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ABSTRACT: 
Classification of diabetes data with existing data mining and machine learning algorithms is challenging and the predictions are 
not always accurate. We aim to build a model that effectively addresses these challenges (misclassification) and can accurately 
diagnose and classify diabetes. In this study, we investigated the use of Bayesian Logistic Regression (BLR) for mining such data 
to diagnose and classify various diabetes conditions. This approach is fully Bayesian suited for automating Markov Chain Monte 
Carlo (MCMC) simulation. Using Bayesian methods in analysing medical data is useful because of the rich hierarchical models, 
uncertainty quantification, and prior information they provide. The analysis was done on a real medical dataset created for 909 
patients in Zakho city with a binary class label and seven independent variables. Three different prior distributions (Gaussian, 
Laplace and Cauchy) were investigated for our proposed model implemented by MCMC. The performance and behaviour of the 
Bayesian approach were illustrated and compared with the traditional classification algorithms on this dataset using 10-fold cross-
validation. Experimental results show overall that classification under BLR with informative Gaussian priors performed better in 
terms of various accuracy metrics. It provides an accuracy of 92.53%, a recall of 94.85%, a precision of 91.42% and an F1 score 
of 93.11%. Experimental results suggest that it is worthwhile to explore the application of BLR to predictive modelling tasks in 
medical studies using informative prior distributions. 
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1. INTRODUCTION 

Diabetes mellitus is one of the most widespread and 
challenging diseases worldwide. People with diabetes 
usually suffer from high blood sugar. The reduction of insulin 
production and losing its efficiency in metabolism are the two 
major causes of this disease (Hassan & Amiri, 2019). 
Diabetics could have critical complications such as 
blindness, heart attack, kidney failure, and strokes. The main 
symptoms of diabetes are intensified thirst, hunger, and 
frequent urination. 
Logistic regression is a common statistical method that has 
been extensively used for classification problems and 
predicting binary responses in medical studies (Maxime 
Vono, 2018). Over the last decade, this model has been 
successfully used in many fields, including business, 
medicine (Chang et al., 2018) and social sciences (Wang et 
al., 2010). Interpretation of the estimated logistic regression 
coefficients is an important task to take the right decision. 
However, the standard Logistic Regression (LR) model 
cannot always provide such proper interpretation under this 
consideration. To cope with this issue, using Bayesian 
models will help provide a better understanding of the 
estimated parameters of the model (Joseph, 2016). Bayesian 
inference takes into account the combination of prior 
information about the unknown parameters with the 
likelihood of data to derive probabilistic interpretation of the 
model via estimation of the posterior distributions of the 
model coefficients (Clark et al., 2007). 
In this paper, we investigate the use of Bayesian logistic 
regression (BLR) models with the use of Markov chain 
Monte Carlo (MCMC) methods to classify diabetics. The 
BLR model combines prior knowledge with the LR model in 
a Bayesian framework (Hassan et al., 2019). The main 
advantage of using Bayesian models is the combination of 
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prior knowledge with data so that one can include past 
information about unknown parameters and form prior 
distributions to estimate the posterior probabilities and learn 
about the true values of the parameters (Hassan, 2018). 
Consequently, when new records become available, the previous 
posterior distributions can be used as priors. In this paper, we 
used different informative and non-informative priors to evaluate 
the performance of the Bayesian analysis to classify diabetes 
patients.  
This study is the first to use a Bayesian model for predicting 
diabetes for our new ZADA dataset based on a Bayesian 
approach. ZADA is a newly created dataset consists of 909 
patients which were collected from approximately 7,000 medical 
records of patients in Zakho city/ Kurdistan Region of Iraq. The 
dataset consists of seven independents variables and one class 
label indicating whether the patient is diabetic or healthy. The 
fully Bayesian (MCMC) approach was used to automatically 
classify diabetics (sick or normal) with a Bayesian binomial 
logistic regression model applied to linear combinations of seven 
medical features. To the best of our knowledge, there have been 
only a few studies in the literature investigating fully Bayesian 
methods for classification problems and examining regression 
posteriors of unknown parameters based on informative priors. 
In our Bayesian modelling, we investigated the use of three 
different priors suggested in the literature: (1) informative 
Gaussian (Gelman et al., 2008); (2) a weakly informative Laplace 
(Li & Yao, 2018); (3) a weakly informative Cauchy (Ghosh et 
al., 2018a). Therefore, the performance of the Bayesian 
classification model under each prior used was evaluated by 
comparison of agreement between the true and predictive 
(model) classification of diabetes.  
To fit any classification/regression model, we must take 
correlations among attributes into account when attempting to 
capture the distribution of the model outcome (binary classes) 
given all the independent attributes. However, when the number 
of samples is less than or equal to the number of attributes, the 
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classification model might overfit the data, which will 
capture the noise rather than the signal (Li & Yao, 2018). 
Hence, different priors for the Bayesian approach under study 
can be used in such cases to avoid overfitting problems.   
The rest of this paper is organized as follows. In section 2, 
we reviewed some relevant works of using logistic regression 
models and Bayesian approaches in particular. In section 3, 
we presented the proposed mathematical approach of our 
BLR model. In Section 4, we presented the experiments 
conducted on the ZADA dataset and compared the results of 
BLR with other well-known traditional classifiers. Finally, 
we concluded our work and discussed future works in Section 
5. 

