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ABSTRACT: 
This paper presents a system for recognizing English fonts from character images. The distance profile is the feature 
of choice used in this paper. The system extracts a vector of 106 features and feeds it into a support vector machine 
(SVM) classifier with a radial basis function (RBF) kernel. The experiment is divided into three phases. In the first 
phase, the system trains the SVM with different Gamma and C parameters. In the second phase, the validation phase, 
we validate and select the pair of Gamma and C values that yield the best recognition rates. In the final phase, the 
testing phase, the images are tested and the recognition rate is reported. Experimental results based on 27,620 
characters glyph images from three English fonts show a 94.82% overall recognition rate. 

KEYWORDS: distance profile features, support vector machines, English font recognition, character font classification, optical 
font recognition. 

1. INTRODUCTION 

Optical character recognition (OCR) is used to convert text 
image into a text document suitable for searching and editing. 
However, OCR is not able to retrieve typographical properties 
(i.e. font information) and at the same time, its job is more 
difficult because of the variation of typographical attributes of 
printed texts. A font is a graphical representation of text. 
Optical font recognition (OFR) is one of the primary functions 
in document recognition and analysis which aims at recovering 
typographical attributes of printed text (Doermann, & Tombre, 
2014). When OFR used as a pre-processing step before OCR, 
it has a substantial impact on the optical character recognition 
accuracy rate. OFR can also be used as a post-processing step 
to support creating a document that looks like the original 
document in terms of text shape and font. For document 
reconstruction, font information can be used. An OCR and 
OFR systems together will help in recreating digital documents 
that have search ability while visually resemble the original. 
In general, font recognition systems can be of two types in 
terms of data entry levels: single-level and multiple levels. 
Where in single-level the image will be in four kinds: (text 
block, text line, word or character) level; only one of the four 
levels is used in the system. Text block-level can be called in 
other names like text page, or multiple lines of text. On the 
other hand, in multiple levels the image could be in two or more 
levels; such as a block of text with word level. Knowledge of 
the font may be useful for identifying its logical label, such as 
chapter title, section title, and paragraph (Al-Khaffaf, & Musa, 
2018). 
In this work, support vector machines (SVMs) and distance 
profile features (DP) are going to be used for character level 
font recognition of the English language. This work differs 
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from others in three areas. First, we used a larger feature vector 
to grasp more detail of each font compared to the study of 
(Bharath, & Rani, 2017). Second, we performed a validation 
operation to reveal the proper model parameters’ values to be 
used in the recognition phase. Third, we performed 
normalization of data. As will be shown in the next sections, 
the first and third points mentioned above raise the recognition 
rate of the proposed system while the second point raises 
confidence about the results. Figure 1 shows a diagram of the 
system. Solid-line shapes are only used during the training 
phase. Dashed- and solid-line boxes are used during validation 
and testing.  
In the next section, related works are presented. In section 3, 
the algorithms that are used in the methodology are presented. 
The dataset that has been used in this paper is explained in 
section 4. In section 5, the classification algorithm is illustrated. 
In section 6, the results of applying SVM are shown. Finally, 
conclusions are presented in section 7. 

