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ABSTRACT: 
In this paper, we show that averaging of the Vector Recovery Index (VRI) score for a test involving many images is not accurate 
and leads to bias. We demonstrate that the higher the difference in primitive count between the data files in an experiment, the 
higher the bias in calculating the VRI. Normalizing VRI scores is proposed to remove the bias and to get VRI scores that precisely 
reflects the performance based on images under scrutiny. Empirical performance evaluation on three datasets from the arc 
segmentation contests attached to International Workshops on Graphics Recognition 2005, 2009, and 2011 shows that the proposed 
normalization score provides accurate and realistic performance results than the unweighted average of VRI scores. The results 
based on the modified VRI score show that the vectorisation methods have lower performance than was usually thought. 
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1. INTRODUCTION 

Many performance evaluation criteria in the area of graphics 
recognition had been proposed in the literature (Hori and 
Doermann, 1995; Liu and Dori, 1997; Phillips and Chhabra, 
1999; Chhabra and Phillips, 2000; Shafait et al., 2006, 2008). 
These methods are used to measure the quality of the 
recognition of line-like shapes as well as text strings. The 
raster to vector conversion is still a hot topic with many 
papers published recently (Inoue and Yamasaki, 2019, Popov 
et al., 2020, Al-Khaffaf and Talib, 2020). Hori and Doermann 
(1995) presented a quantitative measure for straight line 
recognition. Liu and Dori (1997) presented the Vector 
Recovery Index (VRI) as an objective performance 
evaluation metric for comparing a set of detected vectors with 
their corresponding set of ground truth vectors and each set 
from a separate physical file. Many types of graphics 
primitives are included in the performance matrice including 
straight lines, arcs, circles. Solid and dashed line primitives 
are also included. The VRI value combines two matrices, the 
detection rate, and the false alarm rate. The VRI score is 
between 0 and 1, where higher is better recognition. 
EditCost Index (Phillips and Chhabra, 1999; Chhabra and 
Phillips, 2000) is designed for graphics recognition systems. 
It operates on raster images containing different graphical 
primitives such as straight lines, circles, circular arcs, and 
text. The EditCost Index value is between 0 and 1. The value 
represents the amount of editing that the user needs to 
perform to rectify the inaccuracy in recognition. The lower 
the value, the less the required editing. 
Vectorial score (Shafait et al., 2006, 2008) detect 
segmentation errors such as over-, under-, and mis-
segmentation in page segmentation algorithms. The 
performance of detecting lines and text components can be 
measured. 
VRI score is popular in graphics recognition and it was the 
criterion of choice in most of the Arc Segmentation Contests 
attached to the International Workshops on Graphics 
Recognition (Liu et al., 2002; Liu, 2004; Wenyin, 2006; Al-
Khaffaf et al., 2010, 2013; Bukhari et al., 2014). One reason 
is attributed to the availability of the software tool by its 
creator. The aforementioned tool works with vector files in 
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the VEC text format, a very simple file format defined by 
Chhabra and Phillips (1998). In practice, many test images with 
their corresponding ground truth data files were used in a bench-
marking session. Hence, researchers end up calculating one VRI 
score for each ground truth and detected file pair. To find the 
overall performance for a vectorisation method, researchers used 
the unweighted mean of the VRI scores. To the best of our 
knowledge, this seems to be the case in all of the research 
publications  (Wang et al., 2010; Bonnici and Camilleri, 2013; 
Wu et al., 2013; Zhang et al., 2015; Kasimov et al., 2017; Bonnici 
et al., 2019; Alwan et al., 2019) that use VRI as the preferred 
performance criterion as well as papers published by the authors 
of VRI (Liu et al., 2001). However, using the unweighted mean 
is only accurate if all the images (ground truth images) have the 
same number of primitives (graphical entities) which is rarely the 
case. By having images with a different number of primitives we 
risk to allow the images with a small number of primitives to have 
a big influence on the overall score. This influence could be in 
either direction of the performance i.e. either pushing the results 
towards high performance or dragging the performance down. In 
this paper, the issue of using VRI is demonstrated through three 
scenarios. The disadvantage of averaging VRI scores is shown. 
Then a modified VRI is presented to reduce the bias incurred 
when working with images of a different number of graphical 
elements. An experiment is performed to show that modified VRI 
scores provide more accurate and stable performance scores. 

