

journals.uoz.edu.krd

Available online at sjuoz.uoz.edu.krd

Vol. 7, No. 3, pp. 95–100, September.-2019

p-ISSN: 2663-628X
e-ISSN: 2663-6298

 95

DESIGN AND IMPLEMENTATION OF E-CAMPUS ONTOLOGY WITH A HYBRID
SOFTWARE ENGINEERING METHODOLOGY

Karwan Jacksi*

Department of Computer Science, Faculty of Science, University of Zakho, Zakho, Kurdistan Region, Iraq -
karwan.jacksi@uoz.edu.krd

Received: Jul, 2019 / Accepted: Sept., 2019 / Published: Sept.,2019 https://doi.org/10.25271/sjuoz.2019.7.3.613

ABSTRACT:
Semantic Web according to the vision of the W3C is the future of WWW (or Web). It is an extension of the current Web through
standards by the W3C. Data of the Semantic Web has well-defined meanings, can be understood by devices and allows machines
and people to work in collaboration. Ontologies are vital components of the Semantic Web infrastructure and are more often
recognized as the backbone of the Semantic Web. Although numerous developments occur in the field of developing ontologies
along the lines with the Semantic Web implementation, but standardizing the process models, tools and methodologies need to be
improved in the future. In literature, experts in ontology engineering have stated that setting a methodology for developing ontology
applications with support of integrated tools is an essential task for ontology engineering to be succeeded. In this paper, an e-
campus ontology for educational purposes is designed and implemented, and mainly focused on the learning hierarchy of C-sharp
programming language. A hybrid methodology based on software engineering approaches for developing ontologies is presented.
Finally, the developed methodology is applied on the implemented ontology.

KEYWORDS: e-Campus, e-Campus Ontology, C#, C-Sharp Programming, Methodology, Software Engineering, Semantic
Web, Ontology Engineering.

1. INTRODUCTION

The Semantic Web (SW) aim at providing information as
formal, well defined meanings, compatible, sharable
knowledge base, and can be processed by machines (Jacksi,
Zeebaree, and Dimililer 2018). Ontology acts an important
role in the SW technology as it’s famous as of the backbone
of the SW structure, and is the vital element of SW
infrastructure (Jacksi, Dimililer, and Zeebaree 2015). Web
Ontology Language (OWL) and Resource Description
Framework-Schema (RDFS) are the recommendations of the
World Wide Web Consortium (W3C) for data representation
models so as to deliver foundations for the ontology
descriptions (Jacksi, Dimililer, and Zeebaree 2016).
Ontology is a collection of semantically related concepts
built on a limited number of predefined relations and terms
of a domain. These terms and concepts can be represented
visually so as to ease the representation for both syntactic and
semantic data (Fensel 2002). Ontologies provide distinct
descriptions in their information, as a result, they are used in
numerous fields and applications since its knowledge
representation is understandable and processable by software
agents and systems (AL-Zebari et al. 2019).
In Web, once abstract data is distributed across several
knowledge bases, ontologies are the solely resolution as
commonplaces to interpret the mutual senses of the domain
key terms. Hence, significant concerns seek the development
of ontologies. Several reasons make the mission of
developing ontologies a challenge, unavailability of
standardized methodologies with support of integrated tools
is the most common reason (Akerman and Tyree 2006).
So far, there is no unified approach for formal representation
of information on the Web according to the Software
Engineering aspects (Abbas 2016). However, it is clear by