2. RELATED WORKS 

Although Bayesian methods have been widely used in the 
literature for different statistical analysis, they are still in lack 
of development to be used in the machine learning domain 
for classification problems. In this section we review some 
relevant papers using logistic regression in the Bayesian 
framework. 
Ghosh et al. (Ghosh et al., 2018a) used a weakly Cauchy prior 
for Bayesian Logistic Regression. They studied the presence 
of posterior summaries based on Cauchy priors. In their 
implementation, they developed a Gibbs sampling algorithm 
using Gamma data augmentation to draw samples from the 
posterior distributions based on different priors. Their 
empirical results showed that even when the mean of the 
posteriors was used for Cauchy priors, the posterior estimates 
of the model parameters might be very large. 
Li et al. (Li & Yao, 2018) proposed a Bayesian logistic 
regression based on hyper-Lasso priors as a feature selection 
method for high-dimensional. They used a Hamiltonian 
Monte Carlo sampling algorithm to learn about logistic 
regression coefficients. Their experimental results on 
simulated and real microarray data showed higher 
performance of hyper-Lasso comparing to classical Lasso for 
feature selection. 
Suleiman et al. (Suleiman et al., 2019) used BLR models to 
predict incorrect Diagnosis-Related Group DRG assignment. 
They used weakly informative priors in their investigation to 
find the likelihood of their DRG revision, hence comparing 
the Bayesian model estimates with classical maximum 
likelihood estimates. The experimental results of their 
comparative study showed that the use of Bayesian methods 
could improve model parameters stabilization and model’s 
classification performance. 
Octaviani et al. (Octaviani et al., 2019) and DuMouchel 
(DuMouchel, 2012) used multivariate Bayesian logistic 
regression for analysis of clinical study safety issues. They 
proposed a Bayesian logistic regression for ovarian cancer 
classification. The accuracy of their proposed mothed was 
around 70%. 
Chang et al. (Chang et al., 2018) applied Bayesian Logistic 
Regression to predict breast cancer using the Wisconsin 
Diagnosis Breast Cancer (WDBC) data. They compared their 
Bayesian approach with other traditional algorithms: 
Decision Trees, Random Forest, Neural Network, Support 
Vector Machine (SVM), and Logistic Regression (LR). They 
concluded that BLR could provide better classification 
performance. 
Spyroglou et al. (Spyroglou et al., 2018) used a Bayesian 
Logistic Regression approach for predicting asthma 
persistence in children. Due to multicollinearity exist in their 
explanatory features, they used Principal Component 
Analysis (PCA) combined with the Bayesian logistic 
regression to analyze and predict data of 147 asthmatic 
children. Their approach was implemented by (MCMC) 
algorithms. They concluded that the proposed method can 

accurately predict asthma with high accuracy and provides better 
knowledge about the influence and importance of each factor in 
predicting asthma persistence.  
Holmes and Held (Holmes & Held, 2006) investigated the use of 
auxiliary variable methods for BLR, considering covariate set 
uncertainties. They proposed a fully automatic approach with no 
user-set parameters and no necessary for Metropolis-Hastings 
accept/reject steps. They concluded that their method is 
successful and provided a fast, effective automatic algorithm to 
make inference about model parameters. 
Lin et al. (Lin et al., 2019) used a Bayesian hierarchical logistic 
regression model for analysing multiple informant family health 
history (FHH) of diabetes. They used informative priors for 
modelling the disease for integrating multiple informant FHH for 
risk prediction purposes. Their experimental results based on 
Bayesian modelling indicated that for diabetic patients, both 
disease history and health behaviour information are important 
based on their posterior distributions being studied. 
Wang et al. (Wang et al., 2010) investigated the use of Bayesian 
logistic regression model for spoken language identification 
(LID) to address the overfitting issues in their model. Their 
approach was able to accurately classify the NIST LRE 2007 
dataset with the issue of overfitting being controlled.  