2. DEFINITIONS  

Assume 𝐼 = {𝑥!, 𝑥", . . , 𝑥#} is an ordered set of raster images used 
in an experiment and 𝐺 = {𝑔!, 𝑔", . . , 𝑔#} is the corresponding 
ordered set of ground truth images. Image pair (𝑥$, 𝑔$) is used to 
calculate one VRI score. 
Within-image primitives: Two or more primitives that belong to 
one image file 𝑥$. 
Between-image primitives: Two or more primitives where any of 
these primitives belongs to a different image file {𝑔$ , 𝑔% ∥ 𝑔$ ∈
𝑥& ∧ 𝑔% ∈ 𝑥' ∧ 𝑘 ≠ 𝑙}, where ∧ means logical AND operator. 
Vectorisation method v: A virtual raster to vector conversion 
method that converts raster images into vector form. The method 
detects the primitives in the image and saves the attributes of the 
primitive into a vector file. For the purpose of generality, this 
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method is considered as a black box in the rest of this paper. 
This assumption helps in studying different vector detection 
hypotheses while keeping the study general. 
Vectorisation pool V: A set of all virtual vectorisation 
methods 𝑉 = {𝑣", 𝑣(, 𝑣), . . . } 

3. WEAKNESS IN THE CURRENT USE OF VRI  

Consider a scenario where a researcher studying the 
performance of method v acquired two image files (𝑥$ and 
𝑥%). Image 𝑥$ (let’s call it A) contains one primitive while 
image 𝑥% (let’s call it B) contains nine primitives. Let’s 
further assume, that these two images are acquired through 
scanning a page of a paper document. The issue of the current 
method of calculating the overall performance of raster to 
vector conversion will be illustrated by relying on three 
different scenarios. In the three scenarios, we will use image 
A, image B. Liu and Dori (1997) defined VRI as 

 𝑉𝑅𝐼 = 𝛽𝐷* + (1 − 𝛽)(1 − 𝐹*)                     (1) 
where 𝐷* is the detection rate, 𝐹* is the false alarm rate, and 
𝛽 is the trade-off weight between detection rate and false 
alarm. In order to simplify the presentation of the issue, only 
the detection rate is assumed and presented. The trade-off 
parameter 𝛽 is set to 1 to give full weight to the detection 
rate, hence canceling the false alarm (𝐹*) of Eq. 1. However, 
what we will present regarding the detection rate is also 
correct for the case of false alarm. Since no false alarms are 
assumed in the following examples, hence the VRI will be 
reduced to only the first term of the VRI equation, i.e. 𝐷*. In 
the next paragraphs, we are going to present three possible 
scenarios of performance evaluation on a virtual 
vectorisation method 𝑣. These scenarios are synthetic but 
likely to happen in real evaluations. 
Scenario 1: In the first scenario, a vectorisation method 𝑣" 
detects all primitives in both of the test images. The VRI score 
for each image is shown in Table 1. 

Table 1: The unweighted mean of image A and B. All primitives of 
image A and B are detected (Scenario 1). 

 

VRI 

image 
contr. 

to 
overall 
score 

Vn† 
 

Vd‡ 
 

v/i∗ 
cont. 

to VRI 

v/i∗ 
cont. 

to 
overall 
score 

Image A 1.000 50% 1 1 100% 50% 
Image B 1.000 50% 9 9 11.11% 5.556% 
  100% 10 10  100% 
𝑉𝑅𝐼 1.000      

†Vn= number of primitives in the ground truth image 
‡Vd= number of detected vectors in detected image 
*v/i= vector per image 

 
Both images got a VRI score of 1 since all the ten ground truth 
vectors are detected perfectly. However, a closer look at the 
contribution of the primitives of both images shows that the 
single primitive in image A participated by 50% of the 
overall score while each vector in image B participated with 
only 5.556% of the overall score. This difference in v/i 
contribution in between-images is casual and not 
scientifically justified. In other words, the single primitive in 
image A participated by 50% of the overall score just because 
it happens to be the only primitive in image A. Again, the 
single primitive in image A participated by larger percentage 
to the overall performance than the primitives of image B just 
because it’s the sole primitive in the first image while the 
other nine primitives are contained in the second image. The 
reason for getting this result is because of the use of 
unweighted mean. By using unweighted mean we are giving 
similar weights to each image of the experiment and at the 
same time ignoring the between-images differences in terms 
of the number of primitives. In other words, using an 

unweighted mean will give the primitives of the images with a 
small number of entities higher weight compared with those with 
a larger number of entities, hence giving them a high 
participation level in the calculation of overall performance 
score. 
Scenario 2: In this scenario, a vectorisation method 𝑣( detects all 
primitives of image B while the single primitive in image A is 
not detected. The VRI score for each image is shown in Table 2. 

