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ABSTRACT: 
The numerical solution for a time-fractional diffusion equation supplemented with initial and boundary conditions is considered. 
The scheme is based on the Galerkin finite element method. The uniform space discretization is applied to study the stability of 
the solution of the problem within our approach. An analytically solvable example is presented to make a comparison between the 
exact solution and our numerical solution. By presenting the absolute error with different step-sizes and different values for time-
fractional derivative, reliability and efficiency of our proposed numerical method is manifested.  
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1. INTRODUCTION 

Modelling real life phenomena are, in many cases, lead to 
Initial-Boundary Value Problems (IBVPs) which highly 
depend on the initial and boundary behaviour of the 
phenomena. Analytically solving these kind of problems 
(linear or non-linear) have always being a great challenge for 
researchers. However, when the integer order (time, space or 
both) of these problems is replaced by a fraction then the 
challenge is increased even further. This is simply because 
the analytical tools for fractional-order integration or 
differentiation is much more limited and restricted to some 
special cases or functions compared to integer order. 
Therefore, recently, seeking the numerical methods to solve 
fractional-order problems has attracted the attention of many 
researches. The fractional-order problems arise in modelling 
of many applications in different applied fields such as 
engineering, physics and some others. We do not mention 
any of these applications or any physical interpretation of a 
fractional derivative here, but for interested reader, they can 
be found in (Samko et al., 1993), (Hilfer, 2000), (Mainardi 
and Pagnini, 2003), (Kilbas et al., 2006), (Podlubny et al., 
2009) and the references there in. 
This paper focus on the numerical solution of 1D Time-
Fractional Diffusion Equation (TFDE) supplemented with 
initial and boundary conditions. This happens when the first-
order time derivative in the diffusion equation is replaced by 
a fraction, $\alpha$ say, where $0<\alpha<1$.  In some 
modellings both orders of derivative (in time and space) are 
replaced with fractions. In this case it is called Time-Space 
Fractional Diffusion Equations (STFDEs). Different 
numerical approaches have been studied on STFDEs and 
TFDEs. For example, (Ling and Yamamoto, 2013) used the 
Jacobi Spectral-Collocation Method and applied the 
eigenfunction approach to find a highly accurate numerical 
solution for STFDE with initial and boundary conditions. A 
comparison was made by (Atangana, 2015) for the two well-
known methods, Crank-Nicholson and the forward scheme, 
on 3D TFDE and he found a more efficient numerical result 
via stability analysis using the former method. Also TFDE 
studied with different finite element approaches and schemes 
by (Esen et al., 2013), (Tasbozan et al., 2013), (Esen et al., 
2014), and (Esen et al., 2015). They presented a 
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comprehensive work when zero source function is considered in 
their studies. The Mittag-Leffler function is used as the basis 
functions in (Hanert, 2010) and (Hanret & Piret 2012) for solving 
numerically the space-time fractional diffusion. 
In this work, we consider the following 1D fractional diffusion 
equation 
  
 

 𝜕∝𝑢
𝜕𝑡∝ = 𝑘

𝜕"𝑢
𝜕𝑥" + 𝑓, 

(1) 

 
where 0 < 𝛼 < 1, 𝑘 is the dimensionless diffusivity constant 
which will be considered unity in this work and 𝑓 = 𝑓(𝑥, 𝑡) is 
any given continuous functions in the domain 𝐷 = {𝑥:	𝑥 ∈
	[0, 1], 𝑡 ≥ 	0}. It is worth mentioning that for 1 < 𝛼 < 2, 
equation (1) represents the fractional diffusion-wave equation, 
see for example (Sun & Wu, 2006). Also for 0 < 𝛼 < 2, 
(Mainardi, 1996) used the Laplace transform to express the 
fundamental solution in terms of an auxiliary function for Cauchy 
and Signalling problems.  
The fractional diffusion equation (1) is subject to the initial 
condition 
 

 𝑢(𝑥, 0) = 𝑎(𝑥), (2) 
   

for all 𝑥 ∈ 	 [0, 1] and the boundary conditions 
 

 𝑢(0, 𝑡) = 𝑏(𝑡), (3) 
and  

 𝑢(1, 𝑡) = 𝑐(𝑡), (4) 
 
for all 𝑡 ≥ 	0. The functions 𝑎(𝑥), 𝑏(𝑡) and 𝑐(𝑡) are given 
continuous functions. The term 𝜕#	𝑢/𝜕	𝑡# on the left-hand side 
of equation (1) refers to the Caputo fractional-derivative of order 
0 < 𝛼 < 1 for the diffusion function 𝑢 = 𝑢(𝑥, 𝑡), see (Samko et. 
al., 1993)  and (Podlubny, 2009), which is defined as 

