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ABSTRACT: 
Programs that manipulate heaps  such  as  singlylinked  lists,  doublylinked  lists,  skiplists,  and  treesare  ubiquitous,  and  hence 
ensuring their correctness is of utmost importance. Analysing correctness properties for such programs is not trivial since they 
induce dynamic data structures, leading to unbounded state spaces with intricate patterns. One approach that has been adopted to 
tackle this problem  is  the  use  of  symbolic  searching  techniques.  The  state  space  is  encoded  using  graphs  where  the  nodes 
represent memory cells, and the edges represent pointers between the cells. It is necessary to prune the search to avoid generating 
massive numbers of graphs, thus making the procedure unpractical. Pruning strategies are defined based on operations such as 
graph matching and inclusion. In this paper, a set of algorithms for performing these operations are presented. It is demonstrated 
that the proposed algorithms can handle typical graphs that arise in the verification of heap manipulating programs. 
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1. INTRODUCTION  

The  design  of  automatic  methods  to  verify  that  the  given 
programs are safe and well formed is challenging. The way 
that these programs are tested requires efficient algorithms 
and hence different methods are crucial to verify that given 
programs are safe and well formatted. 
This  includes  merging  two  programs  where  the output 
must be well sorted and structured. Many approaches have 
been  designed  for  addressing  these  problems  for different 
kind  of  programs  and  using  different  type  of algorithms. 
Each of these techniques uses special tools for investigating 
special  types  of   verification  properties (Abdulla   et  al., 
2010), (Abdulla et al., 2008b). 
Software   verification   used   many   techniques   and 
algorithms to verify that merging two programs representing 
a  singly  data  structure  is  also  a  safe  program  and  is well 
formatted   and   sorted.   These   verification   methods need 
algorithms  to  consider  the  graphs  inclusion  and matching, 
representing   given    programs   (Abdulla    et al.,  2011), 
(Giamblanco and Anderson, 2019). Therefore, in this paper, 
algorithms  to  verify  graphs  inclusion  and matching  for 
programs representing heaps are designed and implemented. 
In general, this paper aims to design some algorithms to test 
the  inclusion  and  then  find  matching  between  two graphs 
representing  a  heap.    More  precisely,the proposed 
algorithms are designed to decide for two heaps say G 1 and 
G2 , whether G1 v G2, and then find all possible matching 
where G2 can be included from the G1.   
In this work, heaps are considered as graphs to represent a 
linked  lists  with  one  next  pointers.  A  heap  is  a  graph  
which follows  the  following  properties:  (1)  possibly  be  
disconnected and (2) acyclic. Based on this, in this paper, it 
is assumed that a heap consists of a set of stars and trees. 
Therefore, in order to test the heap inclusion, new algorithms 
must be designed to deal with  the  trees  and  stars  inclusion  
(Abdulla  et  al.,  2008a), (Wimmer and Lammich, 2018). 
The  first algorithm to implement is  described in  (Valiente, 
2005). This paper concerns the inclusion of one tree in 
another. However, this algorithm is improved where the 
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whole target tree can be searched. This is because there might be 
the case that two small trees are covered by one big tree. Defining 
the exact nature of such a cover, and finding an algorithm for 
computing it, is a part of the work presented in this paper. 
The rest of the paper is organized as follows: In Section 2,   
related  work,  research  problem   and  motivations  are given.  
In  Sections  3  and  4,  stars  and  trees  matching and inclusion  
algorithms   are    described,respectively. Heaps inclusion is 
illustrated in Section 5. 