Table 2: Overall performance based on image A and B relying on 
unweighted mean (Scenario 2). 

 

VRI 

image 
contr. 

to 
overall 
score 

Vn† 
 

Vd‡ 
 

v/i∗ 
cont. 

to VRI 

v/i∗ 
cont. 

to 
overall 
score 

Image A 0 50% 1 0 100% 50% 
Image B 1.000 50% 9 9 11.11% 5.556% 
  100% 10 9  100% 
𝑉𝑅𝐼 0.500      

 
In this scenario, the mis-detection of the sole primitive of image 
A causes the image’s VRI score to drop from 1 to 0. As with 
scenario 1 above, this single primitive is still contribute to 50% 
of the overall score of the VRI (𝑉𝑅𝐼). When this primitive is not 
detected, the overall score (𝑉𝑅𝐼) drops from 1 to .500. This is a 
flaw in calculating the overall score. In this scenario one single 
primitive causes the overall score to drop from 1 in the case of 
full detection of the 10 primitives to only .500 in a case where 9 
out of the total 10 primitives are fully detected. 
Scenario 3: In the third and last scenario, a vectorisatin method 
𝑣) detects 8 out of 9 primitives of image B. The single primitive 
in image A is also detected. The VRI score for each image is 
shown in Table 3.    

Table 3: Overall performance based on image A and B relying on 
unweighted mean (Scenario 3). 

 

VRI 

image 
contr. 

to 
overall 
score 

Vn† 
 

Vd‡ 
 

v/i∗ 
cont. 

to VRI 

v/i∗ 
cont. 

to 
overall 
score 

Image A 1.000 50% 1 1 100% 50% 
Image B 0.889 50% 9 8 11.11% 5.556% 
  100% 10 9  100% 
𝑉𝑅𝐼 0.945      

 
In this scenario, the mis-detection of one primitive of image B 
causes the image’s VRI score to drop from 1 to .889. As opposed 
to scenario 2 above, this single primitive contributes by only 
5.555% of the overall score of the VRI. When this primitive is 
not detected, the overall score dropped from 1 to 0.945. In 
scenario 2 and scenario 3, only one primitive is not detected. 
However, the impact of missing one primitive in image A is much 
higher than the impact of missing one primitive in image B on 
the overall performance. Again, there is no justified reason for 
this difference because in each of the two scenarios only one 
primitive is missed. 
 

4. VRI COMPUTATION AND THE PERFORMANCE 
EVALUATION PROCESS 

The bias occurs because the mathematical mean (unweighted 
mean) is being used to get the overall VRI score (	
𝑉𝑅𝐼). Thus, each of the physical images contributes equally to 
the overall VRI score. In other words, a primitive within the 
physical image with low primitive-count have higher 
contribution than a primitive within the physical image with high 
primitive-count. This issue is not desirable because low 
primitives count is not correlated with higher difficulty in 
recognizing these primitives. To solve this issue, the weighted 
mean for each VRI score is used to account for the difference in 
primitive-count. 
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One way to describe the current usage of VRI is that of each 
physical image is considered as a separate group. Currently, 
we are trying to give similar weights to each group (i.e. 
physical image). However, in practice, the attributes of the 
physical image are not valuable in calculating VRI. The 
image dimension, size in bytes, and the number of pixels are 
not important. The content of the physical image in terms of 
graphical elements are the most valuable. Different images 
usually have a different number of graphical elements. 
Hence, the focus shall be on the graphical elements when 
calculating VRI. At a minimum, the graphical elements rather 
than the physical images have to have equal weights. 
Unfortunately, these two facts are mutually exclusive i.e. we 
either give the same weights to all physical images or the 
same weight to primitives. 

5. PROPOSED SOLUTION: NORMALIZED VRI 

One way to approach an unbiased solution is to rethink the 
logic of empirical performance evaluation. The presentation 
of VRI, by its authors, refers to only two images, detected 
vector image and ground truth image. If we assume that only 
one logical image of detected primitives needs to be 
compared against one logical image of ground truth data, 
then a solution can be realized. Within this logical image of 
detected vectors, all the physical images under study can be 
grouped. 
The three different scenarios in Section 3 show that using the 
unweighted mean for calculating the overall performance of 
a raster to vector method is not accurate when the test images 
contain a varying number of primitives. The overall 
performance of a method should be proportional to the total 
number of primitives of the test images. In other words, the 
number of images to be used in the experiment should not be 
considered as a factor or should not contribute to calculating 
the overall performance. This issue can be reduced by 
normalizing images’ VRI scores. The following formula (Eq. 
2) is proposed in this paper to normalize the VRI score for 
each image 𝑖. 

