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ABSTRACT: 

In geographic, the eigenvalues and eigenvectors of transportation network provides many informations about its connectedness. It 
is proven that the more highly connected in a transportation network G has largest eigenvalue and hence more multiple occurrences 
of the eigenvalue -1. For a graph G with adjacency matrix A, the multiplicity of the eigenvalue -1 equals the dimension of the null 
space of the matrix A + I. 
In this paper, we constructed a high closed zero sum weighting of G and by which its proved that, the dimension of the null space 
of the eigenvalue -1 is the same as the number of independent variables used in a non-trivial high closed zero sum weighting of 
the graph. Multiplicity of -1 as an eigenvalue of known graphs and of corona product of certain classes of graphs are determined 
and two classes of -1- nut graphs are constructed. 

KEYWORDS: Graph Theory, High Zero Sum Weighting, Adjacency Matrix, Nullity, Corona Product.  

1. INTRODUCTION 

A simple graph G with vertex set V ,V = v1,  v2, … , vn , is 
singular provided that its adjacency matrix A(G) is a singular 
matrix. The eigenvalues 𝜆", 𝜆#, ... , 𝜆$ of A(G) are said to be 
the eigenvalues of the graph G, which form the spectrum of 
G, denoted by Sp(G). The occurrence of zero as an 
eigenvalue in the spectrum of the graph G is called its nullity 
and is denoted by ƞ or ƞ(G). The nullity ƞ (G) is the 
dimension of the null space of A(G) (Cheng and Liu, 2007). 
The nullity ƞ (G) = n if, and only if, G is the empty       (null) 
graph. Let G = G1∪ G2 ∪ G3 ∪, … , ∪Gk then,           
ƞ(G)=∑ 𝐺*+

*,"  where G1, G2, … ,Gk are connected 
components of G See (Ali, et al., 2016a; Ali et al., 2019). 
A vertex weighting of a graph G is a function f : V(G)→ ℝ 
where ℝ is the set of real numbers, which assigns real 
numbers (weights) to each vertex. The weighting of G is said 
to be non-trivial if there is at least one vertex v ∈V (G) for 
which f(v) ≠ 0. A non-trivial vertex weighting of a graph G 
is called a zero-sum weighting provided that for each v	∈ V 
(G), ∑𝑓(𝑢)=0, where the summation is taken over all u ∈ 
N(v). Out of all zero-sum weightings of a graph G, a high 
zero-sum weighting (hzsw) of G is one that uses a maximum 
number of non-zero independent variables (Sharaf and 
Rashed, 2002). 
A graph G is a Smith graph if 2 is an eigenvalue of G, a 2-
weighting technique is applied to characterize some classes 
of Smith graphs as well as to study the nullity of vertex 
identification of such graphs. It is also proved that under 
certain conditions the vertex identification of some Smith 
graphs is a Smith graph (Mohiaddin and Khidir, 2018). 
In other words a graph with nullity ƞ contains cores 
determined by a basis for the null space of A. A singular 
graph, on at least two vertices, with a kernel eigenvector 
having no zero entries, is said to be a core graph. 
The removal of a vertex v from a graph G results in a 
subgraph G – v of G consisting of all vertices of G except v, 
and all edges not incident with v. For two distinct vertices a 
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and b of a graph G, we define G + ab to be a graph obtained from 
G by adding a new vertex ab which is adjacent to all 
vertices in N(a) ∪ N(b), the graph G.ab is G + ab - a - b. 
Definition 1.1  (Mohan et al., 2017). Let G1 and G2 be two graphs 
with vertex set V(G1) ={v1 , v2, … ,  vn1} and V(G2) = {u1, u2, … 
, un2} respectively, the corona of G1 and G2 denoted by G1O G2 is 
defined as taking one copy of G1 and n1 copies of G2 by adjoining 
ith vertex of G1 to each vertex of G2 in ith copy. 
Many invariant of the corona product G1O G2 such as nullity, 
domination number, colorability are related to the invariants of 
G1 and of G2. 
 
Theorem 1.2  (Interlacing Theorem)  
(Brouwer and Haemers, 2011). Let G be a graph with eigenvalues  
λ1 ≥ λ2 ≥  … ≥ λn , and let the eigenvalues of G - v be  𝜇1≥ 𝜇2≥ 
… ≥ 𝜇n-1. Then the eigenvalues of G-v are interlaced with the 
eigenvalues of G, that is, λ1 ≥ 𝜇1 ≥ λ2 ≥ 𝜇2≥ …	≥ 𝜇n-1 ≥ λn. 
 