2. RELATED WORKS 

Many studies have been published on font recognition. In 
(Hajiannezhad, & Mozaffari, 2012) the authors presented a 
method based on a directional fractal dimension, for 
recognizing font of three languages (Farsi, Arabic, and 
English) text images. It considers the extracted features are 
independent of document content. In the feature extraction 
step, the Variogram method was used which is a directional 
fractal dimension method that is an area of fractal geometry. 
Each sample is expressed by a 6D feature vector. The system 
can recognize 10 different fonts for each of Arabic and Farsi, 
and 8 fonts for the English language. For Arabic and English, 
ALPH-REGIM datasets were used and for Farsi, they created 
their own dataset. The RBF and k-nearest neighborhood 
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classifier (KNN) are used to classify the font. The average 
recognition rates using RBF, and KNN classifiers are 
respectively 95.5%, 96% for Farsi fonts, and 96.9%, 98.84% 
for Arabic fonts, and 98.21%, 99.6% for English fonts. 
The system developed by Bharath and Rani in (Bharath, & 
Rani, 2017) has three steps; in the first step, the system reads a 
character image and pre-processes it. In the second step, 
distance profile features are computed. In total, 74 features per 
character image are generated. In the last step, a support vector 
machine (SVM) and k nearest neighbors (KNN) are used for 
classification. Five different font styles are tested, and the 
system achieves approximately 80% average accuracy using 
SVM and 75% using KNN. 
In 2017, Jaiem, Slimane, and Kherallah presented a font 
recognition system based on steerable pyramids called Arabic 
font recognition steerable pyramids (AFR/SP) (Jaiem, 2017). 
The system uses three levels of text entity analysis: word, line 
and text block. In feature extraction, steerable pyramids and 
two statistical variables (standard deviation and mean) are 
used. This study used two databases, Arabic Printed Text 
Image Database / Multi-Font (APTID/MF) and Arabic Printed 
Text Image (APTI) with different resolutions. In the 
classification phase, the BPANN is used. The experimental 
results for high-resolution text block samples show high 
recognition rates of approximately 99% and 93% for low-
resolution; for text line and word levels in low-resolution, the 
recognition rates are 90.67% and 78.98% respectively. 

 
Figure 1. Diagram of the proposed system. 

 
Tensmeyer, Saunders, and Martinez presented a system that 
classifies font of two levels: text line and text page by using 
Convolutional Neural Networks (CNNs) framework 
(Tensmeyer, 2017). For line level, King Fahd University 
Arabic Font Database (KAFD) datasets used to recognize 40 
Arabic fonts; while for page level, two datasets are used KAFD 
and Latin Medival Manuscripts (CLaMM) database that 
classifies 12 English scripts. The author splits the dataset into 
three sets: training, validation and testing set; which helps to 
choose the most accurate model. For comparison purposes, the 
authors used two CNN architectures: AlexNet architecture that 
has five convolution layers, and the state-of-the-art ResNet-50. 
In the training, two models for each of ResNets and AlexNet 
created from KAFD database on line-level and the page level; 
while in CLaMM database one model for each of both 
architectures created. In the validation, ResNets architecture 

had better performance for both datasets. In the testing, the 
recognition rate for line-level was better than page level of 
98.8%, while page-level obtained 86.6%.  
(Bui, 2015) developed a system that extracts Gradient 
orientation features for boundaries of the character image to 
recognize its font. The authors obtained a bounding box of 
character images via a series of morphological filtering and 
thresholding operations. They started by scaling the image. 
From the edges of the character, a chain code sets are created. 
Next, a histogram of oriented gradient (HOG) descriptors set 
are extracted of size 3×3. By using 8 bins quantization level, 
frequency histograms of gradient orientation are calculated and 
normalized to get 72-dimensional HOG descriptor. For each 
character, about 30-40 descriptors are obtained. Hierarchical k-
means clustering on a random sub-sample of 10% of the HOG 
descriptors which yields quantizing centers of k cluster 
performed. Then, a hard-assignment Bag of Visual Words 
(BoVW) is applied. KNN used to assign each descriptor to k 
codewords (cluster canter). For each character in training, a 
frequency histogram is calculated by computing the 
codewords. Finally, Stop-words are specified. A dataset of 
1000 Latin fonts, that consists of 5 samples for each of the 
capital letters (A-Z) only. The authors collected 4 million HOG 
descriptors. In the classification logistic regression (LR) with 
multi-class is used and a one-vs-all combination strategy. The 
accuracy of recognition 93.4% achieved. 