 𝑉𝑅𝐼$+ =
,-.!×,"

,#
                                                (2) 

where 𝑖 is ground-raster image pair number, 𝑉# is the number 
of vectors (primitives) in a ground-truth image 𝑖, 𝑉0 is the 
total number of vectors (primitives) in all images of the 
experiment (i.e number of primitives in the logical ground-
truth image). 
The following formula is then used to find the weighted mean 
of all the VRI scores. 

 𝑉𝑅𝐼′′ = ∑12"$3! 𝑉𝑅𝐼$+                                (3) 
where 𝑍 is the total number of ground-raster image pairs in 
the experiment. 
Using the above equations, we get the normalized scores of 
the three scenarios as shown in Tables 4, 5, and 6. The overall 
performance (VRI′′) of Eq. 3 is not biased to any of the 
images and all primitives have the same weight in the 
calculation of the overall performance. 
In the scenario of using the normalized VRI scores (VRI′′), 
the difference in primitives factor is ruled out and it will not 
be an issue when ground-truth images have a different 
number of primitives. 

Table 4: All vectors detected correctly (Scenario 1). The 𝑉𝑅𝐼 and 
VRI′′ score values are both 1 in this ideal case. 
 VRI VRI’ Vn Vd v/i cont. 

to VRI” 
Image A 1 0.1 1 1 0.10 
Image B 1 0.9 9 9 0.10 
𝑉𝑅𝐼 1  10 10  
VRI”  1    

Table 5: The lonely vector in image A is not detected (Scenario 2). The 
𝑉𝑅𝐼 score is dropped to 0.5 while VRI′′ score is deoped from 1 to 0.9. 

 VRI VRI’ Vn Vd v/i cont. 
to VRI” 

Image A 0 0 1 0 0.10 
Image B 1 0.9 9 9 0.10 
𝑉𝑅𝐼 0.5  10 9  
VRI”  0.9    

 Table 6: One vector in image B is not detected (Scenario 3). The miss-
detection of one vector causes 𝑉𝑅𝐼 score to drop by 0.056 while VRI′′ 

score is droped from 1 to 0.9. 
 VRI VRI’ Vn Vd v/i cont. 

to VRI” 
Image A 1 0.1 1 1 0.10 
Image B 0.889 0.8 9 8 0.10 
𝑉𝑅𝐼 0.944  10 9  
VRI”  0.9    

 
In the ideal case of perfect detection of all primitives, it is shown 
in Table 4 that 𝑉𝑅𝐼 and the VRI′′ have the value of 1. When 
detecting 9 out of 10 total primitives it is shown in Table 5 and 6 
that VRI′′ value is not biased to any of the images but gives a 
uniform result of 0.9 while VRI value is dropped from 1 to 0.5 in 
scenario 2 (Table 5) due to miss detection of only one primitive 
and 𝑉𝑅𝐼	is dropped by a reasonable ratio of 0.056 in scenario 3 
(Table 6) due to miss detection of only one vector of image B. 
This illustrates the bias of 𝑉𝑅𝐼	to the images with a smaller 
number of primitives. This also indicates that the proposed 
method is more stable and produce the same result no matter the 
number of primitives in the physical image. 
It is shown in Table 5 and 6 that VRI′′ does not suffer from bias 
towards images with less graphical elements and all vectors 
(within- and between-image) will have the same weight. The 
number of files factor is removed from affecting the overall 
resutls. 
 

6. EXPERIMENTAL RESULTS AND DISCUSSION 

The proposed normalized VRI formula is tested on the results of 
Arc Segmentation Contests’ datasets attached to GREC’05, 
GREC’09, and GREC’11 (Wenyin, 2006; Al-Khaffaf et al., 
2010, 2013). All images in these datasets are binary (mono tone) 
scanned images of mechanical engineering drawings containing 
straight lines, circles, and arcs. Only circles and arcs are 
considered in the experiments.  
 

Table 7: The VRI” and 𝑉𝑅𝐼on GREC’05 dataset. 
 