2. RELATED WORK 

Several works considering the verification of singly linked lists  
with  data  have  been  developed.  These  included  new 
techniques based on algorithm verification for finite graphs. 
These algorithms were designed to verify the safety of the 
programs with different factors based on different methods. 
Graph connectivity,  graphs inclusion  and  matching  are  the 
core idea for most of these techniques. However,  they used 
different  graph  ordering  which  let  to  different  algorithms and   
concepts   (Abdulla   et   al.,   2010),   (Valiente,   2005), (Abdulla 
et al., 2009) and (Bouajjani, 2005). 
The  paper  (Abdulla  et  al.,  2010)  proposed  a  new verification  
method  for  programs  representing  linked  lists. This  approach  
relied  on  a  backward  reachability  analysis using a term named 
signatures in order to verify the safety of  the  given  program.  
This  method  was  another  powerful tool   and   model   for   
verifying   designed   for   the   aim   to identifying  bad  heaps  
which  have  graphs  representing  bad lists, such as not sorted 
and not well organized lists. 
The paper (Valiente, 2005) uses tree inclusion algorithm to  
check  if  the  given  pattern  tree  can  be  included  in  the target 
tree, by  using some  graph ordering algorithms. This algorithm  
used   bipartite   based  graphs   to  verify   graphs inclusion.  This  
method  stops  searching  when  the  first  sub tree in the target 
tree is found. In this paper, this algorithm is improved so that all 
possible sub trees in the target tree can be found when the given 
patten tree can be included in each of them. This improvement is 
necessary when some factors need  to  be  considered  before  the  
proper  target  tree  is selected. 
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Another  method  to  verify  software  manipulating  linked 
lists   is   developed   in   (Abdulla   et   al.,   2008b).   This 
verification    technique    used    a    tool    called    symbolic 
(backward)     reachability     analysis     based     on     graphs 
representing heaps. Different tools was used to find the set of  
minimal  graph  patterns  corresponding  to  a  set  of  bad 
conjurations (Berdine et al., 2007), (Gotsman et al., 2006). 
The paper (Abdulla et al., 2011) implemented the use of 
monotonic  abstraction  and  backward  reachability  analysis 
as  means  of  performing  programs  with  multiply  pointed 
structures.   This  method  uses  signatures  to  predicates  and 
define  sets  of  bad  configuration  based  on  given  heaps 
(Magill et al., 2007). 
Another powerful tool and model for verifying programs 
based on a special technique is proposed in (Gallardo et al., 
2008).  This  method  was  designed  to  check  and  verify 
programs   written   in   C   programming   language   with   a 
dynamic   memory   allocation.   This   approach   used   the 
concept   of   heap   structures   to   represent   different   data 
structures, such as vectors. 
A new framework for  program verification based on regular   
model   checking   is   proposed   and   designed   in 
(Bouajjani,   2005).   This   approach   considered   a   non-
recursive programs manipulating data structures with one 
next pointers,  such  as  singly  linked  lists  and  circular  lists.  
A  new technique  for  calculating  and  refining  the  
abstractions  of  the reachable graphs representing given 
programs was designed in this framework. 
An  automated  approach  is  presented  in (Bouajjani  et  al., 
2006).  This  technique  was  aimed  to  ensure  that  the  given 
program is safely terminated. The proposed method used a 
new counter to represent a method, which verifies that if the 
given program is safe and well structured. 

2.1. Problem Statement and Motivation 

Based  on  the  given  related  work,  non  of  the  given  
methods stated if  the  full matching for  the  graphs inclusion 
were  used. Therefore, non of the given methods can be used 
when all the possible matching between the pattern and the 
target graphs are crucial  to  be  considered.  This  is  the  case,  
when  given  graphs need to consider all possible matching 
in order to select the best possible match. An example of this 
case is when the proposed verification  method  needs to  
consider linked  lists which share some   special   relations(   
such   as   equality   and   inequality relations). 
To find all possible matching between given graphs, new 
efficient algorithms and methods need to be implemented. 
This is because given graphs can have many possible 
matching when the first graph can be included in the second 
graph. Therefore, the  problem  which  motivated  me  to  
propose  this  work  is designing  new  algorithms  where  all  
the  possible  matching between  given  graphs  (heaps)  can  
be  calculated,  based  on different methods. 
Based  on  this,  the  following  are  the  novel  motivations 
given in this paper: 
 
1.  Modify  the  algorithm given in (Valiente, 2005) so  that 
is could  be  used  to  check  the  trees  inclusion  from  their 
roots. 
2.  Design  a  new  algorithm  to  check  acyclic  based  graphs 
inclusion and matching. 
3.  Design  new  algorithms  to  check  the  heaps  inclusion  
and matching. 
4.  Implement new methods to find all possible matching 
between given graphs using the proposed algorithms. 
 
 
 
 