3. METHODOLOGY 

3.1 Bayesian Logistic Regression for Classification 

Logistic regression usually models the relationship between a 
binary response variable (in our case is diabetic or healthy) with 
the explanatory variables which can be continuous or categorical. 
The Bayesian inference of logistic regression is somehow similar 
to the Bayesian linear regression model. However, logistic 
regression is even simpler for there is no variance term to be 
estimated, and only the regression parameters will be estimated.  

3.2 The Likelihood: 

Suppose that the response variable 𝒚 is binary (Diabetic =1 or 
Healthy=0) with respective probability 𝑝 and (1 − 𝑝). The 
logistic regression can be defined as (Mary Gladence et al., 
2015): 

log * !
"#!

+ = 𝛽" + 𝛽$𝑥" + 𝛽%𝑥$ +⋯+	𝛽&𝑥& . (1) 
 
Where 𝑿 = (𝑥", 𝑥$, … , 𝑥&) is a vector of the independent 
explanatory variables (features), 𝜷 = (𝛽", 	𝛽$, 𝛽%, … , 𝛽&) is a 
vector of the unknown regression parameters of the model, and 
𝑖 = 1,2,…𝑘 is the number of features. Therefore, the predicted 
value of 𝒚 can be formulated from Equation 2 as follows 
(Octaviani et al., 2019): 

	
𝐸(𝑦) = 𝑃(𝑦 = 1) = '(!(*!+*"(!+*#("+⋯+	*$($)

"+'(!(*!+*"(!+*#("+⋯+	*$($)
	 	 (2)	

 
Where,   

𝑦 = =0; 		Normal1; 	Diabetic 
 
Equation 2 can also be expressed as follows: 
 

𝐸(𝑦) = /01(𝜷𝑿)
"+/01(𝜷𝑿)

   (3) 
 
Now, given some training samples (𝑦4, 𝑥"4, 𝑥$4, … , 𝑥&5), where 
𝑗 = 1,2,…𝑛 is the number of samples, and 𝑦4 are 𝑛 independent 
realizations of a Bernoulli experiment with the probability of 
success 𝑃(𝑦4 = 1) given by Equation 2. Thus, the likelihood 
function of the training sample is defined as follows (Madigan et 
al., 2005): 
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𝐿(𝒚|𝜷, 𝑿) = 	∏ 𝑃5
6%(1 − 𝑃4)"#6%7

58"   (4) 
 
The Equation 4 can be rewritten as follows (Huggins et al., 
2016): 
 

𝐿(𝒚|𝜷, 𝑿) = 	∏ O* /01(𝜷𝑿)
"+/01(𝜷𝑿)

+
6%
*1 − /01(𝜷𝑿)

"+/01(𝜷𝑿)
+
"#6%

P7
58"

 (5) 
 

In the classical statistical inference, the vector of the logistic 
regression parameter 𝜷 for the model above can be estimated 
using the Maximum Likelihood Estimation (MLE) method 
(Chang et al., 2018), 
 

∑ R𝑦4 log(𝑃5) + (1 − 𝑦4) log(1 − 𝑃5)S7
58"  (6) 

 
However, in this paper, we will be use Bayesian methods to 
estimate the model parameters of this logistic regression 
model to be used for classification and prediction of ZADA 
diabetes dataset.  
3.2.1 The Prior: In order to make a Bayesian inference 
for the unknown parameters 𝛽", 𝛽$, … , 𝛽&, we have to identify 
a prior distribution for each model parameters. The key of 
any Bayesian inference is how to choose such prior 
probability distributions. In this paper, we aim to use three 
informative priors to investigate the classification problem in 
the Bayesian framework. The three priors are: 
 
1- Gaussian prior distribution:  

 
𝑃T𝛽𝒋|𝜇5 , 𝜎5$W = 	

"
√$;<"

𝑒𝑥𝑝 Y− "
$<" T𝛽5 −	𝜇5W

$
Z    (7) 

