

journals.uoz.edu.krd

Available online at sjuoz.uoz.edu.krd

Vol. 9, No. 1, pp. 30– 37, March-2021

p-ISSN: 2663-628X
e-ISSN: 2663-6298

 30

GRAPH INCLUSION AND MATCHING ALGORITHMS FOR PROGRAMS
MANIPULATING SINGLY LINKED HEAPS

Muhsin H. Atto a*

a Faculty of Science, University of Zakho, Kurdistan Region, Iraq – (muhsin.atto@uoz.edu.krd)

Received: Nov., 2020 / Accepted: Feb., 2021 / Published: Mar.,2021 https://doi.org/10.25271/sjuoz.2021.9.1.778

ABSTRACT:
Programs that manipulate heaps such as singlylinked lists, doublylinked lists, skiplists, and treesare ubiquitous, and hence
ensuring their correctness is of utmost importance. Analysing correctness properties for such programs is not trivial since they
induce dynamic data structures, leading to unbounded state spaces with intricate patterns. One approach that has been adopted to
tackle this problem is the use of symbolic searching techniques. The state space is encoded using graphs where the nodes
represent memory cells, and the edges represent pointers between the cells. It is necessary to prune the search to avoid generating
massive numbers of graphs, thus making the procedure unpractical. Pruning strategies are defined based on operations such as
graph matching and inclusion. In this paper, a set of algorithms for performing these operations are presented. It is demonstrated
that the proposed algorithms can handle typical graphs that arise in the verification of heap manipulating programs.

KEYWORDS: Trees; Heaps; Graph Inclusion; Graph Matching; Software Verification.

1. INTRODUCTION

The design of automatic methods to verify that the given
programs are safe and well formed is challenging. The way
that these programs are tested requires efficient algorithms
and hence different methods are crucial to verify that given
programs are safe and well formatted.
This includes merging two programs where the output
must be well sorted and structured. Many approaches have
been designed for addressing these problems for different
kind of programs and using different type of algorithms.
Each of these techniques uses special tools for investigating
special types of verification properties (Abdulla et al.,
2010), (Abdulla et al., 2008b).
Software verification used many techniques and
algorithms to verify that merging two programs representing
a singly data structure is also a safe program and is well
formatted and sorted. These verification methods need
algorithms to consider the graphs inclusion and matching,
representing given programs (Abdulla et al., 2011),
(Giamblanco and Anderson, 2019). Therefore, in this paper,
algorithms to verify graphs inclusion and matching for
programs representing heaps are designed and implemented.
In general, this paper aims to design some algorithms to test
the inclusion and then find matching between two graphs
representing a heap. More precisely,the proposed
algorithms are designed to decide for two heaps say G 1 and
G2 , whether G1 v G2, and then find all possible matching
where G2 can be included from the G1.
In this work, heaps are considered as graphs to represent a
linked lists with one next pointers. A heap is a graph
which follows the following properties: (1) possibly be
disconnected and (2) acyclic. Based on this, in this paper, it
is assumed that a heap consists of a set of stars and trees.
Therefore, in order to test the heap inclusion, new algorithms
must be designed to deal with the trees and stars inclusion
(Abdulla et al., 2008a), (Wimmer and Lammich, 2018).
The first algorithm to implement is described in (Valiente,
2005). This paper concerns the inclusion of one tree in
another. However, this algorithm is improved where the

This is an open access under a CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/)

whole target tree can be searched. This is because there might be
the case that two small trees are covered by one big tree. Defining
the exact nature of such a cover, and finding an algorithm for
computing it, is a part of the work presented in this paper.
The rest of the paper is organized as follows: In Section 2,
related work, research problem and motivations are given.
In Sections 3 and 4, stars and trees matching and inclusion
algorithms are described,respectively. Heaps inclusion is
illustrated in Section 5.

2. RELATED WORK

Several works considering the verification of singly linked lists
with data have been developed. These included new
techniques based on algorithm verification for finite graphs.
These algorithms were designed to verify the safety of the
programs with different factors based on different methods.
Graph connectivity, graphs inclusion and matching are the
core idea for most of these techniques. However, they used
different graph ordering which let to different algorithms and
concepts (Abdulla et al., 2010), (Valiente, 2005), (Abdulla
et al., 2009) and (Bouajjani, 2005).
The paper (Abdulla et al., 2010) proposed a new verification
method for programs representing linked lists. This approach
relied on a backward reachability analysis using a term named
signatures in order to verify the safety of the given program.
This method was another powerful tool and model for
verifying designed for the aim to identifying bad heaps
which have graphs representing bad lists, such as not sorted
and not well organized lists.
The paper (Valiente, 2005) uses tree inclusion algorithm to
check if the given pattern tree can be included in the target
tree, by using some graph ordering algorithms. This algorithm
used bipartite based graphs to verify graphs inclusion. This
method stops searching when the first sub tree in the target
tree is found. In this paper, this algorithm is improved so that all
possible sub trees in the target tree can be found when the given
patten tree can be included in each of them. This improvement is
necessary when some factors need to be considered before the
proper target tree is selected.