3. TREE MATCHING AND INCLUSION  

  3.1. Tree Inclusion 

In   this   section,   the   algorithm   given   in   (Valiente,   2005)   
is described. This algorithm is designed to solve the trees 
inclusion. However,  this  algorithm  needs  to  be  improved  
when  different factors  are  considered.  Details  about  this  
algorithm  and  the  new improvement will be discussed in the 
rest of this section. 
A tree  can  be  denoted  by  a  graph,  where  each node  has only 
one path from the root of the the given tree and all nodes can be 
reached from the root. Each node has one parent and a set of 
children. The root node has no parent. This means that a tree  is  
a  connected  and  acyclic  graph  where  each  node  has  at most 
one successor (Wimmer, 2016). 
In   this   section,   for   given   two   trees   T1    and   T2, algorithms  
to  verify  if  T2   can  be  included  from  the  T1   is described. The 
given algorithm checks a sub tree form the T1 can be allocated 
where T1 could be included and matched. This algorithm depends 
on the methods given in (Valiente,2005), which involves using 
bipartite matching problems to test inclusion for the given trees. 
Given p ∈ T1 and t ∈ T2, where t has children t1, t2, ..., tn and  p  
has  children  p1,  p2,...,  pm.  In  order  to  determine whether T1[p] 
can be included in T2[t]. It suffices to know if  T1[x] ⊆ T2[y],  
for  all  x  ∈ { p1,  p2,...,  pm  } and  y  ∈ {t1,t2,...,tn }. Moreprecisely,   
given       two          vertices p ∈ T1    and t ∈ T2,     to decide 
whether T1[p] v T2[t],  construct  a  bipartite graph G  = 
({t1,t2,t3,...,tn  }U  { p1,  p2,  p3,..., pm  },E) with (tj, pi) ∈ E. We say  
T1[p] can be included from T2[t] iff G has at least one matching. 
We write S(t) to denote the  included sub tree at node  t ∈ T2. We  
compute S(t)  as follows:  S(t) = { p  ∈V(T1) | T1[p] v T2[t]}. 
We say that T1 can be included in T2 if root(T1) ∈ S(t). 
Bipartite Graph: Given a graph G =(V,E), G is a bipartite graph, 
if all vertices in G can be separated into two groups where  no  
two  vertices within the  same group  are  adjacent (Abdulla   et   
al.,   2010).   Bipartite   graph   is   used   in   the proposed 
algorithms given in this paper. This is to find the proper  match  
between  given  graphs  in  order  to  check  the graph  inclusion  
(Asratian  et  al.,  1998).  An  example  of bipartite graph 
matching is given in figure 1. 
Matching in a Bipartite graph: Given a bipartite graph G = 
(V,E), a possible matching in G is a subset of edges M ⊆ E, where 
no edges has both the start and end vertices from the same set. 
Hopcroft–Karp algorithm (Katrenic and Semanisin,2011) is  to  
used  to  find  the  matching.  The  following  are  two possible 
matching in the Figure 1. 

( 1, 2 ) , ( 3, 4 ) , ( 5, 6 ) and ( 1, 6 ) , ( 3, 2 ) , ( 5, 4 ) . 
            Figure 1: Matching in a Bipartite Graph 

3.2. Trees Inclusion Algorithm 

As mentioned before, a tree inclusion algorithm given in   this   
section   is   based   on   the   specification   given   in (Valiente, 
2005). This algorithm determines the smallest sub tree in T where 
P can be included. In this case, the whole target tree is not used 
to find more sub trees where P can be included. In additional, it 
may be required to check if P can be included  from  T,  through  
their  roots.  These  two  aspects  were not implemented in the 
algorithm given in (Valiente, 2005). 
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Based on this, two new algorithms are designed. The first 
algorithm is modified when the whole target tree is 
considered to find all possible sub trees in T1  such that T2  
can be included. The second algorithm is designed so that it 
checks if for given tree T1     and tree T2, T1 can be included 
from the root of the  T2. This means that the root of the  T1 
must be matched only to the root of the T2, otherwise, T1 
can not be included in T2. 
The  second  algorithm  is  modified  based  on  the  first 
algorithm  where  the  whole  target  tree  is  tested  for  the  
trees inclusion until a sub tree is found where the root of the 
T1 can be included from the root of the T2. This means that, 
this algorithm follows  most  of  the  steps  given  in  the  first  
algorithm,  except that it returns true if T1  can be included 
from the root in the T2, otherwise, returns false. The required 
problems and the design of the modified algorithms are given 
below. 

 
Problem  Definition  1: Let  T1   =(V,E)  be  a  pattern tree 
and T2   =(V,E) be  a  target  tree,  this algorithm  is 
designed  to determine a smallest sub tree in T2  whether T1  
can be included.  For example, given  a target tree T1 and a 
list of pattern trees P1, P2, P3, P4 and P5, shown below, 
check if any of the given pattern  trees  can  be  included  
from  the  given  target  tree,  using the algorithm 1. 

 

             Figure 2:  Examples of Trees Inclusion 

        Figure 3: Examples of Trees Inclusion,from roots 

Problem Definition 2: Given trees T , and a list of trees in P, 
shown below, decide whether any given P can be included in T,  
from roots,  using the algorithm 2.. 

3.3. A complexity of the Modified Algorithm 

The   second   algorithm 2   is   required   where   all   the matching 
between given  trees are  needed.  In  this case, this algorithm 
finds all possible matching between given trees from their roots. 
Therefore, the complexity of the modified algorithm is based on 
number of the sub trees from the target tree which pattern tree 
can be included. Let assume that complexity of the algorithm 1 
is C, then the  modified  algorithm  could  test  trees  inclusion  in  
a cost  =  C  *  a,  where  a  is  the  number  of  matching between  
given  trees,  from  roots.  This  led  us  to  the conclusion that the 
modified algorithm does not increase the complexity of the 
algorithm 1. 