 
2- Laplace prior distribution:  
 

𝑃T𝛽𝒋|𝜇5 , 𝜆5W = 	
=&
$
𝑒𝑥𝑝\−𝜆5 	]𝛽5 −	𝜇5]^  (8) 

 
3- Cauchy prior distribution: 
 

𝑃T𝛽𝒋|𝜇5 , 𝛾5W = 	
"

;	>&	?"+@
'&(	*&
+&

A
"

B
  (9) 

 
The values for hyper-parameters 𝜇5 , 𝜎5$, 𝜆5 ,	and 𝛾5 must be 
chosen in such a way that they give informative priors. In this 
paper, we chose different values for hyper-parameters under 
each prior used as given below and shown in Figure 1:  
 

𝛽𝒋	~	𝑁𝑜𝑟𝑚𝑎𝑙T𝜇5 , 𝜎5$W 
 

𝛽𝒋	~	𝐿𝑎𝑝𝑙𝑎𝑐𝑒T𝜇5 , 𝜆5W 
 

𝛽𝒋	~	𝐶𝑎𝑢𝑐ℎ𝑦T𝜇5 , 𝛾5W 

 
Figure 1. Prior distributions with different location and scale 

hyperparameters for Gaussian (a), Laplace (b), and Cauchy (c) to be 
used for Bayesian logistic model. 

3.2.2 The Posterior: Bayesian inference allows a 
combination of prior beliefs about model parameters with the 
likelihood of data. In practice, Bayesian inference defines the 
uncertainty of each parameter as a statistical probability 
distribution called prior probability distributions. It hence derives 
posterior probability distributions by multiplying the prior 
distribution by the full likelihood function. Therefore, the 
posterior distribution of the unknown parameters 𝛽𝒋 for the 
Bayesian logistic regression with Gaussian prior is given by 
(Suleiman et al., 2019): 
 
𝑷𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓 ∝ 𝑃𝑟𝑖𝑜𝑟	 × 	𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑	
𝑃T𝛽𝒋|𝒚, 𝑿W 		∝ 	𝐿(𝒚|𝜷, 𝑿) 	× 	𝑃T𝛽𝒋W	

																											∝ 	#$%
exp(𝜷𝑿)

1 + exp(𝜷𝑿)/
!!

%1 −
exp(𝜷𝑿)

1 + exp(𝜷𝑿)/
"#!!

1
$

%&"

 

× u∏ "
√$;<"

7
58" 𝑒𝑥𝑝 Y− "

$<" T𝛽5 −	𝜇5W
$
Zv    (10) 

 
Practically, we cannot evaluate this posterior distribution, 
Equation 10, analytically. Hence, we should use a Markov chain 
Monte Carlo (MCMC) simulations which allow numerical 
sampling from underlying posterior distributions. The reader is 
referred to (Kass et al., 1997) for general information about 
MCMC algorithms and to (M. M. Hassan et al., 2019) and 
(Masoud Muhammed Hassan, 2018) for examples of 
implementing MCMC for multilevel statistical models. In this 
paper, we will use the Metropolis-Hasting with Gibbs sampler to 
estimate the marginal posterior distributions for our model 
parameters. The expected value of the posterior distribution of 
parameters 𝛽𝒋 will be considered as regression coefficients of the 
Bayesian logistic model. One can also calculate the 95% highest 
posterior density (HPD) confidence intervals of the parameters 
from the estimated marginal distributions. 

3.3 Bayesian Logistic Regression for Classification 

Having successfully defined the BLR model, described in 
Section 3.1 above, and after estimating the parameters of the 
model, the performance of the proposed classification model can 
be evaluated. There are various performance metrics for multi-
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level classifiers exist in machine learning literature 
(Suleiman et al., 2019). We used four commonly used per-
formance metrics in our model evaluation; they are accuracy, 
precision, recall and 𝐹" (Chang et al., 2018). To calculate 
these evaluation metrics, we first need to calculate the 
confusion matrix, given in Table 1. Then the performance of 
the proposed model is compared with five well-known 
algorithms namely DT, K-NN, SVM, LR, and Naïve Bayes.  
 

Table 1. Confusion matrix 
 True Y 

Predicted Y 0 1 
0 𝑀',' (TP) 𝑀'," (FP) 
1 𝑀",' (FN) 𝑀"," (TN) 

 
From the confusion matrix, all the evaluation metrics are 
calculated as follows (Chang et al., 2018): 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ D&,&
!
&-.