M. Atto / Science Journal of University of Zakho 9(1), 30-37, March-2021

 31

Another method to verify software manipulating linked
lists is developed in (Abdulla et al., 2008b). This
verification technique used a tool called symbolic
(backward) reachability analysis based on graphs
representing heaps. Different tools was used to find the set of
minimal graph patterns corresponding to a set of bad
conjurations (Berdine et al., 2007), (Gotsman et al., 2006).
The paper (Abdulla et al., 2011) implemented the use of
monotonic abstraction and backward reachability analysis
as means of performing programs with multiply pointed
structures. This method uses signatures to predicates and
define sets of bad configuration based on given heaps
(Magill et al., 2007).
Another powerful tool and model for verifying programs
based on a special technique is proposed in (Gallardo et al.,
2008). This method was designed to check and verify
programs written in C programming language with a
dynamic memory allocation. This approach used the
concept of heap structures to represent different data
structures, such as vectors.
A new framework for program verification based on regular
model checking is proposed and designed in
(Bouajjani, 2005). This approach considered a non-
recursive programs manipulating data structures with one
next pointers, such as singly linked lists and circular lists.
A new technique for calculating and refining the
abstractions of the reachable graphs representing given
programs was designed in this framework.
An automated approach is presented in (Bouajjani et al.,
2006). This technique was aimed to ensure that the given
program is safely terminated. The proposed method used a
new counter to represent a method, which verifies that if the
given program is safe and well structured.

2.1. Problem Statement and Motivation

Based on the given related work, non of the given
methods stated if the full matching for the graphs inclusion
were used. Therefore, non of the given methods can be used
when all the possible matching between the pattern and the
target graphs are crucial to be considered. This is the case,
when given graphs need to consider all possible matching
in order to select the best possible match. An example of this
case is when the proposed verification method needs to
consider linked lists which share some special relations(
such as equality and inequality relations).
To find all possible matching between given graphs, new
efficient algorithms and methods need to be implemented.
This is because given graphs can have many possible
matching when the first graph can be included in the second
graph. Therefore, the problem which motivated me to
propose this work is designing new algorithms where all
the possible matching between given graphs (heaps) can
be calculated, based on different methods.
Based on this, the following are the novel motivations
given in this paper:

1. Modify the algorithm given in (Valiente, 2005) so that
is could be used to check the trees inclusion from their
roots.
2. Design a new algorithm to check acyclic based graphs
inclusion and matching.
3. Design new algorithms to check the heaps inclusion
and matching.
4. Implement new methods to find all possible matching
between given graphs using the proposed algorithms.

3. TREE MATCHING AND INCLUSION

 3.1. Tree Inclusion

In this section, the algorithm given in (Valiente, 2005)
is described. This algorithm is designed to solve the trees
inclusion. However, this algorithm needs to be improved
when different factors are considered. Details about this
algorithm and the new improvement will be discussed in the
rest of this section.
A tree can be denoted by a graph, where each node has only
one path from the root of the the given tree and all nodes can be
reached from the root. Each node has one parent and a set of
children. The root node has no parent. This means that a tree is
a connected and acyclic graph where each node has at most
one successor (Wimmer, 2016).
In this section, for given two trees T1 and T2, algorithms
to verify if T2 can be included from the T1 is described. The
given algorithm checks a sub tree form the T1 can be allocated
where T1 could be included and matched. This algorithm depends
on the methods given in (Valiente,2005), which involves using
bipartite matching problems to test inclusion for the given trees.
Given p ∈ T1 and t ∈ T2, where t has children t1, t2, ..., tn and p
has children p1, p2,..., pm. In order to determine whether T1[p]
can be included in T2[t]. It suffices to know if T1[x] ⊆ T2[y],
for all x ∈ { p1, p2,..., pm } and y ∈ {t1,t2,...,tn }. Moreprecisely,
given two vertices p ∈ T1 and t ∈ T2, to decide
whether T1[p] v T2[t], construct a bipartite graph G =
({t1,t2,t3,...,tn }U { p1, p2, p3,..., pm },E) with (tj, pi) ∈ E. We say
T1[p] can be included from T2[t] iff G has at least one matching.
We write S(t) to denote the included sub tree at node t ∈ T2. We
compute S(t) as follows: S(t) = { p ∈V(T1) | T1[p] v T2[t]}.
We say that T1 can be included in T2 if root(T1) ∈ S(t).
Bipartite Graph: Given a graph G =(V,E), G is a bipartite graph,
if all vertices in G can be separated into two groups where no
two vertices within the same group are adjacent (Abdulla et
al., 2010). Bipartite graph is used in the proposed
algorithms given in this paper. This is to find the proper match
between given graphs in order to check the graph inclusion
(Asratian et al., 1998). An example of bipartite graph
matching is given in figure 1.
Matching in a Bipartite graph: Given a bipartite graph G =
(V,E), a possible matching in G is a subset of edges M ⊆ E, where
no edges has both the start and end vertices from the same set.
Hopcroft–Karp algorithm (Katrenic and Semanisin,2011) is to
used to find the matching. The following are two possible
matching in the Figure 1.