3.4. Tree Matching 

In  the  graph  theory,  matching  is  a  set  of  edges  without 
common  vertices.  Matching  is  required  when  all  possible 
cases are  considered  to  find  the  perfect matching  between 
given graphs (Katrenic and Semanisin, 2011), (Duan et al., 2018).  
In  this  paper,  all  possible  match  between  given graphs is 
considered. This is the novel contribution for this work over the 
related works. 
All  possible  matching  is  computed  based  on  two different   
concepts.   These   concepts   are   called   Children propagation  
and  Matching  Propagation.  Therefore,  new algorithms  to  find  
all  possible  matching  for  two  trees,  if there is any, are given 
in this section. The required notations and  terminologies  of  the  
designed  algorithms  are  given, then the details about trees 
matching algorithms with some examples are described. 
3.4.1. Notations and Terminologies 
Matching Concept: If we have two trees, T 1 and T 2 , in order 
to find matching for T 1 from T 2 , we have to find all possible 
sub trees from the T 2 where T 1 can be included. Matching is 
assumed to be a set of edges where each vertex from the pattern 
tree has a corresponding vertex from the target tree.  
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Therefore, new algorithms to find all possible matching for 
two trees, if there is any, are given in this section. The 
required notations and terminologies of the designed 
algorithms are given, then the details about trees matching 
algorithm with some examples are described. These two 
concepts are described below. 
As mentioned before, Children Propagation and Matching 
Propagation are used to find all possible matching for given 
trees. These two methods are given below. 
Children Propagation: Given two trees T1 and T2 , Let t1 , 
t2 ,t3 , . . . , tn  be children of a t ∈ T2 .  It is assumed that r 
to be a two dimensional array that will contain matching 
between each vertex in T1 and corresponding vertex in T2. 
The children propagation is defined for a given vertex p ∈ T1 
and vertex t ∈ T2  as a set of matching between t and children 
of p. More precisely,  children   propagation   is   computed   
as   follows:    Children propagation:=  r[ p,t1 ] ∪ r [p,t2 ] 
∪, . . . , ∪r [ p,tn] , as shown in the algorithm 3.  

                               

Matching Propagation: Given two trees T1 and T2 and t∈T 
1 , p ∈ T2 ,  let t 1 , t2 , t3 , . . . , t n be children of t, and p1,  
p2 , p 3 , . . . , pm be a children of p.  Suppose that r is a two 
dimensional array will contain all possible matching for T1 
from T2 .   A bipartite graph G =(V,E),  where V : = { p 1 , p 
2 , p 3 , . . . , pm } ∪ {t1 ,t2 ,t3 , . . . ,tn } is constructed with 
( pi ,tj ) ∈ E, if and only if r [ pi ,tj ]  = 0, where 1 ≤ i ≤ m and 
1 ≤ j ≤ n. 
A two dimensional array M is defined to contain all possible 
matching for graph G. Matching propagation is defined for p 
and t as a set of matching between children of t and p. For 
each match ((p1 ,t1) , ..., (pm ,tn)) ∈ M, matching 
propagations is computed as follows: 
Matching propagation :=  r [ p 1 ,t 1 ] ⊕r [ p 2 ,t 2 ] ⊕, . . 
. , ⊕r [ pm ,tn ] , where ⊕ defined as follows: Given two sets 
A and B, A ⊕ B = { a.b | a ∈ A and b ∈ B }. New algorithms 
for these methods are designed in this section, as shown in 
the algorithm 4. 

 

               

Poblem Definition: Let P = ( V , E ) be a pattern tree and T 
= ( V , E ) be a target tree, the problem is to find all possible 
matching for P from T, using  the algorithm 3. 

                    Figure 4: Trees Matching  

The  following   are   all   possible   matching   between matching  
for  given  pattern  tree  from  the  given  target  the pattern and 
target trees , as shown in the Figure 4. As shown below,  there are 
24 possible matching: 

{(a,1),(b,2),(c,3)},{(a,1),(b,4),(c,7)},(a,1), 
(b,5),(c,7)},{(a,1),(b,6),(c,7)}{(a,2),(b,4), 
(c,7)},{(a,2),(b,5),(c,7)},{(a,2),(b,6),(c,7)},{(a,2),(b,
4),(c,7)},{(a,2),(b,1),(c,3)},{(a,3),(b,5),(c,7)},{(a,3),
(b,6),(c,7)},{(a,3),(b,4),(c,7)},{(a,4),(b,6),(c,5)},{(a,
4),(b,2),(c,7)},{(a,4),(b,1),(c,7)},{(a,4),(b,6),(c,7)},{
(a,6), (b,4),(c,5)},{(a,5),(b,1),(c,7)},{(a,5),(b,2), 
(c,7)},{(a,5),(b,3),(c,5)},{(a,6),(b,4),(c,7)}, 
{(a,6),(b,3),(c,7)},{(a,6),(b,1),(c,7)},{(a,6),(b,2),(c,7
)} 