∑ ∑ D$,&
!
&-.

!
$-.

  (11) 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = D.,.	

∑ D.,&
!
&-. 	

  (12)  

 
𝑅𝑒𝑐𝑎𝑙𝑙 = D.,.	

∑ D&,.
!
&-. 	

    (13) 

 
𝐹" =

$×FG'H&I&J7	×K'HLMM
(FG'H&I&J7+K'HLMM)

   (14) 
 

Where 𝑗 = 0,1 is the number of classes. The above metrics 
can provide the performance of the classification model, 
where TN, FP, FN, TP respectively denote the number of true 
negatives, false positive, false negative and true positives. 

4. EXPERIMENTAL RESULTS 

In order to assess the performance of the proposed method, 
the BLR model, defined in Section 3, was applied for 
classifying diabetes patients. To check the efficiency of the 
proposed BLR models, we compared the performance of the 
Bayesian classifiers with five other classical models: 
Decision Tree (DT), Support Vector Machine (SVM), K-
Nearest Neighbor (K-NN), standard Logistic Regression 
(LR) and Naïve Bayes. The BLR models were 
experimentally evaluated using a newly created dataset, 
called ZADA. All the results were obtained using R language 
(R Development Core Team, 2011) and RStudio (Rstudio 
Team, 2019) with some particular tglm (Ghosh et al., 2018b) 
and rjags (Plummer, 2016) packages, on a computer 
equipped with 1.7 GHz Dual-Core Intel Core i7 processor 
with 8.0 GB of RAM. 
All Bayesian experiments conducted in this paper were 
implemented using Metropolis-Hasting within the Gibs 
Sampler method. Each experiment was based on three 
independent runs with 20,000 iterations for each, and the 
convergence of the MCMC samplers was checked before 
reporting the results for the posterior inference. The number 
of burn-in samples was set to 2000.  For implementing and 
validating our proposed approach, the ZADA dataset was 
first split into an 80% training set and a 20% testing set. The 
trainsets were used for model training and the test set was 
held out for model validation. For the classical classifiers, we 
also used a 10-fold cross-validation method to guarantee the 
randomness of the experiments as well as to avoid any 
modelling issues with underfitting or overfitting. 
 

4.1 Dataset 

The dataset used here is blood analysis of fasting sugar from 
Shaker laboratory in Zakho city, Kurdistan Region of Iraq. This 
dataset has not been used in any data mining application yet, and 
this is the first analysis of these data. This dataset contains 
different medical features for nearly 7,000 patients. After pre-
processing (cleaning, integration, and reduction), we only 
selected the features which affect diabetes, and hence we came 
out with a new dataset, called ZADA, for diabetes only. This 
dataset has 909 records on seven features including the binary 
response feature “Class” which takes values 0 (healthy) and 1 
(diabetic). The general characteristics of the ZADA diabetes 
dataset are summed up in Table 2. 
 

Table 2. General characteristics of ZADA dataset 

Attribute Name Attribute  
Description Min Max Mean 

Age Age of patients 20 86 48.01 
Cholesterol Test of Cholesterol 110 340 200.56 

L_HDL High-density 
Lipoprotein 23 65 42.97 

L_LDL Low-density 
Lipoprotein 36.8 266.2 124.87 

L_VLDL Very Low-Density 
Lipoprotein 8.6 80 32.73 

Uric Acid Test of Uric Acid 2.22 10.2 5.72 
Class 1= Positive and 0= Negative 

 
Figure 2. shows the correlation coefficient and statistical 
distribution of the data among the independent features of ZADA 
dataset. 
 

 
Figure 2. Correlation coefficient (upper triangle), histogram and density 

(diagonal), and statistical distribution of data (lower triangle) for the 
independent features of ZADA dataset 

4.2 Classification Results 

In our implementation for classification of ZADA dataset, our 
predictive evaluation uses the Bayesian point estimates from the 
training data. It takes the predictors from the testing data to 
calculate the predicted probabilities of the 0 (healthy) and 1 
(diabetic) classes for each patient. Then, we compared the 
predicted to the actual outcomes to evaluate the classification 
model performance.  
We used Bayesian logistic regression models with three different 
priors to build our Bayesian classifiers. To check the behaviour 
of the proposed models, we compared their performances with 
the traditional classifiers on the ZADA dataset. The model 
performances of the five classical algorithms along with the 
Bayesian models used are reported here. These models were used 
for predicting response “Diabetes” for both the training and 
testing datasets. Table 3 summarizes the values of evaluation 
metrics for each model, calculated from the confusion matrices. 
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Table 3. Performance of classification using classical and 
Bayesian algorithms for ZADA dataset 