(1, 2) , (3, 4) , (5, 6) and (1, 6) , (3, 2) , (5, 4) .
 Figure 1: Matching in a Bipartite Graph

3.2. Trees Inclusion Algorithm

As mentioned before, a tree inclusion algorithm given in this
section is based on the specification given in (Valiente,
2005). This algorithm determines the smallest sub tree in T where
P can be included. In this case, the whole target tree is not used
to find more sub trees where P can be included. In additional, it
may be required to check if P can be included from T, through
their roots. These two aspects were not implemented in the
algorithm given in (Valiente, 2005).

M. Atto / Science Journal of University of Zakho 9(1), 30-37, March-2021

 32

Based on this, two new algorithms are designed. The first
algorithm is modified when the whole target tree is
considered to find all possible sub trees in T1 such that T2
can be included. The second algorithm is designed so that it
checks if for given tree T1 and tree T2, T1 can be included
from the root of the T2. This means that the root of the T1
must be matched only to the root of the T2, otherwise, T1
can not be included in T2.
The second algorithm is modified based on the first
algorithm where the whole target tree is tested for the
trees inclusion until a sub tree is found where the root of the
T1 can be included from the root of the T2. This means that,
this algorithm follows most of the steps given in the first
algorithm, except that it returns true if T1 can be included
from the root in the T2, otherwise, returns false. The required
problems and the design of the modified algorithms are given
below.

Problem Definition 1: Let T1 =(V,E) be a pattern tree
and T2 =(V,E) be a target tree, this algorithm is
designed to determine a smallest sub tree in T2 whether T1
can be included. For example, given a target tree T1 and a
list of pattern trees P1, P2, P3, P4 and P5, shown below,
check if any of the given pattern trees can be included
from the given target tree, using the algorithm 1.

 Figure 2: Examples of Trees Inclusion

 Figure 3: Examples of Trees Inclusion,from roots

Problem Definition 2: Given trees T , and a list of trees in P,
shown below, decide whether any given P can be included in T,
from roots, using the algorithm 2..

3.3. A complexity of the Modified Algorithm

The second algorithm 2 is required where all the matching
between given trees are needed. In this case, this algorithm
finds all possible matching between given trees from their roots.
Therefore, the complexity of the modified algorithm is based on
number of the sub trees from the target tree which pattern tree
can be included. Let assume that complexity of the algorithm 1
is C, then the modified algorithm could test trees inclusion in
a cost = C * a, where a is the number of matching between
given trees, from roots. This led us to the conclusion that the
modified algorithm does not increase the complexity of the
algorithm 1.

3.4. Tree Matching

In the graph theory, matching is a set of edges without
common vertices. Matching is required when all possible
cases are considered to find the perfect matching between
given graphs (Katrenic and Semanisin, 2011), (Duan et al., 2018).
In this paper, all possible match between given graphs is
considered. This is the novel contribution for this work over the
related works.
All possible matching is computed based on two different
concepts. These concepts are called Children propagation
and Matching Propagation. Therefore, new algorithms to find
all possible matching for two trees, if there is any, are given
in this section. The required notations and terminologies of the
designed algorithms are given, then the details about trees
matching algorithms with some examples are described.
3.4.1. Notations and Terminologies
Matching Concept: If we have two trees, T 1 and T 2 , in order
to find matching for T 1 from T 2 , we have to find all possible
sub trees from the T 2 where T 1 can be included. Matching is
assumed to be a set of edges where each vertex from the pattern
tree has a corresponding vertex from the target tree.