4. STARS MATCHING AND INCLUSION   

In order to test the heaps inclusion, new algorithms to test   star   
graphs   representing   the   heaps   are   required. Therefore, in 
this section, a new algorithm to deal with stars inclusion   
problems   is   designed.   This   algorithm   tests whether given 
pattern star is included in the target star. In this  case,  this  
algorithm  must  accept  trees  as  input,  rather than stars. All 
notations and concepts used in the proposed algorithm are 
defined, then the implementation of the stars inclusion  and  
matching  algorithms,  with  some  definitions and examples, are 
described. 
A star is a connected graph where all nodes or vertices in  the  
given  graph  has  maximum  one  parent.  This  means that graphs 
representing stars could have no root. Therefore, a star can be a 
set of trees where their roots are connected through a simple 
cycle. 

4.1. Stars Inclusion 

Notations  and  terminologies:  The  two  stars  given  in  the 
proposed stars inclusion and matching algorithms are called by 
pattern star and target star. Pattern star is represented by P  and  
the  target  star  is  represented  by  T.  Given  a  star S(V,E),where 
V is a set of vertices and E is a set of edges, V is given by V(S) 
and E is given by E(S),  respectively. A list of nodes in the cycle 
for the given S is denoted by Cycle(S). The  operations  to  get  a  
successor  of  a  node  t  ∈  S  is denoted  by  S.succ(t).  The  sub-
tree  rooted  at  a  node  t  is denoted by S[t]. 
Preprocessing:  To  test  the  proposed  star  inclusion algorithm, 
the following operations are required, before the proposed 
algorithm is applied: 
1.  Alg(T1,T2):  is  considered  to  be  the  algorithm  to check  
trees  inclusion  from  the  roots.  This  algorithm returns  true  if  
given  trees  can  be  included  from  their roots. 
2. Extract Trees from a Star: Before stars inclusion algorithm 
can be applied to the given stars, both the target star and the 
pattern star need to be extracted and converted to a list of trees. 
A new algorithm is required to extract trees from the given stars, 
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where these trees are connected through a cycle.  Based on 
this, a new algorithm to do this is designed in this paper and 
its implementation is given below.  

4.1.1. Stars Inclusion Algorithm 

A  new  algorithm  to  test  whether  a  star  is  included  in 
another   star   is   implemented   in   this   paper.   The   
proposed algorithm  depends on  the  list of  the  extracted  
trees  from  both stars  in  order  to  decide  if  given  stars  
can  be  included.  This means that given stars can be included 
if only a list of the trees from the first star can be included 
from the trees in the second star,  using  tree  inclusion  
algorithms,  given  in  the  previous sections. 
Let assume that L1 is a set of trees for the  star and L2 is a set 
of trees for the target star. In order to test the inclusion of L1 
from L2 , it is important to check that for each tree p  ∈ L1 
there is a tree t ∈ L2 , such that p can be included in t, from 
their roots. If it is found that all trees in L1 can be included 
in L2  ,  then  the  given  star  algorithm  returns  true,  
otherwise,  it returns false. 
This algorithm accepts trees as input. This means that if P is  
a  tree  and  T  is  star,  this  algorithm  converts T  into  a  set  
of trees based on the extract trees algorithm given above. It 
returns true  if  and  only  if  given  tree  P can  be  included  
in  one  of  the extracted  trees  from  T, sing  the  tree  
inclusion  algorithms, denoted by AlgRoot (P, T) . 
 

Figure 5: Stars Inclusion 
 

            
Figure 6:  A Tree to Star Inclusion 

 
Problem Definition 1:   Let P =(V,E) be a pattern star and 
T = (V,E) be a target star, the algorithm given in this section 
decides whether P can be included in T.  An example of the 
star to star inclusion is given in the Figure 5. 

Problem Definition 2: Given a tree P and a star T, as shown in 
the  figure  6,  the  problem  defined  by  the  algorithm  defined  
in this section is to decide whether P can be included in T. 