A vertex of a graph can be a core vertex if, on deleting the vertex, 
the nullity decreases, or a Fiedler vertex, otherwise. They adopt 
a graph theoretical approach to determine conditions required for 
the identification of a pair of prescribed types of root vertices of 
two graphs to form a cut-vertex of unique type in the coalescence. 
Moreover, the nullity of subgraphs obtained by perturbations of 
the coalescence graph is determined relative to its nullity (Ali et 
al., 2016a). 
The change in nullity when graphs with a cut-edge, and others 
derived from them, undergo geometrical operations, the deletion 
of edges and vertices, the contraction of edges and the insertion 
of an edge at a coalescence vertex are studied in (Ali et al., 
2016b). It is proved that, two connected labeled graphs H1 and 
H2 of nullity one, with identical one-vertex deleted subgraphs H1 
-z1 and H2 -z2 and having a common eigenvector in the nullspace 
of their 0 - 1 adjacency matrix, can be overlaid to produce the 
superimposition graph G. The graph G is H1+z2 and also H2+z1 
whereas G+e is obtained from G by adding the edge z1z2 (Ali et 
al., 2019). 
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In this paper the dimension of the null space of the eigenvalue   
-1 of a simple graph by introducing a new idea, denoted by 
high closed zero sum weighting is studied. 
Finally, Kn, Ka,b, Cn, Pn are complete, complete bipartite, 
cycle and path graphs of order n, for more definition and 
details see (Cvetkovic et al., 1979). All graphs mentioned in 
the following are connected graphs except where stated. 

2. MULTIPLICITY OF THE EIGENVALUE -1 IN A 
GRAPH 

In this section, we define the occurrence of -1 as an 
eigenvalue of a graph G. It is clear that -1 is an eigenvalue of 
a matrix A if and only if determinant of the matrix A + I is 
equal to zero. 
 
Definition 2.1  A non-trivial vertex weighting of a graph G 
is called a closed zero-sum weighting provided that for each 
v ∈ V (G), then ∑ f(u	

	 )=0, where the summation is taken over 
all u ∈ N[v]. Out of all closed zero-sum weightings of a graph 
G, a high closed zero-sum weighting (hczsw) of G is one that 
uses maximum number of non-zero independent variables. 
 
Proposition 2.2  For any graph G,  -1 is an eigenvalue of G 
iff G possesses a closed zero-sum weighting. 
Proof. Let A be the adjacency matrix of G.  If -1 is an 
eigenvalue of G then, the matrix A+I is a singular matrix and 
hence there exist a non-zero vector X such that (A + I)X = 0. 
This, means that G possesses a closed zero-sum weighting. 
On the other hand, if G possesses a closed zero-sum 
weighting, 
then, (A+I)X = 0, where X is a non zero vector. Hence AX = 
-X which proves that -1 is an eigenvalue of G.                              
▭	
	
It is easy to show that, for the next largest eigegvalue λ2(G) 
to be -1 the graph must be complete and for the third largest 
eigenvalue λ3(G) it is known that λ3(G) = -1 iff  Gc is 
isomorphic to the union of a complete bipartite graph and 
some isolated vertices. 
Note : We denote the multiplicity of -1 as an eigenvalue of a 
graph G by m-1(G). 
Here we give some illustrated graphs with hczsws, which 
classify that m-1 (C3) = 2 and m-1 (P6 + e) = 2, where e = v4v6 
in the usual labeling of the path P6. 
 
 
 
 

 

Figure 1. hczsw for C3 and G. 