  Elliman Keysers Hilaire 

Image Vn VRI VRI' VRI VRI' VRI VRI' 

5 19 0.119 0.0306 0.591 0.1517 0.904 0.2321 

6 7 0.896 0.0848 0.796 0.0753 0.939 0.0888 

7 22 0.092 0.0274 0.268 0.0797 0.404 0.1201 

8 7 0.76 0.0719 0.729 0.0690 0.736 0.0696 

9 4 0.855 0.0462 0.611 0.0330 0.97 0.0524 

10 15 0.458 0.0928 0.614 0.1245 0.862 0.1747 

VN 74       

𝑽𝑹𝑰  0.530  0.602  0.803  

VRI"   0.354  0.533  0.738 

Tables 7, 8, and 9 shows VRI and VRI′′ scores of the methods 
under consideration. The VRI scores are taken from the 
aforementioned studies while VRI′′ is calculated using the 
proposed formula. 
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It is shown from Tables 7, 8, and 9 that VRI" values are 
different than 𝑉𝑅𝐼 values due to the normalization effect. The 
VRI” is not biased to images of lower primitives count. It is 
also shown that VRI" scores are usually smaller than 
𝑉𝑅𝐼	scores indicating vectorisation mehtods produce a lower 
vector quality than is actually thought of VRI scores. In 
general, the VRI′′ scores are not necessarily smaller than 
𝑉𝑅𝐼, but it depends on the empirical results of the methods 
and the dataset. 

Table 8: The VRI” and 𝑉𝑅𝐼on GREC’09 dataset. 

  Sc
an

2C
A

D
 

V
ec

to
ry

 

V
PS

tu
di

o 

V
rL

iu
 

Q
ga

r -
L

am
ir

oy
 

Im
ag

e 

V
n  

V
R

I 

V
R

I'
 

V
R

I  

V
R

I'
 

V
R

I  

V
R

I'
 

V
R

I  

V
R

I'
 

V
R

I  

V
R

I'
 

P0
03

6 

11
 

0.
32

2 

0.
02

24
 

0.
16

2 

0.
01

1 

0.
59

3  

0.
04

1 

0.
72

6  

0.
05

1 

0.
63

4 

0.
04

4 

P0
09

3 

26
 

0.
44

4 

0.
07

31
 

0.
54

 

0.
08

9 

0.
51

9  

0.
08

5 

0.
37

1 

0.
06

1 

0.
32

2 

0.
05

3 

P0
09

6  

49
 

0.
41

1  

0.
12

75
 

0.
00

4  

0.
00

1  

0.
64

1  

0.
19

9 

0.
60

8  

0.
18

9  

0.
48

7 

0.
15

1  

P0
16

8 

23
 

0.
39

1 

0.
05

69
 

0.
52

6 

0.
07

7 

0.
53

4 

0.
07

8 

0.
41

9 

0.
06

1 

0.
40

5 

0.
05

9 

P0
16

9  

23
 

0.
48

8 

0.
07

10
 

0.
38

4 

0.
05

6 

0.
56

3 

0.
08

2 

0.
77

2 

0.
11

2 

0.
49

 

0.
07

1 

P0
53

7a
 

16
 

0.
40

3 

0.
04

08
 

0.
06

3 

0.
00

6 

0.
38

1 

0.
03

9  

0.
80

3 

0.
08

1 

0.
53

9 

0.
05

5 

P1
09

9  

10
 

0.
54

5 

0.
03

45
 

0.
21

1  

0.
01

3 

0.
79

5 

0.
05

0 

0.
73

6 

0.
04

7 

0.
65

7 

0.
04

2 

V
N
 

15
8 

          

𝑽𝑹
𝑰  

 0.
42

9 

 0.
27

0 

 0.
57

5  

 0.
63

4 

 0.
50

5 

 

V
R

I"
 

  0.
42

6 

 0.
25

4 

 0.
57

4 

 0.
60

1 

 0.
47

5 

 

Table 9: The VRI” and 𝑉𝑅𝐼on GREC’11 dataset. 
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7. CONCLUSIONS 

It is shown in this paper that averaging of VRI scores leads to 
bias. Normalizing the VRI scores is proposed in this paper to 
remove such bias. Experimental results showed that normalized 
VRI is not affected by differences in primitive-count between 
images and that averaging the VRI scores of an experiment 
involving many test images produces a biased score. It is also 
found that the quality of vectorisation methods relying on 
averaging of VRI scores is worse than it usually is due to the bias 
in averaging many VRI scores. Hence, the proposed normalized 
VRI score is superior and more accurate in presenting the quality 
of raster to vector conversion systems. 
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