2. Stars Matching  

The   star   Matching   algorithm   is   designed   to   find   all 
matching between stars P and T where P can be included in T. In 
this section, given two stars S1 and S2, the algorithms to find all 
possible matching between S2 that S1 are described. 
A list of possible matching for given stars can be obtained based  
on  the  trees  matching algorithm. This  algorithm finds  a set  of  
matching  for  the  extracted  trees  from  stars  P and  T. A bipartie  
graph  based  on  P  and  T  is  constructed  and  then  all possible 
matching are generated when  both the  extracted trees can  be  
matched  between  P  and  T.  More  details  about  this algorithm 
is given below. 
Given two stars, S1, S2, to find all possible matching for S1 from 
S2, the following operations are required: 
 
•    TreeToTree(T1,T2) is  used to  find possible matching 
for  given  stars  P and  T,  based  on  trees  given  in  L1 from L2. 

•    To  find  all  possible  matching  for  S1   from  S2,  all 
possible   combinations   between    L1     and   L2      arecomputed, 
based on the trees inclusion. As set of possible matching for the 
given pattern star from  the  given  target  star  are  shown  below:   
{{(a,3), (b,4)},{(a,4),(b,3)}}.   
 
   A list of trees from both S1  and S2, let say L1  and L2 

respectively,   using   tress   extract   algorithm,   are extracted. 
 
Problem Definition 3:  Given two stars P and T, shown in the  
Figure  7,  Stars  Matching  algorithm  finds  all  possible 
matching for P from T, only where P can be included from the T. 

 

Figure 7: Stars Matching 
 

Figure 8: A Tree to Star Matching 
Problem  Definition 4:  Given  a  tree  P and  a  star  T, shown  
in  the  Figure  8,  the  problem  defined  by  this algorithm is to 
find all possible matching for P from S. The following are a set 
of matching for the given pattern tree from the given target star. 

{(a,1),(b,2),(c,3)},{(a,1),(b,2),(c,4)},{(a,1),(b,4), 
(c,3)},{(a,2),(b,1),(c,3)},{(a,4),(b,1),(c,3)},{(a,2), 
(b,4),(c,3)} {(a,4),(b,2),(c,3)} 
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5. HEAPS INCLUSION ALGORITHMS  

In this section,  a new algorithm to test whether a heap is 
included in another heap, is implemented. First, heaps and 
their representations are given, then the ordering relations 
between cells in heaps are described. 
All notations and terminologies need to be used in heap 
inclusion algorithm, are outlined. This paper aims to 
design new algorithm to test the heaps inclusion,  based on 
the stars and trees inclusion and matching algorithms. 
A heap is represented as a graph, where this graph is a set of 
trees and stars. In summary, a graph H is said to be a heap if 
the following properties are satisfied: 
1. Is a set of trees. 
2. Is a set of stars. 
3. Combination of trees and stars. 
An example of a graph representing the heap is given in the 
Figure 9. 

Figure 9: An example of Graph representing Heap 

5.1. Heaps Ordering and Representation 

Ordering relations between cells in a heap are represented 
by the following graphs: 

 
1. Equality Graph: The equality ordering relations 
between vertices in the graph that represents a heap is defined 
by Equality graph.  A set of edges in this graph represent the 
equality relations (if any) in the graph represents a 
corresponding heap. 
2. Inequality Graph: The inequality ordering relations 
between vertices in the graph, that represents a heap, is 
denoted by an Inequality relation , where edges in this graph 
represent the Inequality relations in the graph that represents 
a corresponding heap. 
3. Structural Graph: This graph represents the structure 
the heap corresponding to the given graph. 
 
The inclusion algorithm for two components (trees or stars), 
in which defined in the previews sections, is denoted by 
StarToStar ( P, T ) , where P is a pattern star and T is a target 
star. A TreeToTree ( P, T ) , where P is a pattern tree and T 
is a target tree. It is assumed that a heap is combination of 
trees and stars. Given a heap H, the method to find a set of 
components for H is denoted by getComponent (H) . 
5.2. Heap Inclusion Algorithm 
As mentioned before, a new algorithm to test whether a heap 
is included in another heap, is implemented. Given two heaps 
H1, H2, a problem given by the proposed heap inclusion 
algorithm is to check if given H1 can be included from the 
H2, using the stars and trees inclusion and matching 
algorithms. 
More precisely, in order to test the inclusion H1 in H2, there 
must be a set of vertices in H2, such that all vertices and edges 
from all graphs that represent ordering relations in H 1 are 
included. All components from H1 and H2 are required to be 
matched.  The solution is to find the matching between all the 
components given in both heaps. Due to this, new algorithms 
to find all possible matching between two stars and trees were 
designed in this paper. 
In order to find all possible matching for H1 from H2, a new 
bipartite graph G = ( S 1 ∪ S 2 , E ),  where S1 and S2 are the 
set of components from H1 and H2, respectively, using 

getComponenets operation described above, are constructed. ( s 
i , s j ) ∈ E if and only if the matching for si from sj is not empty,  
where si ∈ S1 and sj ∈ S2. 
 