 Algorithms ACC Recall Precision F1 

Classical  
models 

KNN 85.63 89.35 84.91 86.57 
DT 82.59 82.02 84.71 82.89 
NB 70.14 74.59 68.46 71.25 
LR 65.09 64.19 66.37 64.72 
SVM 61.98 50.08 65.01 56.68 

Bayesian  
LR 

models 

Gaussian  
(0,10) prior 92.53 94.85 91.42 93.11 

Laplace  
(0, 1) prior 91.72 89.92 90.95 91.43 

Cauchy 
(0,0.01) 
prior 

90.81 89.45 89.66 89.56 

 
Results in Table 3 show that the Bayesian models have given 
better model performance compared to the traditional 
classifiers. We can see that the highest accuracy, recall, 
precision and F1 of 92.53%, 94.85%, 91.42% and 93.11% 
respectively were obtained from BLR under Gaussian prior. 
Furthermore, amongst the Bayesian models investigated, the 
BLR model under Gaussian prior was the best one compared 
to the Laplace and Cauchy priors used for our dataset. We 
can also notice that the lowest accuracy measures were 
obtained from the SVMs algorithm, based on all evaluation 
metrics used, which indicates that the SVM model cannot be 
considered in classifying such kind of data. On the other 
hand, based on accuracy, recall, precision and F1 evaluation 
metrics, the best classical classifier was KNN with 85.63% 
accuracy, 89.35% recall, 84.91% precision, and 86.57% F1, 
respectively.  
 

 
Figure 3. Performance of different classification algorithms using 

different evaluation metrics: Accuracy (blue), Recall (red), 
Precision (green), F1 score (black) for ZADA dataset. 

As shown in Figure 3 and Table 3, all Bayesian models have 
performed better than the traditional models in classification 
performance. The model which performed best was the one 
based on Gaussian prior, providing accuracy= 92.53%, 
Recall=94.85%, Precision= 91.42%, and F1= 93.11% on the 
validation set. Amongst the three Bayesian models used, the 
one with Cauchy prior has the worst performance with an 
accuracy of 90.81%, recall of 89.45%, precision of 89.66%, 
and F1 of 89.56%. Although the results of the Cauchy model 
were not as good as the Gaussian model, it was better than 
almost all the other traditional models. This implies that the 
selected priors for our Bayesian modelling inference have a 
significant impact on the classification performances and 
have performed better than the classical approaches. 
From the results obtained, we can see that all the Bayesian 
models investigated in this study have given better model 
performance compared to the traditional classifiers. This 
indicates that with proper prior distribution, the Bayesian 
models can make a significant improvement to the model 
performance, hence better predict diabetes. The main 
contribution was to investigate different priors and hence 
choose the most suitable one. We conclude that the Bayesian 
logistic regression with Gaussian prior had the highest 
performance for the ZADA datasets showing an accuracy of 
higher than 92%. 

4.3 Bayesian Model Performance 

Trace plots of samples are very important for checking the 
convergence assessment of the MCMC sampling algorithm, and 
the fluctuation of the trace plots show the equilibrium of the 
numerical distribution for the parameter. Figure 4 shows the 
posterior distribution for the coefficients of the model parameters 
under the Gaussian prior distributions. We can see that the 
densities of the posterior distributions are converged under the 
prior distribution used. The MCMC trace plots (left panels) are 
illustrating how well the samples are mixing, and the posterior 
densities (right panels) are providing a good understanding of the 
estimated coefficients from the Bayesian model. This indicates 
that the Bayesian inference is successful and the prior 
distributions used are accurate.  
 

 

 
Figure 4. Posterior distribution for the unknown parameters 

(𝛽", 𝛽), 𝛽*, 𝛽+, 𝛽,, and	𝛽-) of the Bayesian logistic regression model 
under the Gaussian prior distributions. Left panels give the MCMC 

trace plots, and the right panels are posterior densities (histogram) for 
each parameter. 