Theorem 2.3  In a graph G, m-1 (G) equals the maximum 
number of independent variables in a hczsw of G and  
conversely. 
Proof. Let A be the adjacency matrix of G, and I be the 
identity matrix. -1 is an eigenvalue of G with multiplicity m, 
if and only if zero is an eigenvalue of the matrix A + I with 
the same multiplicity m. There exist a hzsw of G that uses 
exactly m independent variables, Say X. Thus (A + I)X = 0 
gives AX = -IX, then the same number of independent 
variables is used in a hczsw for G.                                                            
▭	
	
Corollary 2.4  The following are equivalent : 
i) -1 is an eigenvalue of a graph G. 
ii) The matrix A + I is a singular matrix. 
iii) There exist a non zero eigenvector X such that AX = -X. 

iv) G possesses a closed zero-sum weighting. 
Proof.  Is direct.                                                                  ▭ 
 
Theorem 2.5  If G is r-regular graph and r = λ1 ≥ λ2 ≥  … ≥ λn 
are the eigenvalues of G, then the eigenvalues of Gc are n-1-r and 
{-1- λi ; 2≤ 𝑖	 ≤ 𝑛}. 
Proof. Because A(Gc) = J -I -A(G), where J is an n×n matrix in 
which each entry is one and I is the identity matrix; G is (n-1-r)-
regular, so the largest eigenvalue is n-1-r with corresponding 
eigenvalue Y = [1, 1, … , 1]t. 
Any other eigenvalue λ  has an eigenvector X orthogonal to Y , 
and hence A(Gc)X = (JI - A(G))X = (0 - 1 - λ)X.         ▭	
	
Corollary 2.6  For any graph G having at least 2 vertices 
|ƞ(𝐺) −𝑚B"(𝐺C)| ≤ 1 strictly holds if G = P4n+3. Equality holds 
if G = Kn . 
Proof. Direct from Theorem 2.3.                                      ▭	

3. MULTIPLICITY OF -1 AS AN EIGENVALUE IN 
SOME KNOWN GRAPHS 

Let H be any graph in which the multiplicity of -1 is m, then we 
prove the following: 
Lemma 3.1  If G is a graph obtained by identifying an end vertex 
of  P4 with any vertex of a graph H then, m-1 (G)  = m-1 (H) . 
Proof. Label the vertices of P4 in a usual way v1, v2, v3 and v4 
where v4 is the identified vertex with a vertex of the graph H. In 
a hczsw of G there are two possibilities for the weighting of the 
identified vertex v4 ≡ v. 
a) If w(v) = 0 then, w(v1) = w(v2) = w(v3) = 0 and hence removing 
v1; v2 and v3 will not change any weight in the hczsw of H so m-

1 (G)  = m-1 (H) . 
b) If w(v) ≠ 0 then, w(v1) = x, w(v2) = -x and w(v3) = 0 and again 
removing v1, v2 and v3 will also not change any weight in the 
hczsw of H so, m-1 (G)  = m-1 (H). See Figure 2. 
 
 
 

 
Figure 2. hczsw of the graph G. 

Proposition 3.2  Null spaces dimension of -1 as an eigenvalue of 
a complete graph Kn is defined as: 

m-1 (Kn)  =F
0																						𝑖𝑓										𝑛 = 1
𝑛 − 1													𝑖𝑓									𝑛 ≠ 1  

Proof.  Is direct, from the number of distinct variables in a 
hczsw of Kn, namely x1, x2, . . . , xn-1, -x1, - x2,  . . –xn-1.    ▭ 
 
Proposition 3.3  Null spaces dimension of  -1 as an eigenvalue 
of a path Pn is defined as: 

m-1 (Pn)  =I1											𝑖𝑓										𝑛 = 2	𝑚𝑜𝑑	3
0															𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒														 

Proof. Assume that n = 2, then a hczsw of P2 is x, -x and hence -
1 is an eigenvalue of P2 with multiplicity 1. For n = 2 mod 3, any 
hczsw of Pn is of the form x, -x,  0, x, -x, …,0, x, -x where the 
triple 0, x, -x is repeated (n-2)/3 times. Hence, dimension of the 
null space of -1 is 1. If n ≠2 mod 3, then there exist no non trivial 
hczsw for Pn. That is, the dimension of the null space of -1 is zero.                           
▭ 
 
Proposition 3.4  Null spaces dimension of -1 as an eigenvalue of 
a cycle Cn is defined as: 

m-1 (Cn)  =T
	2																								𝑖𝑓																						𝑛 = 3																			
1																								𝑖𝑓		𝑛 = 0	𝑚𝑜𝑑	3	𝑎𝑛𝑑	𝑛	 ≠ 	3
0																															𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																											

	 

Proof. Assume that n = 3, then a hczsw of C3 is x, y,-x - y which 
uses 2 independent variables, hence -1 is an eigenvalue of C3 with 
multiplicity 2. 