M. Atto / Science Journal of University of Zakho 9(1), 30-37, March-2021

 33

Therefore, new algorithms to find all possible matching for
two trees, if there is any, are given in this section. The
required notations and terminologies of the designed
algorithms are given, then the details about trees matching
algorithm with some examples are described. These two
concepts are described below.
As mentioned before, Children Propagation and Matching
Propagation are used to find all possible matching for given
trees. These two methods are given below.
Children Propagation: Given two trees T1 and T2 , Let t1 ,
t2 ,t3 , . . . , tn be children of a t ∈ T2 . It is assumed that r
to be a two dimensional array that will contain matching
between each vertex in T1 and corresponding vertex in T2.
The children propagation is defined for a given vertex p ∈ T1
and vertex t ∈ T2 as a set of matching between t and children
of p. More precisely, children propagation is computed
as follows: Children propagation:= r[p,t1] ∪ r [p,t2]
∪, . . . , ∪r [p,tn] , as shown in the algorithm 3.

Matching Propagation: Given two trees T1 and T2 and t∈T
1 , p ∈ T2 , let t 1 , t2 , t3 , . . . , t n be children of t, and p1,
p2 , p 3 , . . . , pm be a children of p. Suppose that r is a two
dimensional array will contain all possible matching for T1
from T2 . A bipartite graph G =(V,E), where V : = { p 1 , p
2 , p 3 , . . . , pm } ∪ {t1 ,t2 ,t3 , . . . ,tn } is constructed with
(pi ,tj) ∈ E, if and only if r [pi ,tj] = 0, where 1 ≤ i ≤ m and
1 ≤ j ≤ n.
A two dimensional array M is defined to contain all possible
matching for graph G. Matching propagation is defined for p
and t as a set of matching between children of t and p. For
each match ((p1 ,t1) , ..., (pm ,tn)) ∈ M, matching
propagations is computed as follows:
Matching propagation := r [p 1 ,t 1] ⊕r [p 2 ,t 2] ⊕, . .
. , ⊕r [pm ,tn] , where ⊕ defined as follows: Given two sets
A and B, A ⊕ B = { a.b | a ∈ A and b ∈ B }. New algorithms
for these methods are designed in this section, as shown in
the algorithm 4.

Poblem Definition: Let P = (V , E) be a pattern tree and T
= (V , E) be a target tree, the problem is to find all possible
matching for P from T, using the algorithm 3.

 Figure 4: Trees Matching

The following are all possible matching between matching
for given pattern tree from the given target the pattern and
target trees , as shown in the Figure 4. As shown below, there are
24 possible matching:

{(a,1),(b,2),(c,3)},{(a,1),(b,4),(c,7)},(a,1),
(b,5),(c,7)},{(a,1),(b,6),(c,7)}{(a,2),(b,4),
(c,7)},{(a,2),(b,5),(c,7)},{(a,2),(b,6),(c,7)},{(a,2),(b,
4),(c,7)},{(a,2),(b,1),(c,3)},{(a,3),(b,5),(c,7)},{(a,3),
(b,6),(c,7)},{(a,3),(b,4),(c,7)},{(a,4),(b,6),(c,5)},{(a,
4),(b,2),(c,7)},{(a,4),(b,1),(c,7)},{(a,4),(b,6),(c,7)},{
(a,6), (b,4),(c,5)},{(a,5),(b,1),(c,7)},{(a,5),(b,2),
(c,7)},{(a,5),(b,3),(c,5)},{(a,6),(b,4),(c,7)},
{(a,6),(b,3),(c,7)},{(a,6),(b,1),(c,7)},{(a,6),(b,2),(c,7
)}

4. STARS MATCHING AND INCLUSION

In order to test the heaps inclusion, new algorithms to test star
graphs representing the heaps are required. Therefore, in
this section, a new algorithm to deal with stars inclusion
problems is designed. This algorithm tests whether given
pattern star is included in the target star. In this case, this
algorithm must accept trees as input, rather than stars. All
notations and concepts used in the proposed algorithm are
defined, then the implementation of the stars inclusion and
matching algorithms, with some definitions and examples, are
described.
A star is a connected graph where all nodes or vertices in the
given graph has maximum one parent. This means that graphs
representing stars could have no root. Therefore, a star can be a
set of trees where their roots are connected through a simple
cycle.