As we have seen, the choice of the best prior distribution is a 
challenging task in any Bayesian inference modelling. In this 
paper, we investigated the use of three different informative 
priors on the parameters of the logistic regression model. Results 
of the BLR model tend to provide good parameter estimation 
results under the priors used, which affected positively on the 
classification task. From the experimental results, we can see that 
although the Cauchy and Laplace prior distributions with location 
parameter 0 and different scale parameters have provided very 
good results, the Gaussian priors were better in the classification 
process. Therefore, using three different prior distributions have 
provided a very good understanding of the performance of the 
model when the prior distribution was changed. From using 
Gaussian prior distribution, the resulting posterior distribution 
for each parameter, given in Figure 4, follows an approximately 
normal distribution.  
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Table 4 shows the extracted corresponding posterior median 
estimates for the model coefficients. The uncertainties in our 
estimates are also calculated as the credible Bayesian 
intervals. Thus, the uncertainty intervals are calculated by 
finding the relevant quantiles of the samples from the 
posterior distributions, as given in columns 3 and 4 of Table 
4. 
 

Table 4. Posterior estimates of the model parameters using 
Gaussian prior 

Attribute Name Estimate 
Posterior (Median) 5% 95% 

Intercept 0.2257 0.1945 0.2611 
Age 2.0850 1.7973 2.4169 
Cholesterol 1.0544 0.7366 1.5138 
L_HDL 0.9980 0.8512 1.1709 
L_LDL 0.9248 0.6577 1.2940 
L_VLDL 1.4916 1.2348 1.8085 
Uric Acid 0.6901 0.5964 0.7943 

 
The Bayesian statistics in Table 4 obtained from posterior 
distributions have a simple way of managing the true values 
of model parameters in such a way that when the estimates of 
parameters contain zero in the calculated credible intervals, 
then it can be obtained from the final model. 
It is worth noticing that the proposed Bayesian method has 
also been applied to the Pima dataset (Ravussin et al., 1994) 
as it is somehow similar to our ZADA dataset. The results of 
the classification of the Pima dataset were very similar to 
those of ZADA; thus, we have not reported the results of 
Pima experiments here. Therefore, our fully Bayesian 
approach leads to promising results based on statistically 
significant variables resulting from the posterior distributions 
when been implemented in different scenarios with different 
datasets.  

5. DISCUSSION AND CONCLUSION 

Logistic regression models have been widely used for 
classification problems in machine learning and data mining. 
In this paper, we presented a Bayesian approach for learning 
posterior distributions of logistic regression models using 
Gaussian, Laplace and Cauchy priors. The Bayesian models 
offer more flexibility and can handle more complex models, 
as they incorporate prior information into the analysis. With 
experimental studies, we have demonstrated that our MCMC 
algorithm can efficiently identify the uncertainty of the 
posteriors, and therefore obtained superior predictive 
performance. We have presented a fully BLR model that uses 
MCMC method for the classification of ZADA diabetes. All 
the uncertainties associated with the data have been 
incorporated into the analysis through the combination of 
prior knowledge and the likelihood of data via the Bayes 
theorem.  Thus, the Bayesian model allows obtaining the 
statistical distribution of model parameters, instead of point 
estimations.  
Experiments on diabetes classification problems 
demonstrated the performances of the proposed model. From 
the results of our experiments, we conclude that the Bayesian 
logistic regression with Gaussian prior had the highest 
performance for the ZADA datasets showing an accuracy of 
higher than 92%. It is interesting to observe from Table 4 that 
BLR with Gaussian prior has the highest evaluation 
performance. In all experiments, the traditional classifiers 
were not able to accurately predict all the cases. At the same 
time, the Bayesian models were able to classify almost all the 
patients as shown in Tables 4. The overall performance of the 
Bayesian logistic model according to all the evaluation 
measures has outperformed the traditional methods.  
With these promising results of Bayesian models, the next 
step ought to study and examine the use of other priors for 

the proposed model, such as Student-t, Gamma, and Hyper-
Lasso. In this study, we limited ourselves by only using three 
different priors. It would be more interesting to learn the impact 
of the choice of other (informative and non-informative) priors to 
investigate the classification of the ZADA dataset further. We 
would also like to observe the Bayesian results with non-
informative priors along with some rare and uncommon priors to 
see how the model can be fitted. Another implementation of this 
study is that we only used two datasets with binary class 
outcomes here. We plan to extend our analysis to be used for 
multi-classes datasets on different application domains. Our 
future analysis will also evaluate the performance of Bayesian 
classification when using other priors such as Student-t and 
Hyper-Lasso.  
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