3. METHODOLOGY 

3.1 PREPROCESSING AND FEATURE 
EXTRACTION 

During the pre-processing, the image is prepared for the feature 
extraction step. The pre-processing step is very important 
because it reduces data and removes noise. All samples of the 
dataset are degraded PNG images of the size (102×102). Each 
image is shrunk by 50% in both directions to (51×51) to 
minimize processing time. The shrink ratio is selected as 50% 
to keep the image dimension linearly proportional to the 
original in order to reduce further degradation of image quality. 
Next, pixel values are converted to binary with a value of 0 or 
255, where black pixels are represented as a value of 0 and 
white background pixels are represented as a value of 255. 
Then, noise is removed using a median filter with a mask of 
size 5*5. Figure 2 shows an example result of pre-processing 
operations. 

 

          
           (a)                   (b)                (c)   (d) 

 
Figure 2. Results of pre-processing step. (a) Sample image. 

(b) Shrinked image. (c) Conversion to binary. (d) Noise 
removed. 

 
After the pre-processing step, the image is fed to the next step, 
which is feature extraction, where 106 distance profile features 
are extracted; these features consist of the left distance profile 
(LDP) of 51 features, right distance profile (RDP) of 51 
features, top left corner (TLD), top right corner (TRD), bottom 
left corner (BLD), and bottom right corner (BRD). Then, these 
features are normalized before the training phase.  
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3.1.1 Left Distance Profile Features (LDPs) and Right 
Distance Profile Features (RDPs) 
The left distance profile feature is computed by finding the 
distance between the first column of the input character image 
and the first outer border pixel (Bharath, & Rani, 2017). For 
each row in the image, the number of white pixels is computed 
until the first black pixel appears; then, it goes to the next row, 
and the same process is performed on each row from left to 
right. Equation 1 shows how to compute the left distance 
profile features (see Figure 3(a)). The feature vector is of size 
51 because each image has 51 rows. 

 
LDP(i)= ∑ 𝑃(𝑖, 𝑗)!"#

$%&    (1) 
 

where LDP(i) is the ith left distance profile feature, P(i,j) is the 
background pixel intensity, while i, j are row and column 
number respectively, and n is the value of the first foreground 
pixel. 
For the right distance profile, a similar process is performed, 
but this time, it moves from the right to the left outer border 
pixel. Equation 2 shows how to compute the left distance 
profile features (see Figure 3(b)). 

 
 RDP(i)= ∑ 𝑃(𝑖, 𝑗)!"#

$%'             (2) 
 
where RDP(i) is the ith right distance profile feature, P(i,j) is 
the background pixel intensity, while i, j are row and column 
numbers respectively, m is the value of the last column where 
the value of m is decremented until it reaches (n-1), and n is the 
value of the first foreground pixel. 

 

       
(a)                                     (b) 

Figure 3. Distance profile features. (a) left distance profile 
features and (b) right distance profile features.  

 
3.1.2 Diagonal Distance Profile (DDF) Features 
As their name indicates (see Figure 4), DDF features counts 
white pixels in the main- and anti-diagonals.  In the main 
diagonal the top left corner and bottom right corner are 
calculated. For the top left corner; 𝑝(𝑖, 𝑗), 𝑝(𝑖 + 1, 𝑗 + 1), 𝑝(𝑖 +
2, 𝑗 + 2)… 	𝑝(𝑖 + 	𝑘, 𝑗 + 	𝑘)	are summed (refer to Eq. 3). For 
the bottom right corner; the sum of 𝑝(𝑚, 𝑛), 𝑝(𝑚 − 1, 𝑛 −
1), 𝑝(𝑚 − 2, 𝑛 − 2),… . . , 𝑝(𝑚 − 𝑘, 𝑛 − 𝑘) is used in (4). In 
the anti-diagonal, the top right corner and bottom left corner 
are calculated in (5) and (6), respectively. For the top right 
corner; 𝑝(𝑖, 𝑛),			𝑝(𝑖 + 1, 𝑛 − 1), 𝑝(𝑖 + 2, 𝑛 − 2)	…. 𝑝(𝑖 +
	𝑘, 𝑛 − 𝑘) are summed. For the bottom left corner; 𝑝(𝑚, 𝑗), 
	𝑝(𝑚 − 1, 𝑗 + 1), 𝑝(𝑚 − 2, 𝑗 + 2),… , 𝑝(𝑚 − 𝑘, 𝑗 + 	𝑘) are 
summed. 

