 

5.92904754E-05 

4.37911679E-05 
 

 

4.34180331E-04 

5.87783899E-04 

7.95692213E-04 

1.07707339E-03 

1.45783583E-03 

1.97297708E-03 

2.66973355E-03 

 

1.05586987E-01 

7.97256092E-02 

5.97929774E-02 

4.46335613E-02 

3.32100205E-02 

2.46555173E-02 

1.82766692E-02 

 

2.65143718E-04 

1.95835412E-04 

1.44642983E-04 

1.06831853E-04 

7.89045620E-05 

5.82776412E-05 

4.30428191E-05 
 

 

2.44822561E-06 

3.31051367E-06 

4.47445728E-06 

6.04387469E-06 

8.15688209E-06 

1.09960116E-05 

1.48002533E-05 

 

9.74305631E-04 

4.47809816E-04 

1.04355137E-04 

8.64589705E-05 

1.72294400E-04 

1.95219591E-04 

1.85165164E-04 

 

4.58402552E-06 

3.39170788E-06 

2.50834100E-06 

1.85440586E-06 

1.37060524E-06 

1.01283418E-06 

7.48348778E-07 
 

 

4.34192518E-04 

5.87806227E-04 

7.95733116E-04 

1.07714830E-03 

1.45797297E-03 

1.97322805E-03 

2.67019253E-03 

 

1.03325496E-01 

7.81453583E-02 

5.87802432E-02 

4.40187357E-02 

3.28495726E-02 

2.44489872E-02 

1.81601193E-02 

 

2.65117566E-04 

1.95821142E-04 

1.44635198E-04 

1.06827605E-04 

7.89022446E-05 

5.82763770E-05 

4.30421294E-05 
 

 

2.43603939E-06 

3.28818568E-06 

4.43355479E-06 

5.96896456E-06 

8.01973606E-06 

1.07450396E-05 

1.43412711E-05 

 

1.28718547E-03 

1.13244106E-03 

9.08379046E-04 

7.01284664E-04 

5.32742250E-04 

4.01749713E-04 

3.01715146E-04 

 

4.61017785E-06 

3.40597784E-06 

2.51612681E-06 

1.85865363E-06 

1.37292264E-06 

1.01409842E-06 

7.49038455E-07 
 

Mean 

square 

error 

     

1.15221469E-06  7.77665407E-06 
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Table (2): Absolute errors between Exact and approximation solutions by ADM and SAM when 

𝑥 ∈ [−10, 10] at  𝑡 = −0.3091 for 𝑣(𝑥, 𝑡) 

t x EXACT ADM |EXACT-ADM| SAM |EXACT-SAM| 

 

-0.3091 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

-6.16 

-5.96 

-5.76 

-5.56 

-5.35 

-5.15 

-4.95 

 

1.52 

1.72 

1.92 

2.12 

2.32 

2.53 

2.73 

 

5.56 

5.76 

5.96 

6.16 

6.36 

6.57 

6.77 
 

 

-2.91142214E-04 

-3.94166520E-04 

-5.33634291E-04 

-7.22426110E-04 

-9.77966085E-04 

-1.32381705E-03 

-1.79182964E-03 

 

-1.42667372E+00 

-1.44514186E+00 

-1.45909194E+00 

-1.46956930E+00 

-1.47740476E+00 

-1.48324570E+00 

-1.48758943E+00 

 

-1.49982016E+00 

-1.49986717E+00 

-1.49990189E+00 

-1.49992754E+00 

-1.49994648E+00 

-1.49996047E+00 

-1.49997081E+00 
 

 

-2.89507088E-04 

-3.91954058E-04 

-5.30641328E-04 

-7.18378558E-04 

-9.72494646E-04 

-1.31642502E-03 

-1.78185053E-03 

 

-1.42675189E+00 

-1.44536059E+00 

-1.45936352E+00 

-1.46984051E+00 

-1.47764846E+00 

-1.48345151E+00 

-1.48775644E+00 

 

-1.49982323E+00 

-1.49986944E+00 

-1.49990357E+00 

-1.49992878E+00 

-1.49994740E+00 

-1.49996115E+00 

-1.49997130E+00 
 

 

1.63512641E-06 

2.21246246E-06 

2.99296297E-06 

4.04755217E-06 

5.47143877E-06 

7.39203288E-06 

9.97910579E-06 

 

7.81779190E-05 

2.18738022E-04 

2.71577073E-04 

2.71212054E-04 

2.43696596E-04 

2.05805480E-04 

1.67015105E-04 

 

3.06647441E-06 

2.26684630E-06 

1.67534218E-06 

1.23797024E-06 

9.14664200E-07 

6.75728750E-07 

4.99175220E-07 
 

 

-2.89511152E-04  

-3.91961505E-04  

-5.30654974E-04  

-7.18403558E-04  

-9.72540437E-04  

-1.31650887E-03  

-1.78200399E-03  

 

-1.42778435E+00 

-1.44600557E+00 

-1.45974937E+00 

-1.47006472E+00 

-1.47777620E+00 

-1.48352334E+00 

-1.48779646E+00 

 

-1.49982324E+00 

-1.49986944E+00 

-1.49990357E+00 

-1.49992878E+00 

-1.49994740E+00 

-1.49996115E+00 

-1.49997130E+00 
 

 

1.63106233E-06  

2.20501481E-06  

2.97931644E-06  

4.02255146E-06  

5.42564736E-06  

7.30818694E-06  

9.82564434E-06  

 

1.11062961E-03 

8.63717647E-04 

6.57430616E-04 

4.95419036E-04 

3.71443070E-04 

2.77631265E-04 

2.07035856E-04 

 

3.07519496E-06 

2.27160420E-06 

1.67793795E-06 

1.23938636E-06 

9.15436740E-07 

6.76150200E-07 

4.99405120E-07 
 

Mean 
square 
error 

    
2.28397226E-07  1.21403284E-06 

4. CONCLUSION: 

In this paper, successive approximation method (SAM) and 
Adomian decomposition method (ADM) have been used for 
solving the kaup-Boussinesq system numerically. In sections 
three, we give an example to show which method is more 
accurate and faster than the other, we conclude from the 
example, that both methods were suitable for solving this 
kind of problems, they were effective and closed to the exact 
solution. The results showed that the ADM is more accurate 
and effective than SAM because it is closer to the exact solu-
tion, as shown in table (1, 2) and figures (11, 12).  
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