4.1. Stars Inclusion

Notations and terminologies: The two stars given in the
proposed stars inclusion and matching algorithms are called by
pattern star and target star. Pattern star is represented by P and
the target star is represented by T. Given a star S(V,E),where
V is a set of vertices and E is a set of edges, V is given by V(S)
and E is given by E(S), respectively. A list of nodes in the cycle
for the given S is denoted by Cycle(S). The operations to get a
successor of a node t ∈ S is denoted by S.succ(t). The sub-
tree rooted at a node t is denoted by S[t].
Preprocessing: To test the proposed star inclusion algorithm,
the following operations are required, before the proposed
algorithm is applied:
1. Alg(T1,T2): is considered to be the algorithm to check
trees inclusion from the roots. This algorithm returns true if
given trees can be included from their roots.
2. Extract Trees from a Star: Before stars inclusion algorithm
can be applied to the given stars, both the target star and the
pattern star need to be extracted and converted to a list of trees.
A new algorithm is required to extract trees from the given stars,

M. Atto / Science Journal of University of Zakho 9(1), 30-37, March-2021

 34

where these trees are connected through a cycle. Based on
this, a new algorithm to do this is designed in this paper and
its implementation is given below.

4.1.1. Stars Inclusion Algorithm

A new algorithm to test whether a star is included in
another star is implemented in this paper. The
proposed algorithm depends on the list of the extracted
trees from both stars in order to decide if given stars
can be included. This means that given stars can be included
if only a list of the trees from the first star can be included
from the trees in the second star, using tree inclusion
algorithms, given in the previous sections.
Let assume that L1 is a set of trees for the star and L2 is a set
of trees for the target star. In order to test the inclusion of L1
from L2 , it is important to check that for each tree p ∈ L1
there is a tree t ∈ L2 , such that p can be included in t, from
their roots. If it is found that all trees in L1 can be included
in L2 , then the given star algorithm returns true,
otherwise, it returns false.
This algorithm accepts trees as input. This means that if P is
a tree and T is star, this algorithm converts T into a set
of trees based on the extract trees algorithm given above. It
returns true if and only if given tree P can be included
in one of the extracted trees from T, sing the tree
inclusion algorithms, denoted by AlgRoot (P, T) .

Figure 5: Stars Inclusion

Figure 6: A Tree to Star Inclusion

Problem Definition 1: Let P =(V,E) be a pattern star and
T = (V,E) be a target star, the algorithm given in this section
decides whether P can be included in T. An example of the
star to star inclusion is given in the Figure 5.

Problem Definition 2: Given a tree P and a star T, as shown in
the figure 6, the problem defined by the algorithm defined
in this section is to decide whether P can be included in T.

2. Stars Matching

The star Matching algorithm is designed to find all
matching between stars P and T where P can be included in T. In
this section, given two stars S1 and S2, the algorithms to find all
possible matching between S2 that S1 are described.
A list of possible matching for given stars can be obtained based
on the trees matching algorithm. This algorithm finds a set of
matching for the extracted trees from stars P and T. A bipartie
graph based on P and T is constructed and then all possible
matching are generated when both the extracted trees can be
matched between P and T. More details about this algorithm
is given below.
Given two stars, S1, S2, to find all possible matching for S1 from
S2, the following operations are required:

• TreeToTree(T1,T2) is used to find possible matching
for given stars P and T, based on trees given in L1 from L2.

• To find all possible matching for S1 from S2, all
possible combinations between L1 and L2 arecomputed,
based on the trees inclusion. As set of possible matching for the
given pattern star from the given target star are shown below:
{{(a,3), (b,4)},{(a,4),(b,3)}}.

 A list of trees from both S1 and S2, let say L1 and L2

respectively, using tress extract algorithm, are extracted.

Problem Definition 3: Given two stars P and T, shown in the
Figure 7, Stars Matching algorithm finds all possible
matching for P from T, only where P can be included from the T.

Figure 7: Stars Matching

Figure 8: A Tree to Star Matching
Problem Definition 4: Given a tree P and a star T, shown
in the Figure 8, the problem defined by this algorithm is to
find all possible matching for P from S. The following are a set
of matching for the given pattern tree from the given target star.

{(a,1),(b,2),(c,3)},{(a,1),(b,2),(c,4)},{(a,1),(b,4),
(c,3)},{(a,2),(b,1),(c,3)},{(a,4),(b,1),(c,3)},{(a,2),
(b,4),(c,3)} {(a,4),(b,2),(c,3)}

M. Atto / Science Journal of University of Zakho 9(1), 30-37, March-2021

 35

5. HEAPS INCLUSION ALGORITHMS

In this section, a new algorithm to test whether a heap is
included in another heap, is implemented. First, heaps and
their representations are given, then the ordering relations
between cells in heaps are described.
All notations and terminologies need to be used in heap
inclusion algorithm, are outlined. This paper aims to
design new algorithm to test the heaps inclusion, based on
the stars and trees inclusion and matching algorithms.
A heap is represented as a graph, where this graph is a set of
trees and stars. In summary, a graph H is said to be a heap if
the following properties are satisfied:
1. Is a set of trees.
2. Is a set of stars.
3. Combination of trees and stars.
An example of a graph representing the heap is given in the
Figure 9.