 C3 G 
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For n = 0 mod 3, any hczsw of Cn is of the form x, -x, 0, x, -
x, … , 0,  x, -x, 0 where the triple x,-x, 0, is repeated n/3 
times. Thus, dimension of the null space of -1 is 1. If n ≠	0 
mod 3 then, there exist no non trivial hczsw for Cn, that is, 
the dimension of the null space of -1 is zero. 
 
 
 
 
 
Figure 3. A hczsw for a graph with null space of dimension 4 and a 

hczsw of C6. 
 

For the complete graph Kn, there exist only one hczsw that 
uses exactly n-1 independent variables namely, x1, x2, x3, …, 
xn-1, -x1-x2-x3-… - xn-1, this proves that the dimension of the 
null space of -1 of the complete graph Kn is n - 1. By 
Interlacing Theorem (adding or removing a vertex to a graph 
changes the dimension of the null space of any eigenvalue by 
at most one) So, if t isolated vertices are adjacent to distinct 
vertices of a complete graph Kn, where t ≤ n-1, to form a 
graph 𝐾$W. Then  
m-1 (𝐾$W)  == n-1-t. See Figure 3 where n = 4 and t = 2. 
 
 
 

 

Figure 4. hczsw for 𝐾X#. 
 
Proposition 3.5 The dimension of the nullspace of -1 as an 
eigenvalue of a complete bipartite graph Ka,b is: 
 
m-1 (Ka,b)  =I1																						𝑖𝑓										𝑎 = 𝑏 = 1

0																																	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	  
 
Proof. Any hczsw of Ka,b must satisfy: xi +∑𝑦[ = 0 and yj + 
∑𝑥* = 0, for i = 1, 2, … , a and j = 1, 2, … , b which gives x1 
= x2 = … = xa and y1 = y2 = … = yb. Then x1 = -ay1 and y1 = 
-bx1, thus x1 = bax1, hence ba = 1 that is a = b = 1. So, the 
dimension of the nullspace of -1 as an eigenvalue of a 
complete bipartite graph K1,1 is one and zero otherwise.                         
▭	
	
Existence of a triangle in a graph G is not a sufficient 
condition to have -1 as an eigenvalue, but if the graph G is of 
the form    C3 ● H, then -1 is an eigenvalue because of the 
czsw say x,-x,  0 of vertices of C3 where weight of the 
identified vertex is 0. This gives the prove of the next 
corollary. 
 
Corollary 3.6  For the graph C3 ● H we have: 

m-1 (C3 ● H)  ≤ m-1 (H) +1 
 

Now, given any number n it is easy to construct a tree T in 
which the dimension of the nullspace of -1 of T is n by using 
hczsws technique. To do this insert a new vertex to each edge 
of the star graph S1,2n, then the hczsw of this tree is 0; x1,-
x1;-x1; x1,  x2, -x2, -x2, x2, … , xn, -xn, -xn, xn, where 0 is the 
weight of the central vertex and other vertices, are 
alternatively positive 
and negative for each variable. 
 
 

4. VERTEX IDENTIFICATION 

The following results will be proved for a vertex identi_cation of 
two graphs G1 and G2 with rooted vertices v1 and v2. 
Definition 4.1  In a czsw of a graph G each vertex with non zero 
weight is called a -1 – core vertex, and the vector whose entries 
are weights of such czsw is called a -1 – core vector of G. 
Definition 4.2  In a hczsw of a graph G each vertex with zero 
weight is called a -1 – core forbidden vertex. 
 
So all vertices of a graph are either -1 -core or -1 - core forbidden 
vertices and these two types of vertices plays the main rule on the 
null spaces dimension of the eigenvalue -1 in the vertex 
identification graph G1 ● G2 of two graphs G1 and G2. 
 