 
TLD= ∑ 𝑃(𝑖, 𝑖)'

(%&     (3) 
 

BRD= ∑ 𝑃(𝑖, 𝑖)&
(%'     (4) 

 
TRD= ∑ 𝑃(𝑖, 𝑛 − 𝑖)!

(%&    (5) 
 

BLD= ∑ 𝑃(𝑚 − 𝑗, 𝑗)'
$%&    (6) 

 
 where TLD is the top-left main diagonal feature, TRD is the 

top right secondary diagonal feature, BLD is the bottom left 
secondary diagonal feature, BRD is the bottom right main 

diagonal feature, and as mentioned before i, j are the row and 
column value respectively. 

 

 
Figure 4. Diagonal distance profile features.  

4. DATASET 

The dataset that has been used in this paper is taken from (Al-
Khaffaf, 2012), an electronic book composed of 60 pages. In 
the next statements, we explain how the dataset was generated 
by (Al-Khaffaf, 2012). The book was available in three fonts: 
Comic Sans MS (Comic), DejaVu Sans Condensed (DejaVu), 
and Times New Roman (Times). Page images were feed to the 
OCRopus and Decapod open-source software to segment the 
images into character images of PNG file formats. In the 
second step, the entire image samples are degraded by 
Kanungo et al. algorithm (Kanungo, 2000). The output of that 
process was an isolated degraded character image of size 
(102×102) pixel with 8bpp. Only the first three pages and the 
last three pages of the book are used in the experiments of this 
paper. Figure 5 shows samples of letters a, b, c, d, e, f, and g of 
the three fonts. 
 

 
Figure 5. Samples of degraded image of letters (a, b, c, d, e, f, 

and g). Top – Comic, Middle – DejaVu, Bottom – Times. 

5. THE SVM CLASSIFICATION METHOD 

For classification, SVM, a supervised machine learning 
algorithm is used in classification. The SVM was originally a 
binary (2-class) classification method developed in 1995 by 
Vapnik and Cortes (Cortes, 1995), see Figure 6. An SVM can 
classify both linear and nonlinear data for finding the best 
hyper-plane that has the maximum margin between support 
points. In the system SVM with RBF kernel is used to identify 
the font of the English isolated character image. Because our 
data are nonlinearly separable we used a feature transformation 
(kernels), the basic idea is to transform the data from a 
nonlinear space into a linear space (Xu, 2006) by mapping 
input vectors 𝑥	 ∈ Rn into vectors Φ(𝑥): 
 
 𝑥	 ∈ Rn → 𝛷 (𝑥	) = [	𝛷 (𝑥#), 𝛷 (𝑥*)...	𝛷 (𝑥!)] ∈ Rf 
 
 In the linearly separable case, we have Wolfe dual 
Lagrangian function: 
 
 L(𝛼)=∑ 𝛼('

(%# − #
*
∑ ∑ 𝛼(𝛼$𝑦(𝑦$𝑥(	. 𝑥$'

$%#
'
(%#                     (7) 

where m is the number of training samples, 𝑥(	 is the ith training 
vector, 𝑦(	is the class of that training vector, and 𝛼( is the 
positive Lagrange multipliers (Kowalczyk, 2017), the value of 
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a training example 𝑥	 is not used; only the dot product	(𝑥( . 𝑥$) 
between two training examples are used. Therefore, this 
product is replaced with the scalar product	𝐾(𝑥( , 𝑥$) of the 
respective kernel functions and it will return the same results 
as in linear space. The kernel function computes the inner 
product between two projected vectors (Scholkopf, 1997): 
 