This is an open access under a CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/)

some means that some overlaps still occur between fields of
software engineering and recognized works in systems, and some
of the new schemes accept distinction in hybrid approaches to
developing systems merging the technologies of Semantic Web
with the methods of well-known development formality and
standardized modeling languages like Unified Modeling
Language (UML) (Bhatia, Kumar, and Beniwal 2016; Happel
and Seedorf 2006).
The previous literature indicates that the results of well-
established methodologies and their support of modeling
languages and standards for specifying software-intensive
systems, prepared the maturity of Software Engineering. Despite
deploying a lot of techniques and methodologies for ontology
engineering, but still there is a gap between ontology engineering
and software engineering, because there is no unique standard
method to model a domain, subsequently no unique standard
methodology to develop ontologies, even though ontology
engineering has similar characteristics with software engineering
(Kim and Choi 2007). Henceforth, developing a standardized
methodology with support of integrated tool for domain
modeling will build a major distinction in bridging such gap
(Gaševic, Djuric, and Devedžic 2006).
In this work, electronic campus ontology for educational
purposes for the University of Zakho (UoZ) has been created. It
is built using Protégé, which is a free, most popular tool and open
source ontology editor developed at Stanford University. Protégé
supports the ability to integrate new tools and utilities which
makes developing ontologies easier. Then the focus went mainly
on the learning part of the ontology where the C# (pronounced C
sharp) programming language is taught.
The rest of this paper is organized as follows. Related works is
presented in section 2 to study the topic background, section 3
discusses the engineering approaches of the proposed
methodology. Section 4, presents the application of the proposed

K. Jacksi / Science Journal of University of Zakho 7(3), 95-100, September-2019

 96

methodology applied on the built ontology. Finally,
suggestions and feature works are concluded in section 5.

2. RELATED WORKS

In order to develop an ontology in educational domain,
research works have suggested many approaches. A C-
programing ontology has been developed by (Sosnovsky and
Gavrilova 2006) for educational purposes for designing a
visual ontology. In their development they followed by a
five-step algorithm. In the ontology development, the
visualization technique effects on both analyzing and
synthesizing processes. Later on, an ontology for Java
language has been developed using the same five-step
algorithm as well (Ganapathi, Lourdusamy, and Rajaram
2011). There are five main phases as a core of the proposed
method: "Glossary development, Laddering, Disintegration,
Categorization, and Refinement". Most of the published
works were focusing on the knowledge structuring during the
ontology design, because it is more appropriate to be applied
in teaching systems where the user can understand it much
more than factual details. In (Lee, Ye, and Wang 2005) an
ontology of a Java Learning Object (JLOO) has been
presented in a framework, where this ontology has been used
to organize and develop the learning objects in a pre-course
for Java language in a learning system. The computing
curriculum CC2001/ACM and IEEE/CS were used in the
JLOO ontology. During the ontology development, JLOO
followed an oriented model.
Santhosh John in his work (John 2010) emphasized the
importance of having a standardized approach with the
support of the integrated tool. The modeling languages such
as UML and other established designs should get benefit
from ontology engineering and software engineering. IBM
China Research Lab has developed the Eclipse Modeling
Framework (EMF) using ontology engineering and ontology
identification model, which facilitates the conversion of
models (Pan et al. 2006).

3. PROPOSED METHODOLOGY

The main aim of this work is to fill the existing gap between
software engineering and otology engineering through the
impact of well-proven way and method models of software
engineering field for the development of ontologies. The two
aspects such as engineering and philosophy of the proposed
methodology were taken from available standards. The two
well-proven software process models: Rational Unified
Process (RUP) (MacIsaac 2003), and traditional, linear,
waterfall approach derived the proposed methodology.
The stages of methodology development of the proposed
ontology include lifecycle proposed through Methontology
(Corcho, Fernández-López, and Gómez-Pérez 2006), a
designed methodology for ontology manufacturing by the
FIPA (Foundation of Intelligent Physical Agents), which
advocates inter-operability over agent-based
implementations. The value of Methontology engineering
eturns back to the medium exemplification with regard to
various models like stipulation semi-formal-model
specification utilizing a group of medium exemplification,
imaginary model and characterize model (e.g., description
logic ontology UML profile) that is going to be executed in
an ontology application language (e.g., OWL).
There are three stages of the proposed methodology; pre-
development, development and post-development. The first
stage, pre-development, is related to the feasibility work of
ontology field which contains evaluating the range of the
field including all details. The second stage, development; its
main aim is to produce the fundamental model of the
platform. Finally, in the last stage, post-development, the