Theorem 4.3  For any two graphs G1 and G2 with rooted vertices 
v1 and v2 we have: 
m-1 (G1)+m-1 (G2) - 2≤	m-1 (G1●G2) ≤ m-1 (G1)+m-1 (G2) +1 
 Equality holds in the left where G1 = G2 = triangle and on the 
right where G1 = G2 = triangle with a pendant. 
Proof. Let G1 and G2 be two graphs with rooted vertices v1 and 
v2 with hczsws X and Y . With out loss of generality, assume that 
w(v1) = x1 and w(v2) = y1 in the above hczsws. Let z be a hczsw 
of G1●G2 and z1 be the weight of the identified vertex v (v1 ≡v2). 
So, we have the following cases: 
1) If x1 = y1 = z1 = 0 then m-1(G1 ●	G2) = m-1(G1) + m-1 (G2)  or 
m-1(G1 ●	G2) = m-1(G1) + m-1(G2) + 1. 
2) If x1 = y1= 0 and z1 ≠	0 then m-1(G1 ●	G2) = m-1(G1) +  m-1 
(G2) + 1, because a new variable is introduced. 
3) If x1 ≠	0 and y1 = 0 or conversely and z1 = 0 then m-1(G1 ●	G2) 
= m-1(G1) + m-1 (G2) -1, because a variable is vanished. 
4) If x1≠	0 and y1 = 0 or conversely and z1 ≠	0 then m-1(G1 ●	G2) 
= m-1(G1) + m-1 (G2) .  
5) If x1 ≠	 0 and y1 ≠	0 and z1 = 0 then m-1(G1 ●	G2) =      m-1(G1) 
+ m-1 (G2)  -2, because 2 variables are vanished. 
6) If x1 ≠	 0 and y1 ≠	 0 and z1 ≠	 0 then m-1(G1 ●	G2) =    m-1(G1) 
+ m-1 (G2) -1, because 2 variables are replaced by one. But this 
case does not exist because of the hczsws of the new neighbors 
of the vertex identified and hczsws of olds one. To get such 
contradiction, assume that such z exist, then z = ax = by for some 
a and b where, x = w(v1) in G1 and y = w(v2) in G2. Then 
∑𝑤(𝑁(𝑣" ≡ 𝑣#))  in G1 ●	G2 must equal to zero that is ax + 
∑ 𝑤(𝑁(𝑣")	
_` ) + by + ∑ 𝑤(𝑁(𝑣#)	

_a ) = 0 which implies that x + 
∑ 𝑤(𝑁(𝑣")	
_` ) + (1-a)x + ∑ 𝑤(𝑁(𝑣#)	

_a ) = 0 which is 0+1-by+ 
∑ 𝑤(𝑁(𝑣#)	
_a  )= 0 therefore 1 - by - y = 0 thus 1 = (1 + b)y where 

is any variable, this is not possible. 
All cases are discussed and prove is complete.                  ▭ 
 
 
We conclude that vertex identi_cation of two -1 - core vertices 
cannot give a -1-core vertex. One can answer? does there exist 
graphs that satisfy the above 6 cases, the answer is illustrated by 
the next table.  

Table 1. Illustration of cases of Theorem 4.3 
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Theorem 4.4  For any tree T having at least 2 vertices, 
whose root is an end vertex v then, 

m-1(C3 ● T) ≥	m-1(T) 
strictly holds where T = P4n, and equality holds where T = P2  
Proof. Label the vertices of C3 as u1, u2, and u3 = v1( the root 
vertex) then,in any hczsw of C3 ● T put w(u1) = x and w(u2) 
= -x. If w(v1) = 0 then it is clear that when we remove u1 and 
u2 from the composite graph C3 ● T the variable x is removed 
so the number of independent variables in the hczsw is 
reduced by 1. If w(u3) = y, in the hczsw of T, then put w(u1) 
= x and w(u2) = -x-y. Again removing u1 and u2 from the 
composite graph    C3 ●T only the variable x is removed so 
the number of independent variables in the hczsw is again 
reduced by 1. Finally, -1 is not an eigenvalue for P4n, but a 
hczsw for C3●P4n that uses 2 variables, hence m-1(C3 ● P4n) 
= m-1(P4n) + 2 Also it is clear that m-1(C3 ● P2) = m-1(P2) = 1.                                     
▭ 
Theorem 4.5  For any connected graph G having at least 2 
vertices, with rooted vertex v, then 
m-1(P4n ● G) = m-1(G) 
where the root vertex of P4n is one of its end vertices. 
Proof. Label the vertices of P4n as u1,1, u1,2, u1,3, u1,4, u2,1, u2,2, 
u2,3, u2,4 , ... , un,1, un,2, un,3, un,4 = v( the root vertex) then, in 
any hczsw of P4n ●G, if w(un,4) = x, the vertices of P4n will be 
weighted as x, -x, 0, x, -x, 0, x, -x, 0, x so, it is clear that when 
we remove u1,1, u1,2, u1,3, u1,4, u2,1, u2,2, u2,3, u2,4, ... , un,1, un,2, 
un,3 from the composite graph P4n ●G the variable x(or -x) is 
not removed so the number of independent variables in the 
hczsw remains the same. If w(un,4) = 0, in the hczsw of G, the 
vertices 
of P4n will be weighted as 0, 0, ... ,  0, Again removing the 
above vertices from the composite graph P4n ● G no variable 
will be removed or increased so the number of independent 
variables in the hczsw again remains the same.                       ▭ 
 