𝐾:𝑥( , 𝑥$; = {𝛷(𝑥(), 𝛷:𝑥$;}	
 
 L(𝛼)=∑ 𝛼('

(%# − #
*
∑ ∑ 𝛼(𝛼$𝑦(𝑦$𝐾(𝑥( , 𝑥$)

'
$%#

'
(%# 	              (8) 

 
The soft-margin dual problem can be written: 
 
 	+',- ∑ 𝛼('

(%# − #
*
∑ ∑ 𝛼(𝛼$𝑦(𝑦$𝐾(𝑥( , 𝑥$)

'
$%#

'
(%#  

  s.t. 0 ≤ 𝛼( ≤ 𝐶, ∀𝑖	 and ∑ 𝛼(𝑦('
(%# = 0 

  
where C is the penalty parameter (Kecman, 2005). A high C 
value tries to classify every training data point correctly; on the 
other hand, a low value of C ensures a smooth decision surface. 
 

 
Figure 6.SVM classification. Taken from (Katiyar, 2017). 

   
The hypothesis function for predicting the class of the test 
image is as follows:  
  
 y(𝑥(	)= sign(∑ 𝛼$𝑦$𝐾:𝑥( , 𝑥$; 	+ b

.
$%# )            (9) 

 
The RBF kernel depends only on the radial distance (Bishop, 
2006) which is the Euclidean distance (||𝑥(−	𝑥$||	): 
 

𝐾:𝑥( , 𝑥$; = 𝑒𝑥𝑝
"||-!"	-"||#

*0# 	
  
The Gamma ( #

*0#
) parameter is the distance that a single 

training example can reach and it is always 𝜎>0, with small 
values meaning that the system can reach ‘far’ data, and large 
values meaning that ‘close’ data can be reached. 
Our system has three classes; therefore, we need to use one-
versus-one (ovo) method instead of one-versus-all (ova). (ovo) 
constructs 1(1"#)

*
 hyper-planes (Liu, 2007). The (ovo) strategy 

is more memory efficient than the (ova) (Bouchut, 2018).  

6. EXPERIMENTAL RESULTS AND 
DISCUSSION 

6.1 Experimental setup  

A system is developed using the Python programming 
language on a computer equipped with a Core i7 5500U 
processor, 2.40 GHz and 8 GB RAM. The experiment is 
divided into three phases: training, validation, and testing. A 
third-party dataset of 27,620 sample character glyph images 
that was described in section 4 is used in our experiment.  

The experiment starts by splitting the database into two 
portions, 80% of images for training and 20% of images for 
testing. Then training portion is further split into 80% for actual 
training of SVM and 20% for validation. Table 1 shows the 
distribution of data of our experiment. It is important to 
mention that the data that has been used in training differ from 
validation and testing; the same thing for validation and testing. 
There is no universal rule that governs the distribution of data 
between the three phases. In many studies, the dataset was 
divided into three parts as we did, but in different distributions. 
Senobari et al. split their dataset into 72% training, 5% 
validation and 23% testing (Senobari, 2012); while 
(Tensmeyer, 2017) distribute their data with unspecified ratios. 
Regardless of the experiment phase, a feature vector of size 106 
is obtained and normalized for each image.  
 

Table 1. Samples distribution among three phases of the 
experiment 

Stage #Samples Percentage 
Training 17,677 64% 
Validation 4,419 16% 
Testing 5,524 20% 
Total 27,620 100% 

6.2 Training phase 

Distance profile features for 17,677 characters images were 
extracted for the training phase. To train the system, the feature 
vector of the training character images and their classes were 
fed to the SVM with an RBF kernel classifier and 75 models 
are created by using different values of C and Gamma 
parameters (Table 2). Because we have more than two classes 
(i.e. three fonts) one-versus-one technique has been used in the 
SVM classifier. 