application model definition is built. Each of these stages
receives a certain product with the general aim of originating
functional ingredients in accordance with ontology that can be
utilized in various systems.
The last structure of the designed methodology suits the different
phases of ontology development into the stages of a gradual,
iterative, and constant process of methodology development,
Rational Unified Process (RUP). This leads to supply rigorous
approach to attributing responsibilities and duties within a
development group. The RUP catches a lot of the finest exercise
in updated software improvement in a way that is appropriate for
the development of ontology as well. All stages of proposed
developing ontology methodology in conjunction with their
phases are suited into the four phases of RUP development:
inception, elaboration, construction, and transition; and it shows
how the workflows are integrated into these phases.
The primary aim of the inception stage is to fulfill agreement
among the interested parties on life-cycle goals for the plan and
identify the study feasibility. The goal of the elaboration stage is
to investigate the domain issue, set up a strong architectural base,
improve the plan of the project, and remove the factors of
substantial risks of the project. Throughout the construction
stage, almost all ingredients and implementation characteristics
are improved and incorporated to the outcome, as well as all
characteristics are completely checked. All these aims and
objectives are assigned in better shape to ontology definition
stage. Lastly, the ontology application is identified towards the
transition stage. Figure 1 explains the final structure of the
proposed methodology.

Figure 1. Structure of the Proposed Methodology.

4. METHODOLOGY IMPLEMENTATION

In order to implement the proposed methodology, the educational
domain has been chosen, where the reusability of knowledge is
important. The increasing volume of electronic and E-learning
systems in the educational module have a duty to care the import
and export of information and it should be in a standardized way.
It is important to use the ontology as a basic foundation for
information that will allow a different language to deal with each
other in the same language. As mentioned earlier in this paper the
ontology that is presented is the University of Zakho (UoZ)
ontology which includes a wide range of classes and properties
for educations purposes. A part of the ontology is visualized
using the OntoGraf plugin of the Protégé as shown in Figure 2.
General structure of the developed ontology is shown in Figure

K. Jacksi / Science Journal of University of Zakho 7(3), 95-100, September-2019

 97

3. The ontology has courses inside and one of the courses, C#
programming, is taken to apply the proposed methodology.
The main reason for taking the C# language part of the
ontology is related to attempts by the industry language to
create more effective strategies that is related to learning by
combining many perspectives in the domain. The OWL of
the C# programming course can be seen in Figure 4.

Figure 2. Ontology Visualization using OntoGraf

Nowadays, many instructors introduce the C# programming
based on different aspects and parameters, such as the
selection and arrangements of the topics. Although the
presented materials depend on the teacher arrangement, and
the hierarchical structure is not ignored. Below are the stages
of the proposed methodology according to the domain that
has been chosen:

4.1 Feasibility Study
In this stage, the C# programming part of ontology focuses
on C# course, which is the C# 7.3. that was released in 2018
alongside Visual Studio 2017 version 15.7.2 (Visual Studio
2017 15.7 Release Notes | Microsoft Docs 2017). This part
of ontology is derived for the C# learning domain, which
takes into account the C# approach to programming
variances.

Figure 3. General Structure of the Implemented Ontology

The feasibility of the ontology as whole, as shown in Figure 2 is
very high, the C# programing fraction can later be integrated with
Moodle, the used e-learning system at the UoZ, after evaluation.
The developed ontology is classified as shown in Figure 5. The
taken part of the ontology, C# programming language, with it is
relations such as faculty, instructor, and the department that
offers, are shown in Figure 6. In the developed ontology, the
word C_Sharp is taken instead of C# because the ontology editor
tool assumes the character (#) as an illegal character.

Figure 4. C# Programming Course as OWL

K. Jacksi / Science Journal of University of Zakho 7(3), 95-100, September-2019

 98

Figure 5. Classification of the Developed Ontology

Figure 6. C# Programming Course Relations

4.2 Gaining Domain Glossary
In the development stage of the ontology, the classes of the
C# programming class will be taken from the vocabulary/
glossary of the domain. The materials of the ontology and the
domain glossary are taken from different resources such as:
introduction to programming, Object Oriented Programming
(OOP), distributed programming with C#, and data structures
and algorithms, from Computer Science Department at the
UoZ, IT Department at Zakho Technical Institute, Text books
and online resources. The main taxonomies and concepts
used for the first edition of the C# programming are:
Development and Implementation, Tokens, Data Models,
and Control Structure as shown in Figure 7.