Figure 10: An example of Heap Inclusion 

Figure 10: Heaps Inclusion  

6. RESULTS FROM THE PROPOSED ALGORITHMS 

In this section, the proposed algorithms were tested based on the 
given heaps. The first heap is called pattern heap and denoted by 
P. The second heap is called the target heap and it is denoted by 
T . The heaps P and T consist of a set of trees and stars.   
Therefore, when given heaps were tested, both stars and trees 
inclusion and matching algorithms were involved. When the 
given heap algorithm finds that P can be included from the T, 
then all possible matching between the heap P and T were 
calculated, based on the stars and trees algorithms. 
Before results from the given heaps inclusion are given, each 
component from the heap P with the corresponding component 
from the heap T,  are shown. 

6.1. Result from the Heap to Heap inclusion and Matching 

The heaps (Pattern and Target ) given in figures 11 and 12 were 
tested based on the algorithms proposed in this paper. A heap 
inclusion uses all of the stars and trees inclusion algorithms 
where given heaps were tested.   This is due to the fact that heap 
is a graph represented by a set of components, as mentioned 
before. Each of these component is either a star or a tree. 
Therefore, in order to test the heaps inclusion algorithm, the trees 
inclusion and stars inclusion algorithms must be used. This 
means that, the results given in this section includes all the 
algorithms proposed in this paper. 
The graphs given in the Figures 11 and 12 are the pattern and 
target heaps which were given to the heaps inclusion. Each of 
these heaps consists of a set of stars and trees. Therefore, given 
stars in the pattern heap must be matched in the corresponding 
stars in the target stars. Trees must be matched from the pattern 
heap to the target heap. 
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                     Figure 11: A Pattern  Heap  

                       Figure 12: A Target Heap 

 The following are result of the proposed algorithms given in 
this paper: 

A. Result of Matching Between the star1 in P and the 
star1 in T                       

- Based on the graphs given above, the following are result 
of matching of the tree p6 in the heap P from the sub-tree t11 
in heap T.  { ( p6,t11 ) } 
- Results of matching for the tree p3 in P from the tree t0 in 
T, are the following: 
{ ( p5,t4 )( p4,t10 )( p3,t0 ) } , { ( p4,t10 )( p5,t12 )( p3,t0 ) 
}{ ( p4,t10 )( p5,t9 )( p3,t0 ) } , { ( p4,t10 )( p3,t0 )( p5,t3 ) } 
{ ( p4,t10 )( p3,t0 )( p5,t1 ) } , { ( p5,t4 )( p4,t1 )( p3,t0 ) } { 
( p5,t10 )( p4,t1 )( p3,t0 ) } , { ( p4,t1 )( p5,t12 )( p3,t0 ) } { ( 
p4,t1 )( p5,t9 )( p3,t0 ) } , { ( p4,t1 )( p3,t0 )( p5,t3 ) } { ( 
p5,t10 )( p4,t4 )( p3,t0 ) } , { ( p5,t12 )( p4,t4 )( p3,t0 ) } { ( 
p4,t4 )( p5,t9 )( p3,t0 ) } , { ( p4,t4 )( p3,t0 )( p5,t3 ) }{ ( p4,t4 
)( p3,t0 )( p5,t1 ) } , { ( p5,t4 )( p3,t0 )( p4,t9 ) }{ ( p5,t10 )( 
p3,t0 )( p4,t9 ) } , { ( p5,t12 )( p3,t0 )( p4,t9 ) } { ( p3,t0 )( 
p5,t3 )( p4,t9 ) } 
- Result of matching between the tree p0 in P from the tree t2 
in T, are the following: 
{ ( p1,t7 )( p2,t6 )( p0,t2 ) } , { ( p1,t7 )( p2,t8 )( p0,t2 ) } 
{ ( p1,t7 )( p0,t2 )( p2,t5 ) } , { ( p1,t5 )( p2,t6 )( p0,t2 ) } 
{ ( p1,t5 )( p2,t7 )( p0,t2 ) } , { ( p1,t5 )( p2,t8 )( p0,t2 ) } 
{ ( p2,t6 )( p0,t2 )( p1,t8 ) } , { ( p2,t7 )( p0,t2 )( p1,t8 ) } 
{ ( p0,t2 )( p1,t8 )( p2,t5 ) } , { ( p2,t7 )( p0,t2 )( p1,t6 ) } 
{ ( p2,t8 )( p0,t2 )( p1,t6 ) } , { ( p0,t2 )( p2,t5 )( p1,t6 ) } 

B. Result of Matching between the tree1 in P and the 
tree2 in T 

Result of the matching between p13 in the P from t22 in the 
T, are the following: 
{ ( p14,t21 )( p13,t22 )( p15,t23 ) } , { ( p15,t21 )( p14,t23 )( 
p13,t22 ) } 
 