As a usual question, one can ask: given any number k does 
there exist a graph or a tree or under a limited diameter for 
which the null spaces dimension of of  -1 is k. So, the 
following cases are easily constructed: 
1) The complete graph with order n = k + 1 is such a graph 
of diameter 1. 
2) The vertex identification of the central vertices of k 
copies of P5 is such a graph ( tree with diameter 4). 
3) The vertex identification of the central vertices of k 
copies P5+6t, t = 1, 2, 3 , ...  is such a graph ( tree with 
diameter 4 + 6t). 
4) The vertex identification of the (third) vertices of k 
copies of P8 is such a graph ( tree with diameter 10). 
5) The vertex identification of the (third) vertices of k 
copies P8+6t, t = 1, 2,3, ...  is such a graph ( tree with 
diameter 12t + 10). 
 
A Fan graph F with n arms is de_ned to be the graph 
obtained from identifying a vertex of n copies of C3, then  
|F| = 2n + 1 with dimension of -1 to be n, not a tree, 
connected graph with minimum diameter 2. Also, consider 
the generalized Fan graph F*, with a, b and c arms (Where 
at least non two of them are zero), which is also a connected 
graph with diameter 3 and m-1(F*) = a + b + c. 
 
 
 
 
 
 
 
 
 
Figure 5. hczsw of the Fan graph F and generalized Fan graphs F* 

5. NULL SPACES DIMENSION OF -1 IN THE CORONA 
PRODUCT OF TWO GRAPHS 

In this section, we determine the dimension of the null space of 
-1 as an eigenvalue in the corona product of two graphs. 
 
Proposition 5.1  For paths Pn, n > 0 and Pt, t > 0 we have: 

m-1(PtOPn)=b

𝑡 + 1						𝑖𝑓						𝑛 = 	2	𝑚𝑜𝑑	3	𝑎𝑛𝑑	𝑡	𝑖𝑠	𝑜𝑑𝑑
𝑡													𝑖𝑓						𝑛 = 	2	𝑚𝑜𝑑	3	𝑎𝑛𝑑	𝑡	𝑖𝑠	𝑒𝑣𝑒𝑛			
1									𝑖𝑓											𝑛 ≠ 2	𝑚𝑜𝑑	3	𝑎𝑛𝑑	𝑡	𝑖𝑠	𝑜𝑑𝑑
0									𝑖𝑓									𝑛 ≠ 2	𝑚𝑜𝑑	3	𝑎𝑛𝑑	𝑡	𝑖𝑠	𝑒𝑣𝑒𝑛	

 

Proof. Label the vertices of the graph PtOPn as v1,1, v1,2, ... , 
v1,n,v2,1, v2,2, ... , v2,n, vt,1, vt,2,... , vt,n  and of Pt as u1, u2, ...  ut. For 
n = 2 mod 3 and t is odd the vertices of the ith copy of Pn are 
weighted xji, -xji - y, 0, xji, -xji - y, 0, ... ,  xji, -xji - y where w(uj) 
= y, while the vertices of Pn are labeled y, 0, -y, 0, ... , +y or -y. 
Hence, there exist t + 1 independent 
variables in a hczsw of Pt O Pn. 
If t is even then, y = 0 and the number of independent variables 
is reduced to t. For n ≠2 mod 3 and t is odd each xi = 0 and the 
number of independent variables is reduced to 1, while if n ≠2 
mod 3 and t is even each xi = 0 and y = 0, then the number of 
independent variables is reduced to 0. 
 