Figure 7. Taxonomy of C# Language Concepts

4.3 Concepts and Properties Catalog
A number of concepts and properties are produced in this
stage of the ontology. Also, the semantic translation of the
concepts is achieved in this stage. The shared vocabulary
attained in this stage by assigning the property and properties

value. To model this part of the ontology, Protégé 5.5 has been
used, a snapshot of the tool is shown in Figure 10. The general
Ontology structure based on the concepts derived is shown in
Figure 3. The subclass structure of the class C# programming and
the suitable properties is made and classified based on the four
main concepts or classes shown in Figure 7. The rest of the
subclasses for C# class are then generated as shown in Figure 8.

Figure 8. Binary Relationship on Control Structure Concept

Figure 9. Binary Relationship on Complex Structure Concept

4.4 Glossary Classification and Mutual Relationship
The main idea behind this stage is the structure concept. The
classification of the main concepts is delivered in this stage. The
followed approach is the Top-Down where the start of the
procedure from the most general concepts and subsequent of the
concepts. As shown in Figure 7 the version of the classification
of concept C# language. The classes of the ontology will be
organized in a hierarchical form, if any individual in class A,
which is a superclass of B, this means that the individual in B is
also an individual in A. The concepts that are belonging to the C#
language are shown in Figure 7, Figure 8 and Figure 9, which are:
Data Model, Control Structure, Development and
Implementation, and Tokens. The developed ontology
(UoZ_Ontology) up to the date of submission of this paper can
be found online (http://karwanjacksi.net/uoz_ontology).

4.5 Concepts Internal Descriptions
In this stage of the ontology, the concept attributes and
relationships are described for the concepts. The class will attach
these properties. The relationships between the members of the
individual of each class with other items will be included in this
phase. The property value of the superclass C# assigned to the
object property assertion "Karwan_Jacksi" is shown in Figure 11.
Where Data property and Object property are indicated. The
other task of this phase is the number of features of value are
described such as the type, number of value and others. For
instance, the name should be set it as string and the type of the
value string as well. Each individual can have more than one
values of the class as shown in Figure 11.

 99

Figure 10: Protégé with property values and complex restrictions and rules

Figure 11: Superclass to Object Property Assertion

4.6 Glossary-Data Binding
Creating the individuals and instances of the classes is the last
step. In order to create an individual for each classes in the
ontology, first the developer should choose the specific class
to add the individual to that class; second, give a value/data
to each instances such as (string, time, data…etc.) as
mentioned at the previous stage. At this point, the word or the
glossary is certainly associated with its actual data.

5. CONCLUSIONS AND FUTURE WORK

In this paper, a hybrid methodology for
developing ontologies is proposed based on the
well proven software engineering concepts. An
extensive e-campus ontology for the University of
Zakho (UoZ) is created that include the e-learning
part as well. The proposed methodology has been
applied on the developed ontology and focused
mainly on the part which is concerning the
learning of the course C# programming. The

developed ontology provides a dense hierarchical structure of e-
campus and includes the topics for C# programming which can
be used for teaching and learning. The implemented ontology can
be integrated with any e-learning systems, and it can be reused
for educational organizations where the e-campus can be applied.
The visualization of the classes and concepts are made using the
OntoGraf plugin within the Protégé.
In future work, the ontology will be integrated with the electronic
systems available at the UoZ, and specially with the available e-
learning management system (Moodle). Other future work is to
add enhancements to the developed ontology by adding Semantic
Web Rule Language (SWRL).

REFERENCES

Abbas, Muhammad Aun. 2016. “A Unified Approach for Dealing with
Ontology Mappings and Their Defects.”