 
 $
∝%
$&∝

= '
(('*#)∫ (𝑡 − 𝜏)

#*' $%
$&
d𝜏&

, .     (5) 

Where Γ(⋅) is the spacial Euler's Gamma function which is a 
generalization of the factorial function for non-integer numbers. 
There are more definitions that can be used  instead of Caputo's 
for the fractional derivative and integral; the Riemann-Liouville 
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definition, Erdelyi-Kober fractional integral and derivative, 
Hadamard part fractional integral and derivative, Riesz 
fractional integral and derivative, and Grunwald-Letnikov 
fractional derivative. They are related to each other. For the 
relation between the two definitions of fractional derivative 
and integral given by Caputo and Riemann-Liouville and 
their difference, see (Samko et. al., 1993)  and (kilbas, 2006).   

2. WEAK FORMULATION  

Our approach in this section is to write the TFDE (1) in its 
weak form. Hence multiplying the TFDE (1) by the weight 
function Ψ(𝑥) and integrate both side over the interval [0, 1], 
that is 
 

 
 ∫ F$

∝%
$&∝

− $"%
$-"
GΨ	d𝑥'

, = ∫ 𝑓	Ψ		d𝑥'
, . (6) 

For simplicity, we choose the boundary conditions (3-4) to 
be homogeneous. Hence, integration by parts for the second 
integral on the left-hand side of (6) leads to 

 
 ∫ $∝%

$&∝
Ψ	d𝑥'

, + ∫ $%
$-

./
.0
		d𝑥'

, = ∫ 𝑓	Ψ		d𝑥'
, . (7) 

The reason we rewrite the weak form (6) as (7) is to allow us 
to use the linear B-spline basis functions for representation of 
the function 𝑢(𝑥, 𝑡) which will be given in details in the next 
section. Now, we are at a place to let the piece-wise linear 
functions to represent the diffusion function 𝑢(𝑥, 𝑡) using the 
weak form (7). 
 

3. NUMERICAL SOLUTION 

In this section we follow the Galerkin finite element method 
to solve the TFDE problem (1-4). First the time and space 
will be discretized uniformly as follows. The time is divided 
into 𝑁 equally-spaced time steps (with length 𝛿&),  𝑡' =
0, 𝑡", . . . , 𝑡1*', 𝑡1 = 𝑇, where the instants 𝑡 = 0 and 𝑡 = 𝑇 
are the initial and terminal time-steps, respectively. The 
space is partitioned into 𝑀− 1 equal subintervals, [𝑥2 , 𝑥23'] 
for 𝑖 = 1, 2, . . . , 𝑀 − 1, with 𝛿- = 𝑥23' − 𝑥2, where 𝑥' = 0 
and 𝑥4 = 1.  
With both the time and space discretized, we assume that the 
solution of the problem (1-4), 𝑢(𝑥, 𝑡), takes its approximation 
form in terms of piece-wise linear polynomial functions as 
follows 
 

  
𝑢(𝑥, 𝑡) =MMψ5(𝑥)	𝑢26

1

67,

4

27,

𝜑6(𝑡). (8) 

Here 𝑢26 are unknown coefficients which have to be 
determined and the set {𝜓2(𝑥)}27'274 consists of basis functions 
(linear B-spline) on the space domain and are defined as 
 

 

𝜓2(𝑥) = Q

0																										; 𝑥 ≤ 𝑥2*'											
𝑥 − 𝑥2																; 𝑥2*' ≤ 𝑥 ≤ 𝑥2
𝑥23' − 𝑥											; 𝑥2 ≤ 𝑥 ≤ 𝑥23'
0																										; 𝑥 ≤ 𝑥2*'												

. (9) 

 
Where the Caputo’s definition (5) of the basis functions given 
in (9) is 

 

𝜓2#(𝑥) =
𝛿-*'

Γ(2 − 𝛼)
⎩
⎨

⎧
0																; 𝑥 ≤ 𝑥2*'											
𝑥'*#								; 𝑥2*' ≤ 𝑥 ≤ 𝑥2
−𝑥'*#				; 𝑥2 ≤ 𝑥 ≤ 𝑥23'
0																	; 𝑥 ≤ 𝑥2*'												

. (10) 