 

C. Result of Matching Between the tree1 in P and the star1 
in T. 

    - Result of matching between the tree p13 in P and the tree t2 
in T, are the following: 
{ ( p13,t2)(p14,t5)(p15,t8 )},{(p13,t2)(p14,t5)(p15,t7) }{ ( p13,t2 
)(p14,t5 )(p15,t6 )},{(p13,t2 )(p15,t5)(p14,t7) }{ ( 
p13,t2)(p14,t7)(p15,t8) }, {(p13,t2 )( p14,t7)( p15,t6 ) }{ ( p13,t2 
)( p15,t5 )( p14,t6 )} ,{(p13,t2)(p14,t6 )(p15,t8 )}{(p13,t2 
)(p14,t6 )(p15,t7 )}, {(p13,t2 )(p15,t5)( p14,t8 
)}{(p13,t2)(p14,t8)(p15,t7)},{(p13,t2)(p14,t8)( p15,t6 ) } 

D. Result of Matching Between the tree1 in P and the star2 
in T.  

Result of matching between the tree p13 in P from the tree t17 in 
T, are the following:  
{(p14,t18)(p15,t19)(p13,t17)},{(p13,t17)(p15,t18)( p14,t19 ) } 

E. Result of Matching Between the star2 in P and the star1 
in T. 

- Results of matching between the tree p7 in P from the t0 in T, 
are the following: 
{ ( p8,t9 )( p9,t3 ) , ( p7,t0 ) } , { ( p8,t9 )( p7,t0 )( p9,t10 ) }{ ( 
p8,t9 )( p7,t0 )( p9,t4 ) } , { ( p8,t9 )( p7,t0 )( p9,t1 ) } { ( p8,t9 )( 
p7,t0 )( p9,t12 ) } , { ( p8,t12 )( p9,t9 )( p7,t0 ) } { ( p8,t12 )( p9,t3 
)( p7,t0 ) } , { ( p8,t12 )( p7,t0 )( p9,t10 ) } { ( p8,t12 )( p7,t0 )( 
p9,t4 ) } , { ( p8,t12 )( p7,t0 )( p9,t1 ) } { ( p8,t10 ) , p9,t9 )( p7,t0 
) } , { ( p8,t10 )( p9,t3 )( p7,t0 ) } { ( p8,t10 )( p7,t0 )( p9,t4 ) } , 
{ ( p8,t10 )( p7,t0 )( p9,t1 ) } { ( p8,t10 )( p7,t0 )( p9,t12 ) }  
- Results of matching between the tree p10 in P from the t11 in 
T, are the following:  { ( p10,t11 ) } 
- Results of matching between the treep11 in P from the t2 in T, 
are the following: 
{ ( p11,t2 )( p12,t5 )}, {( p11,t2 )( p12,t8 )} 
{ ( p11,t2 )( p12,t6 ) } , {( p11,t2)( p12,t7) } 

F. Result of Matching Between the star 2 in P and the star 2 
in T.  

 - Results of matching between the tree p7 in P from the t13 in T, 
are the following:  
{ ( p8,t14 )( p9,t15)(p7,t13)},{ (p7,t13 )(p8,t15 )(p9,t14 ) } 
- Results of matching fro the treep11 in P from the tree t17 in T, 
are the following:  
{ ( p11,t17 )( p12,t18 ) }, { (p11,t17 )( p12,t19 ) } 
- Results of matching between the tree p10 in P and the t20 in T, 
are the following: { ( p10,t20 ) } 
6.1.2. Result Discussion 
As shown above, given algorithms are able to  compute all 
possible matching between the given pattern and target heaps. 
This concludes that the proposed algorithms  can meet their 
purposes, as required. This means that the problems given in this 
paper are solved,  based on the proposed algorithms. 

7. CONCLUSIONS AND FUTURE WORK  

A number of algorithms to verify the inclusion of graphs 
representing program that manipulate dynamic data structure are 
implemented in this paper. It is assumed that the given program 
has a simple data structure with a single next pointer, such as 
single linked lists and circular linked lists. The problems that 
have verified and described in the proposed algorithms were 
graph inclusion and matching. Based on this, some algorithms 
were designed in this paper to deal with inclusion and matching 
for different graphs, representing heaps, were implemented in 
this paper. 
    The results from given algorithms summarized and showed in 
this paper. Given results showed that the given algorithms are 
able to test the inclusion and matching for the given heaps. One 
future plan for this work is to extend the proposed algorithms on 
a program that manipulate more complex graphs so that different 
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data structures can be considered. For instance doubly linked 
list and tree like structures. 
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