Akerman, Art, and Jeff Tyree. 2006. “Using Ontology to Support
Development of Software Architectures.” IBM Systems
Journal 45(4): 813–25.

AL-Zebari, Adel, Subhi R. M. Zeebaree, Karwan Jacksi, and Ali Selamat.
2019. “ELMS–DPU Ontology Visualization with Protégé
VOWL and Web VOWL.” Journal of Advanced Research in
Dynamic and Control Systems Volume 11(01-Special Issue):
478–85.

Bhatia, MPS, Akshi Kumar, and Rohit Beniwal. 2016. “Ontologies for
Software Engineering: Past, Present and Future.” Indian
Journal of Science and Technology 9(9): 1–16.

Corcho, Oscar, Mariano Fernández-López, and Asunción Gómez-Pérez.
2006. “Ontological Engineering: Principles, Methods, Tools
and Languages.” In Ontologies for Software Engineering and
Software Technology, Springer, 1–48.

Fensel, Dieter. 2002. “Ontology-Based Knowledge Management.”
Computer 35(11): 56–59.

Ganapathi, Gopinath, Ravi Lourdusamy, and Veeraraghavan Rajaram.
2011. “Towards Ontology Development for Teaching
Programming Language.”

Gaševic, Dragan, Dragan Djuric, and Vladan Devedžic. 2006. Model
Driven Architecture and Ontology Development. Springer
Science & Business Media.

Happel, Hans-Jörg, and Stefan Seedorf. 2006. “Applications of
Ontologies in Software Engineering.” In Citeseer, 5–9.

Jacksi, Karwan, Nazife Dimililer, and Subhi R. M. Zeebaree. 2015. “A
Survey of Exploratory Search Systems Based on LOD
Resources.” In PROCEEDINGS OF THE 5TH
INTERNATIONAL CONFERENCE ON COMPUTING &
INFORMATICS, Proceedings of the International Conference

K. Jacksi / Science Journal of University of Zakho 7(3), 95-100, September-2019

 100

on Computing & Informatics, ed. Jamaludin, Z and
ChePa, N and Ishak, WHW and Zaibon, SB. COLL
ARTS & SCI, INFOR TECHNOL BLDG, SINTOK,
KEDAH 06010, MALAYSIA: UNIV UTARI
MALAYSIA-UUM, 501–9.

Jacksi, Karwan, Nazife Dimililer, and Subhi RM Zeebaree. 2016.
“State of the Art Exploration Systems for Linked Data: A
Review.” International Journal of Advanced Computer
Science and Applications (IJACSA) 7(11): 155–64.

Jacksi, Karwan, Subhi R. M. Zeebaree, and Nazife Dimililer. 2018.
“LOD Explorer: Presenting the Web of Data.”
International Journal of Advanced Computer Science
and Applications (IJACSA) 9(1).
http://thesai.org/Publications/ViewPaper?Volume=9&Is
sue=1&Code=IJACSA&SerialNo=7 (February 5, 2018).

John, Santhosh. 2010. “Leveraging Traditional Software Engineering
Tools to Ontology Engineering under a New Methodology.”
In IEEE, 1–5.

Kim, Jeong Ah, and Seung Young Choi. 2007. “Evaluation of Ontology
Development Methodology with CMM-i.” In IEEE, 823–27.

Lee, Ming-Che, Ding Yen Ye, and Tzone I Wang. 2005. “Java Learning
Object Ontology.” In IEEE, 538–42.

MacIsaac, Bruce. 2003. “An Overview of the RUP as a Process
Engineering Platform.” In , 26–30.

Pan, Yue et al. 2006. “Model-Driven Ontology Engineering.” In Journal
on Data Semantics VII, Springer, 57–78.

Sosnovsky, Sergey, and Tatiana Gavrilova. 2006. “Development of
Educational Ontology for C-Programming.”

“Visual Studio 2017 15.7 Release Notes | Microsoft Docs.” 2017.
https://docs.microsoft.com/en-
us/visualstudio/releasenotes/vs2017-relnotes-v15.7 (July 20,
2019).