Figure 9: An example of Graph representing Heap

5.1. Heaps Ordering and Representation

Ordering relations between cells in a heap are represented
by the following graphs:

1. Equality Graph: The equality ordering relations
between vertices in the graph that represents a heap is defined
by Equality graph. A set of edges in this graph represent the
equality relations (if any) in the graph represents a
corresponding heap.
2. Inequality Graph: The inequality ordering relations
between vertices in the graph, that represents a heap, is
denoted by an Inequality relation , where edges in this graph
represent the Inequality relations in the graph that represents
a corresponding heap.
3. Structural Graph: This graph represents the structure
the heap corresponding to the given graph.

The inclusion algorithm for two components (trees or stars),
in which defined in the previews sections, is denoted by
StarToStar (P, T) , where P is a pattern star and T is a target
star. A TreeToTree (P, T) , where P is a pattern tree and T
is a target tree. It is assumed that a heap is combination of
trees and stars. Given a heap H, the method to find a set of
components for H is denoted by getComponent (H) .
5.2. Heap Inclusion Algorithm
As mentioned before, a new algorithm to test whether a heap
is included in another heap, is implemented. Given two heaps
H1, H2, a problem given by the proposed heap inclusion
algorithm is to check if given H1 can be included from the
H2, using the stars and trees inclusion and matching
algorithms.
More precisely, in order to test the inclusion H1 in H2, there
must be a set of vertices in H2, such that all vertices and edges
from all graphs that represent ordering relations in H 1 are
included. All components from H1 and H2 are required to be
matched. The solution is to find the matching between all the
components given in both heaps. Due to this, new algorithms
to find all possible matching between two stars and trees were
designed in this paper.
In order to find all possible matching for H1 from H2, a new
bipartite graph G = (S 1 ∪ S 2 , E), where S1 and S2 are the
set of components from H1 and H2, respectively, using

getComponenets operation described above, are constructed. (s
i , s j) ∈ E if and only if the matching for si from sj is not empty,
where si ∈ S1 and sj ∈ S2.

Figure 10: An example of Heap Inclusion

Figure 10: Heaps Inclusion

6. RESULTS FROM THE PROPOSED ALGORITHMS

In this section, the proposed algorithms were tested based on the
given heaps. The first heap is called pattern heap and denoted by
P. The second heap is called the target heap and it is denoted by
T . The heaps P and T consist of a set of trees and stars.
Therefore, when given heaps were tested, both stars and trees
inclusion and matching algorithms were involved. When the
given heap algorithm finds that P can be included from the T,
then all possible matching between the heap P and T were
calculated, based on the stars and trees algorithms.
Before results from the given heaps inclusion are given, each
component from the heap P with the corresponding component
from the heap T, are shown.

6.1. Result from the Heap to Heap inclusion and Matching

The heaps (Pattern and Target) given in figures 11 and 12 were
tested based on the algorithms proposed in this paper. A heap
inclusion uses all of the stars and trees inclusion algorithms
where given heaps were tested. This is due to the fact that heap
is a graph represented by a set of components, as mentioned
before. Each of these component is either a star or a tree.
Therefore, in order to test the heaps inclusion algorithm, the trees
inclusion and stars inclusion algorithms must be used. This
means that, the results given in this section includes all the
algorithms proposed in this paper.
The graphs given in the Figures 11 and 12 are the pattern and
target heaps which were given to the heaps inclusion. Each of
these heaps consists of a set of stars and trees. Therefore, given
stars in the pattern heap must be matched in the corresponding
stars in the target stars. Trees must be matched from the pattern
heap to the target heap.

M. Atto / Science Journal of University of Zakho 9(1), 30-37, March-2021

 36

 Figure 11: A Pattern Heap

 Figure 12: A Target Heap

 The following are result of the proposed algorithms given in
this paper:

A. Result of Matching Between the star1 in P and the
star1 in T

- Based on the graphs given above, the following are result
of matching of the tree p6 in the heap P from the sub-tree t11
in heap T. { (p6,t11) }
- Results of matching for the tree p3 in P from the tree t0 in
T, are the following:
{ (p5,t4)(p4,t10)(p3,t0) } , { (p4,t10)(p5,t12)(p3,t0)
}{ (p4,t10)(p5,t9)(p3,t0) } , { (p4,t10)(p3,t0)(p5,t3) }
{ (p4,t10)(p3,t0)(p5,t1) } , { (p5,t4)(p4,t1)(p3,t0) } {
(p5,t10)(p4,t1)(p3,t0) } , { (p4,t1)(p5,t12)(p3,t0) } { (
p4,t1)(p5,t9)(p3,t0) } , { (p4,t1)(p3,t0)(p5,t3) } { (
p5,t10)(p4,t4)(p3,t0) } , { (p5,t12)(p4,t4)(p3,t0) } { (
p4,t4)(p5,t9)(p3,t0) } , { (p4,t4)(p3,t0)(p5,t3) }{ (p4,t4
)(p3,t0)(p5,t1) } , { (p5,t4)(p3,t0)(p4,t9) }{ (p5,t10)(
p3,t0)(p4,t9) } , { (p5,t12)(p3,t0)(p4,t9) } { (p3,t0)(
p5,t3)(p4,t9) }
- Result of matching between the tree p0 in P from the tree t2
in T, are the following:
{ (p1,t7)(p2,t6)(p0,t2) } , { (p1,t7)(p2,t8)(p0,t2) }
{ (p1,t7)(p0,t2)(p2,t5) } , { (p1,t5)(p2,t6)(p0,t2) }
{ (p1,t5)(p2,t7)(p0,t2) } , { (p1,t5)(p2,t8)(p0,t2) }
{ (p2,t6)(p0,t2)(p1,t8) } , { (p2,t7)(p0,t2)(p1,t8) }
{ (p0,t2)(p1,t8)(p2,t5) } , { (p2,t7)(p0,t2)(p1,t6) }
{ (p2,t8)(p0,t2)(p1,t6) } , { (p0,t2)(p2,t5)(p1,t6) }

B. Result of Matching between the tree1 in P and the
tree2 in T

Result of the matching between p13 in the P from t22 in the
T, are the following:
{ (p14,t21)(p13,t22)(p15,t23) } , { (p15,t21)(p14,t23)(
p13,t22) }

C. Result of Matching Between the tree1 in P and the star1
in T.

 - Result of matching between the tree p13 in P and the tree t2
in T, are the following:
{ (p13,t2)(p14,t5)(p15,t8)},{(p13,t2)(p14,t5)(p15,t7) }{ (p13,t2
)(p14,t5)(p15,t6)},{(p13,t2)(p15,t5)(p14,t7) }{ (
p13,t2)(p14,t7)(p15,t8) }, {(p13,t2)(p14,t7)(p15,t6) }{ (p13,t2
)(p15,t5)(p14,t6)} ,{(p13,t2)(p14,t6)(p15,t8)}{(p13,t2
)(p14,t6)(p15,t7)}, {(p13,t2)(p15,t5)(p14,t8
)}{(p13,t2)(p14,t8)(p15,t7)},{(p13,t2)(p14,t8)(p15,t6) }

D. Result of Matching Between the tree1 in P and the star2
in T.

Result of matching between the tree p13 in P from the tree t17 in
T, are the following:
{(p14,t18)(p15,t19)(p13,t17)},{(p13,t17)(p15,t18)(p14,t19) }

E. Result of Matching Between the star2 in P and the star1
in T.

- Results of matching between the tree p7 in P from the t0 in T,
are the following:
{ (p8,t9)(p9,t3) , (p7,t0) } , { (p8,t9)(p7,t0)(p9,t10) }{ (
p8,t9)(p7,t0)(p9,t4) } , { (p8,t9)(p7,t0)(p9,t1) } { (p8,t9)(
p7,t0)(p9,t12) } , { (p8,t12)(p9,t9)(p7,t0) } { (p8,t12)(p9,t3
)(p7,t0) } , { (p8,t12)(p7,t0)(p9,t10) } { (p8,t12)(p7,t0)(
p9,t4) } , { (p8,t12)(p7,t0)(p9,t1) } { (p8,t10) , p9,t9)(p7,t0
) } , { (p8,t10)(p9,t3)(p7,t0) } { (p8,t10)(p7,t0)(p9,t4) } ,
{ (p8,t10)(p7,t0)(p9,t1) } { (p8,t10)(p7,t0)(p9,t12) }
- Results of matching between the tree p10 in P from the t11 in
T, are the following: { (p10,t11) }
- Results of matching between the treep11 in P from the t2 in T,
are the following:
{ (p11,t2)(p12,t5)}, {(p11,t2)(p12,t8)}
{ (p11,t2)(p12,t6) } , {(p11,t2)(p12,t7) }

F. Result of Matching Between the star 2 in P and the star 2
in T.

 - Results of matching between the tree p7 in P from the t13 in T,
are the following:
{ (p8,t14)(p9,t15)(p7,t13)},{ (p7,t13)(p8,t15)(p9,t14) }
- Results of matching fro the treep11 in P from the tree t17 in T,
are the following:
{ (p11,t17)(p12,t18) }, { (p11,t17)(p12,t19) }
- Results of matching between the tree p10 in P and the t20 in T,
are the following: { (p10,t20) }
6.1.2. Result Discussion
As shown above, given algorithms are able to compute all
possible matching between the given pattern and target heaps.
This concludes that the proposed algorithms can meet their
purposes, as required. This means that the problems given in this
paper are solved, based on the proposed algorithms.