 
It is shown in (Lin et al., 2020) that when Galerkin finite 
element method is followed the locality of the fractional 
derivative for the basis functions (9) is preserved. The set of 

the basis functions for time  W𝜑6(𝑡)X67'
671 is to be defined with the 

same manner as {𝜓2(𝑥)}27'274 in (9). 
Now, after time and space discretization and representing the 
solution $u(x, t)$ in terms of the basis functions we do the 
following. We substitute (8) into the weak form (7) and present 
the weight function Ψ(𝑥) by 𝜓8(𝑥), 1 ≤ 	𝑚 ≤ 	𝑀, the piece-
wise linear functions (9). Also we multiply both sides of the 
resulted formulation with the linear B-spline for time, 𝜑9(&), 1 ≤
	𝑛 ≤ 	𝑁, and integrate it with respect to time over the time period 
[0, 𝑇]. These steps lead to a set of discrete equations which can 
be written into the following matrix form  
 

 Π	Λ	Υ# +Ω	Λ	Θ = Σ. (11) 
	

Where for the time-derivative matrix Υ#, the superscript 𝛼 is used 
to easily distinguish the matrix that its terms deal with fractional 
derivative from the other matrices. The entries of the matrix Λ are 
the unknowns coefficients 𝑢26 which will construct the solution 
𝑢(𝑥, 𝑡) defined in (8). The matrices Π, Υ# , Ω, Θ and Σ have the 
known entries Π82, Υ69# , Ω82 , Θ69	$ and Σ89, respectively, which 
are defined as follows 

  	

Π82 = b 𝜓8(𝑥)	𝜓2(𝑥)
'

,
d𝑥	

 

(12) 

 
Υ69# = b

d:𝜑6
d𝑡: (𝑡)𝜑9(𝑡)

;

,
d𝑡	

 
(13) 

Ω82 = b
d𝜓8
d𝑥 (𝑥)	

d𝜓2
d𝑥 (𝑥)

'

,
d𝑥	

 

 
(14) 

Θ69 = b 𝜑6(𝑡)𝜑9(𝑡)
;

,
d𝑡	

 

 
(15) 

Σ89 = b b 𝜑8(𝑥)
;

,
𝑓(𝑥, 𝑡)𝜑9(𝑡)

'

,
d𝑡	d𝑥	

 

 
(16) 

We recall that the integrand 𝑓(𝑥, 𝑡) in (16) of the source matrix 
Σ is given. The entries, Π82 of the mass matrix Π, Ω82 of the 
diffusion matrix Ω, Θ69 of the matrix Θ and Σ89 of the source 
matrix Σ, are integrated straightforward. However, in (13), the 
integrand term d:𝜑6/d𝑡: with fractional-derivative will be 
differentiated using the Caputo's definition (5). Therefore, from 
(5) and (9-10), entries (13}) can be rewritten as 
 

Υ69# =
𝛿&*'

Γ(2 − 𝛼)cb −b
&#$%

&#

&#

&#&%
d𝑡'*#𝜑9(𝑡)d𝑡	

 
(17) 

 
Where by Caputo's definition (5), the fractional derivative of a 
constant is evaluated to be zero. In (17), 𝛿 is the time-step. 
It is clear that, the nature of these basis functions in finite element 
method is such that they always produce tri-diagonal matrices. 
All matrices, except Λ and Σ, in system (11) are tri-diagonal. This 
will be helpful when we deal with very fine discretizations that 
lead to huge matrices and when their implementation cause 
memory efficiency problems with slow calculations' speed. To 
avoid this, for example in MATLAB, sparse matrix can be 
constructed.  
To solve the system (11), we use the so-called Kronecker 
product, which allows us to rewrite the system (11) as the 
following 
 

 (Υ#;⭙ Π− Ω<⭙ 	Θ)	vec(Λ) = vec(Σ). (18) 
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In the new constructed system (18), the superscript '' ; '' 
stands for the transpose of the associated matrix, while the 
symbol ''⭙'' stands for the Kronecker product. For the 
definition of Kronecker product and its properties see 
(Bellman, 1997). Also in (18), vec(⋅) is a vector implemented 
by piling the columns of the matrix on top of one another. For 
the comparison of the current matrix approach and the matrix 
approach which is presented by (Podlubny et al., 2009), see 
(Hanert, 2010), section 4. 
The existence of a unique solution of (18) is granted if and 
only if the matrices Π, Υ# , Ω, and	Θ are non-singular, see 
(Horn & Johnson, 1991). Therefore, we are required to test 
the singularity (the condition number of the matrix) of all 
matrices we have in (11) to ensure the existence and 
uniqueness of its solution. Otherwise, for ill-posed problem 
one should seeks, for example, the methods of regularization 
to improve the condition number. More details on 
regularizations can be found in (Tikhonov et al., 2013). 
System (18) is to be supplemented with the given initial 
condition (2) and boundary conditions (3-4). Applying the 
same above conversation that led to (11), on the initial 
condition (2), it produces the following matrix equation 
  