Proposition 5.2  For any cycle Cn  and path Pt then: 

m-1(PtOCn)=b

2𝑡 + 1				𝑖𝑓																			𝑛 = 		3	𝑎𝑛𝑑	𝑡	𝑖𝑠	𝑜𝑑𝑑				
2𝑡						𝑖𝑓														𝑛 = 	3		𝑎𝑛𝑑	𝑡	𝑖𝑠	𝑒𝑣𝑒𝑛			
𝑡									𝑖𝑓											𝑛 > 3	𝑎𝑛𝑑	𝑛 = 0	𝑚𝑜𝑑	3
0									𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																												

 

 
Proof.  Label the vertices of the graph PtOCn as v1,1, v1,2, ..., v1,n, 
v2,1, v2,2, ... , v2,n, ... , vt,1, vt,2, ... , vt,n  and of Pt as u1, u2, ... ,  ut. 
For n = 3 and t is odd the vertex weighting of PtOC3 is x1,1, x2,1, -
x1,1 - x2,1 - y, x1,2, x2,2, -x1,2 -x2,2, x1,3, x2,3, -x1,3 -x2,3 +y, ... , x1,i, x2,i, 
-x1,i -x2,i -y (or +y), ... , x1,t, x2,t, -x1,t - x2,t - y (or +y), while the 
vertices of Pn are weighted by, y, 0, �y, 0, : : :, +y (or �y). That 
is the vertex uj is weighted by, y if, i = 1 mod 3 or 0 if i = 2 mod 
3 or -y if i = 0 mod 3, respectively. Hence, there exist 2t + 1 
independent variables in a hczsw of PtOC3. 
If n = 3 and t is even then the variable y is vanished. If n > 3 and 
n = 0 mod 3 then y will vanish and x2,i = -x1,i so another t variables 
will vanish. If n ≠	0 mod 3 then there exist no non trivial hczsw 
for PtOCn and in this case m-1(PtOCn) = 0. 
 
Proposition 5.3  For any complete graph Kn: 

m-1 (Pt O Kn)  =F
(𝑛 − 1)𝑡 + 1										𝑖𝑓							𝑡	𝑖𝑠	𝑜𝑑𝑑						
(𝑛 − 1)𝑡													𝑖𝑓									𝑡	𝑖𝑠	𝑒𝑣𝑒𝑛  

Proof. It is an extension of the prove of the first part of 
Proposition 5.1. 

6. CONSTRUCTING -1-NUT GRAPHS 

 
In this section, two classes of -1-nut graphs are constructed in the 
manner of nut graphs defined by (Sciriha, 2007) 
Definition 6.1  A graph G is said to be a -1 - nut graph if -1 is an 
eigenvalue of G with multiplicity 1 such that every vertex of G 
has a non zero weight in its hczsw. 
Thus, if G is a -1 - nut graph then there exist only one core vector 
inthe null space of the matrix A(G) + I whose size is n. 
 
Proposition 6.2  The graph CnO𝐾eC  is a -1-nut graph for each n, 
n > 2. 
Proof. For each n the graph CnOKeg    is a semi-regular graph with 
degree set {1,5} and order 4n. There is only a unique hczsw for 
this graph which uses only one variable say x, where x is the 
weight of each vertex of degree 5 and -x is the weight of each 
vertex of degree one. Thus, the graph CnOKeg   is a               -1 - 
nut graph.                                                                            ▭ 
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Proposition 6.3  The graph CnO𝐾$C is a -1-nut graph for each 
n, n > 0. 
Proof. For each n the graph CnOKeg   is a semi-regular graph 
with degree set {1, 2n – 1} and order n2 + n. There is only a 
unique hczsw for this graph which uses only one variable say 
x, where x is the weight of each vertex of degree 2n - 1 and -
x is the weight of each vertex of degree one. Thus, the graph 
CnO Keg  is a-1-nutgraph.                                                                      ▭ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Two classes of -1 - nut graphs. 
 
So, the order of the smallest nut graph is 2 and out of non 
trees  -1-nut graphs, the minimum order is 12. 
Moreover, the only -1-nut graphs which are tree are namely 
P2 and K1,3O P3 mentioned in the above table. 

Also it is clear that, the vertex identification of any two -1 - nut 
graphs is not a -1 - nut graph. 
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