6.3 Validation Phase 

In the validation phase (Figure 7), seventy-five experiments for 
various trials with different values of the C and Gamma were 
carried out to reveal a pair of C and Gamma values that are 
most suitable for recognition. The first data row of Table 2 
shows the parameter values used in the validation phase of our 
main experiment. There is no specific limitation for choosing 
the value of the C and Gamma parameters (SKlearn Library, 
2020). Therefore, we arbitrarily selected three values for the 
Gamma parameter (1/10, 1/26, and 1/106). We only used odd 
numbers for the C parameter to avoid excessive computation 
time. In total, 4,419 sample images were used in the validation 
phase. When looking at Figure 7, it can be shown that the 
Gamma value of 1/10 yields the highest recognition rate. The 
highest recognition accuracy of 96.51% is produced when the 
C parameter has one of the values 5, 7, 9, 11, or 13 with a 
corresponding Gamma value of 1/10. Therefore, the Gamma 
and C pair of (1/10, 7) was selected as an optimal parameter for 
the SVM, to be used in the testing phase.  

6.4 Testing Phase  

To find the font class of the test images, a database of 5,524 
images is used. The tests are performed with the Gamma and C 
value pair (7, 1/10) chosen in the validation phase. The 
proposed system gets an overall recognition rate of 94.82%. 
In the study by Bharath and Rani (Bharath, & Rani, 2017) using 
distance profile features and an SVM as a classifier, the authors 
obtained 80% recognition accuracy. Our system uses degraded 
images and the result of font recognition is about 14% better 
than the result of (Bharath, & Rani, 2017) where they used 
synthetic images. 
Another comparison with (Al-Khaffaf, & Musa, 2018) study, 
where they used the same database but with a smaller number 
of samples (6144 images), and obtained recognition rate of 
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97%. The reasons for our system getting less recognition rate 
is that we used a number of samples that are 4 times much more 
than their samples and we obtained 94.82%. To show the effect 
of using a smaller dataset on getting a higher recognition rate, 
we performed a side experiment (second data row of Table 2) 
of image data twice the size of (Al-Khaffaf, & Musa, 2018) 
with 6,618 training samples and 6,884 testing samples. We 
obtained a recognition rate of 96.33% using (1/10, 21) Gamma 
and C value pair which is very close to (Al-Khaffaf, & Musa, 
2018). Another reason for having a lower recognition rate is 
that (Al-Khaffaf, & Musa, 2018) used PCA to reduce the 
number of features to only prominent ones while we did not use 
this optimization step in this work. 
 

Table 2. Gamma and C parameter values used in our 
experiments. 

Experiments DB 
Size 

Gamma C parameter Accuracy 

Main 
experiment 27,620 

1/10, 
1/26, 
1/106 

1, 3, 5, 7, ..., 
47, 49 94.82% 

Side 
experiment 

13,502 
1/10, 
1/26, 
1/106 

1, 2, 3, 4, …, 
99, 100 

96.33% 

7. CONCLUSIONS 

A font recognition system was presented in this paper that 
recognizes English fonts using an SVM with an RBF kernel. 
While the use of SVM in font recognition is not new, however, 
in this paper we tried to shed a light on the parameters of SVM 
represented by Gamma and C. Choosing the proper parameter 
values plays key role in getting high recognition rate in font 
recognition and shall not be selected randomly. The validation 
phase is important aspect of the experiment that will show the 
proper SVM parameters.  However, we also note that our 
experiment is limited to only three fonts. In the future, we plan 
to run an experiment by using an extended dataset with more 
fonts, inspecting different feature extraction methods and using 
PCA to reduce number of features to only prominent ones. 
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Figure 7. Validation phase. Recognition rate for a set of Gamma and C values. Best parameters for high recognition rate are when 

C=5, 7, 9, 11, or 13 and G=1/10. 
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