 (Φ(0);⭙ Π	)	vec(Λ) = vec(𝐴). (19) 
 
Where the entries of the matrix 𝐴 are 
 

𝐴8 = b 𝜓8(𝑥)
'

,
𝑎(𝑥)d𝑥,	

 
(20) 

for 1 ≤ 	𝑚 ≤ 	𝑀, and Φ(0) contains the elements of the 
sequence W𝜑6(𝑡)X67'

671 at the time instant 𝑡 = 0. Also the 
Galerkin formulation is to be applied on the two given 
boundary conditions (3-4). Therefore, the conditions (3) and 
(4) take the following matrix forms, respectively 
 

 (Θ;⭙ Ψ(0)	)	vec(Λ) = vec(𝐵), (21) 
and 

 (Θ;⭙ Ψ(1)	)	vec(Λ) = vec(𝐶). (22) 
 
Here Ψ(0)	 and Ψ(1) contain the elements of the sequence 
{𝜓2(𝑥)}27'274 at the endpoints of the space domain, 𝑥 = 0 and 
𝑥 = 1, respectively,  and the entries 𝐵9	of 𝐵 and 𝐶9	of 𝐶 are 
defined as 

𝐵9 = b 𝜑9(𝑡)
'

,
𝑏(𝑡)d𝑡,	

 
(23) 

and 

𝐶9 = b 𝜑9(𝑡)
'

,
𝑐(𝑡)d𝑡,	

 
(24) 

for 1 ≤ 	𝑛 ≤ 	𝑁. 
 
The above-presented space and time discretization is 
uniform. The non-uniform mesh is usually applied to the 
unsteady problems with singularities which often occur in 
free-boundary problems, for example see (Ferziger & Peric, 
2012). In the next section, we demonstrate the above 
proposed scheme with an example. The space discretization 
is applied in two different number of grid points to examine 
the relative error of our numerical solution and the exact 
solution. This has been done to find the relative error 
response to the size of the subintervals [𝑥2 , 𝑥23'}], 𝛿-,2 =
𝑥23' − 𝑥2	for	𝑖 = 1, 2, . . . , 𝑀 − 1, when the time-step held 
fixed. Although a finer grid mesh lead to more storage and 
require longer computational time, but attention has to be 
always taken to the solutions' accuracy and stability.    
 

4. NUMERICAL EXAMPLE 

In this section we analyse the numerical solution's performance 
of the problem (1-4) using the above proposed method by going 
through an example. The performance of our scheme will be 
demonstrated by comparing the numerical and analytical 
solutions. Although the presented scheme works for non-
homogeneous boundary conditions, for simplicity, homogeneous 
boundary conditions are chosen for the given example.  Usually 
the analytical solution of such problems is beyond the capability 
of the present fractional analytical tools and cannot be found. 
That is why the numerical study of such problems is of great 
importance. However, for the reason of being able to compare 
our numerical solution with analytical solution, the time-
fractional initial-value problem (25-27) is taken to be our 
illustrative example with known analytical solution.   
We consider the governing equation to be the following time-
fractional diffusion equation 
  

𝜕∝𝑢
𝜕𝑡∝ = 𝑘

𝜕"𝑢
𝜕𝑥" + q

𝑡'*#

Γ(2 − 𝛼) + 𝜋
"(𝑡 + 1)s sin(𝜋𝑡), (25) 

 
defined in the domain 𝐷 = {𝑥:	𝑥 ∈ 	 [0, 1], 𝑡 ≥ 	0}. Equation (26) 
is supplemented with the initial condition 
 

 𝑢(𝑥, 0) = sin(𝜋𝑥) ,						0 ≤ 𝑥 ≤ 1,  (26) 
 
and the homogeneous boundary conditions 
 

𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0, 𝑡 ≥ 	0. (27) 
 