7. CONCLUSIONS AND FUTURE WORK

A number of algorithms to verify the inclusion of graphs
representing program that manipulate dynamic data structure are
implemented in this paper. It is assumed that the given program
has a simple data structure with a single next pointer, such as
single linked lists and circular linked lists. The problems that
have verified and described in the proposed algorithms were
graph inclusion and matching. Based on this, some algorithms
were designed in this paper to deal with inclusion and matching
for different graphs, representing heaps, were implemented in
this paper.
 The results from given algorithms summarized and showed in
this paper. Given results showed that the given algorithms are
able to test the inclusion and matching for the given heaps. One
future plan for this work is to extend the proposed algorithms on
a program that manipulate more complex graphs so that different

M. Atto / Science Journal of University of Zakho 9(1), 30-37, March-2021

 37

data structures can be considered. For instance doubly linked
list and tree like structures.

REFERENCES

Abdulla, P., Atto, M., Cederberg, J., and Ji, R. (2010). Automatic
verification of dynamic data-dependent programs. LNCS,
5799:1–25.

Abdulla, P., Bouajjani, A., Cederberg, J., Haziza, F., Ji, R., and
Rezine, A. (2008a). "shape analysis via monotonic
abstraction". Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik.

Abdulla, P., Bouajjani, A., Cederberg, J., Haziza, F., and Rezine, A.
(2008b). "monotonic abstraction for programs with
dynamic memory heaps",lncs. volume 5123, pages 341–
354.

Abdulla, P., Cederberg, J., and Vojnar, T. (2011). "monotonic
abstraction for programs with multiply-linked
structures",lncs. volume 6945, pages 125–138.

Abdulla, P., Delzanno, G., Henda, N., and Rezine, A. (2009).
Monotonic abstraction: on efficient verification of
parameterized systems. Int. J. Found. Comput. Sci., 20:779–
801.

Asratian, A. S., Denley, T. M. J., and Häggkvist, R. (1998). Bipartite
Graphs and Their Applications. USA.

Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P. W.,
Wies, T., and Yang, H. (2007). Shape analysis forcomposite
data structures. In Damm, W. and Hermanns, H., editors,
Computer Aided Verification, pages 178–192,
Berlin,Heidelberg. Springer Berlin Heidelberg.

Bouajjani, A. (2005). "regular model checking for programs with
dynamic memory". 1:17–22.

Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., and Vojnar,
T. (2006). "programs with lists are counter automata". In Ball,
T. and Jones, R. B., editors, "Computer Aided Verification",
pages 517–531, Berlin, Heidelberg. Springer Berlin Heidelberg.

Duan, R., Pettie, S., and Su, H.-H. (2018). Scaling algorithms for
weighted matching in general graphs. ACM Trans. Algorithms,
14(1).

Gallardo, M.-d.-M., Merino, P., and Sanán, D. (2008). "model checking
c programs with dynamic memory allocation". pages 219 – 226.

Giamblanco, N. and Anderson, J. (2019). "asap: Automatic sizing and
partitioning for dynamic memory heaps in high-level synthesis",
icfpt. pages 275–278.

Gotsman, A., Berdine, J., and Cook, B. (2006). Interprocedural shape
analysis with separated heap abstractions. In Yi, K., editor,
Static Analysis, pages 240–260, Berlin, Heidelberg.

Katrenic, J. and Semanisin, G. (2011). A generalization of hopcroft-karp
algorithm for semi-matchings and covers in bipartite graphs.
CoRR, abs/1103.1091.

Magill, S., Berdine, J., Clarke, E., and Cook, B. (2007). Arithmetic
strengthening for shape analysis. In Nielson, H. R. and Filé, G.,
editors, Static Analysis, pages 419–436, Berlin, Heidelberg.

Valiente, G. (2005). Constrained tree inclusion. Journal of Discrete
Algorithms, 3(2):431 – 447.

Wimmer, S. (2016). Timed automata. Archive of Formal Proofs.
Wimmer, S. and Lammich, P. (2018). Verified model checking of timed

automata. In Beyer, D. and Huisman, M., editors, Tools and
Algorithms for the Construction and Analysis of Systems, pages
61–78, Cham. Springer International Publishing.