The analytical solution of (25-27) is 𝑢(𝑥, 𝑡) = (𝑡 + 1) sin(𝜋	𝑥)	. 
Since non-uniform discretization is necessary for solution which 
has rapid changes or singularities and 𝑢(𝑥, 𝑡) = (𝑡 + 1) sin(𝜋	𝑥) 
is smooth everywhere in the domain 𝐷, then we only perform 
uniform discretization. First, we implement the scheme with grid 
points 𝑀 = 200, space-step 𝛿- = 0.005, and time-step 𝛿& =
2.50𝑒 − 07 with 𝛼 = 0.95. The absolute error between both 
numerical and analytical solutions is shown in Figure 1a, which 
is of order 𝑂(10*>). Next, we halve the space-step with keeping 
the time-step unchanged, i.e. we divide the subintervals by two 
to validate the stability and convergence of our numerical 
solution. In Figure 1b, we found that as the grid points doubled 
(from 𝑀 = 200 with 𝛿- = 0.005 to 𝑀 = 400 with 𝛿- =
0.0025), the absolute error between both numerical and 
analytical solutions decreased by an order of 𝑂(10*'). Figures 
1a-1b show the decrease in absolute error between the analytical 
and numerical solutions when the grid points 𝑀 = 200 increased 
to 𝑀 = 400. The relative error has the same order of difference 
as the absolute error. As a result, increasing the mesh points leads 
to decreasing the absolute error and relative error, which 
confirms the convergence and stability of the present scheme. 
The same process has been carried out for 𝛼 = 0.9 with keeping 
every other details fixed to monitor the absolute error while we 
decrease the value of 𝛼. As it is shown in Table 1, there is an 
increase, roughly about an order of 𝑂(10*'). And as it is shown 
in Figures 2, as the fractional order 𝛼 decreases, the absolute error 
increases. 



H.J. Zekri / Science Journal of University of Zakho 9(1), 38-42, March-2021 

 41 

 
a) Number of grid points 𝑀 = 200. The absolute error is of 
order 𝑂(10*>). 
 

 
b) Number of grid points 𝑀 = 400. The absolute error is of 
order 𝑂(10*?). 
 
Figure 1. The absolute error between our numerical solution 
and the analytical solution 𝑢(𝑥, 𝑡) = (𝑡 + 1) sin(𝜋	𝑥) with 
𝛿 = 0.9. 
 
Table 1: Absolute error for linear B-spline with both step-
sizes 𝛿- = 0.005  and 𝛿- = 0.0025 and time-step 
𝛿& =2.50e-07 for 𝛼 = 0.9 and  𝛼 = 0.95. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 2. The maximum absolute error between our numerical 
solution and the analytical solution 𝑢(𝑥, 𝑡) = (𝑡 + 1) sin(𝜋	𝑥) 
when 𝛼 changes in the interval [0.5,1). Number of grid points  
𝑀 = 200. 
 

5. CONCLUSION 

In this paper we studied the numerical solution of a kind of an 
initial-boundary value problem of the time-fractional diffusion 
equation. The time-fraction order 𝛼 of the diffusion equation has 
to be ranged in the interval (0, 1). The Galerkin finite element 
method is applied on the weak formulation of the problem. Time 
and space discretizations have been proceeded by using the linear 
B-spline (hat functions) as the basis functions. In our 
demonstrated numerical example, we found the absolute error is 
of order of 𝑂(10*>) for 𝛿 = 0.9 with 𝛿- = 0.005 and it 
decreased to order of 𝑂(10*?)  for 𝛿- = 0.0025 by keeping 
time-step fixed. These confirm the reliability and efficiency of 
our proposed numerical method. Also we have found that this 
approach provides an approximate solution with the absolute 
error has order of 𝑂(10*?)  for the values of 𝛼 greater than 0.8 
while this order increases as 𝛼 decreases which then required a 
finer mesh to keep the absolute error on the order of 𝑂(10*?).  
 
For the future study, one can work on increasing the length of the 
interval, shown in Figure 2, where the absolute error is 
insignificant, which is of great importance. This will widen the 
usability of the scheme for the problems govern by TFDE with 𝛼 
close to zero. 
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0.36 1.0471e-05 2.3627e-06 1.4992e-06 1.0409e-07 

0.45 1.1438e-05 2.5777e-06 1.6369e-06 1.1382e-07 

0.54 1.1496e-05 2.5880e-06 1.6445e-06 1.1450e-07 

0.63 1.0642e-05 2.3928e-06 1.5216e-06 1.0610e-07 

0.72 8.9419e-06 2.0076e-06 1.2779e-06 8.9266e-08 

0.81 6.5321e-06 2.0077e-06 9.3267e-07 6.5346e-08 

0.9 3.6036e-06 8.0208e-07 5.1338e-08 3.6237e-08 

1 1.2246e-16 1.2246e-16 1.2250e-16 1.2246e-17 
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