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ABSTRACT:

In this work, the Residual Power Series Method(RPSM) is used to find the approximate solutions of Klein Gordon Schrédinger
(KGS) Equation. Furthermore, to show the accuracy and the efficiency of the presented method, we compare the obtained
approximate solution of Klein Gordon Schrodinger equation by Residual Power Series Method(RPSM) numerically and

graphically with the exact solution.
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1. INTRODUCTION

The Residual Power Series Method (RPSM) was first
presented in 2013 by Abu Arqub [4]. The RPSM is a very
significant method for finding the numerical solution of
linear and nonlinear differential equations. This method has
been applied successfully by many authors to find the
numerical solutions for numerous problems, Such as,
Alquran, M. (2014) in [2], El-Ajou, A., Arqub, O. A, &
Momani, S. (2015) in [5], Alquran, M. (2015) in [3], and
Kumar, S., Kumar, A., & Baleanu, D. (2016) in [7].

In addition to that, the RPSM has been used by Abu Arqub,
0., El-Ajou, A., Bataineh, A. S., & Hashim, 1.(2013) to find
the solution of generalized Lane-Emden equations in [1] and
it has been applied in 2016 by Ing, M., Korpinar, Z. S., Al
Qurashi, M. M., & Baleanu, D. to find the approximate
solutions of some nonlinear equations|6]. It was also applied
by Manaa, S. A.,& Mosa, N. M. in 2019 to solve the Kaup-
Boussinesq System[8] and by Modanli, M., Abdulazeez, S.
T., & Husien, A. M. in 2020 to solve “pseudo hyperbolic
partial differential equations with nonlocal conditions”[9].
In this paper, the Residual Power Series Method (RPSM)
[11,[6],[8] and [9] is applied to solve Klein-Gordon
Schrédinger (KGS) Equation. Moreover, we got all results
and figures by using Mathematica program.

2. MATHEMATICAL MODEL

Consider the Klein-Gordon Schrodinger (KGS) Equation[10]

{ iq; = —aqxx — bpq, o)
Pee = Ppxx — B2 + Alq|?
Where x ER,t >0, i =+v—1 and a,b,c,Band A are
considered to be the arbitrary constants. While, g is the
complex nucleon-fields and ¢ is the neutral real meson-
fields. Moreover, the system (1) has wide-range applications
in many fields such as quantum physics and modern physics
[10]-[12].

* Corresponding author

Equation (1) can be separate into real part and imaginary part.
Then, we will get a tripled system (a system of three real
equations) as follow:

U = —av,, — bve,
Ve = Qly, + bug, )
Pee = C2pyx — B + AU + V2.
Forq=u+iv. 3)
Where u and v and ¢ are real functions of x and t.

3. BASICIDEA OF RESIDUAL POWER SERIES
METHOD

Considering the general form of nonlinear partial differential

equation:

LU(x,t) = R[U(x, t)] + N[U(x, t)]. 4)
Subject to the initial conditions:

U(x,0) = f(x). ®)
Where L = ;t—r:l, m € N, is the highest order partial derivative

with respect to time t. While, the reminder linear term is R, the
nonlinear operator is N.

Now, the solution of Equations (4) by RPSM around the initial
point t=0 is written as a power series [1],[6],[8] and [9] as follow:

Uo) = ) fiGod ©
i=0

Wherei = 0,1,2, .., then, we can definite U, (x, t) to donate the
n-th truncated series of U(x, t), i.e.

Un(6) = )" fiE! @
=0
Where U, =U(x,0) and f(x) = fo(x). (8)
Now, substituting equation (8) into equation (7) we get:
Un(,6) = Up + ) fiGoOE". ©
i=1

Fort>0,x€el,n=1,2,...
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In order to evaluate the coefficients f;(x), for i=
1,2,3,...,n of equation (9), we first defined the residual
function for (4), as:
ResU(x,t) = LU(x,t) = R[U(x,t)] = N[U(x,t)] (10)
Then, the n-th residual function ResU,(x,t) is defined as
follow:
ResU,(x,t) = LU, (x,t) — R[U,(x,t)] — N[U,(x,t)],
n=12,.. 1y

As Arqub, O. A. and his colleagues stated in [1], [4] and [5]
that:

e ResU(x,t)=0.

. rlli_r)gloResUn(x, t) = ResU(x,t) ,Vx€l, t=0

0™ResU, (x,t)
® T;|t=0=0,m=0,1,2,....,n.

(12)

Therefore, we can obtain all required coefficients f;(x) (for
all i ) of the power series of Equation (4).

4. DERIVATION OF RPSM FOR SOLVING KGS-
SYSTEM

Assume that equation(2) has the following Initial conditions:
u(x,0) =uy = fo(x),
v(x,0) = vy = go(x), (13)
®(x,0) = g = hy(x),
@(x,0) = Ty (x).

Now, applying RPSM on equation (2) with equation (13).
Then, the solution of equation (2) by RPSM around the initial
point t=0 is written as:

u(x, t) = Z fOOE (14)
i=0

v(x, t) = Z gl-(x)ti . (15)
i=0

0,0 = ) MEOL. (16)
i=0

Where i = 0,1,2,..., then,
v, (x,t) and @, (x,t) to give the n-th truncated series of
u(x, t),v(x, t) and (x,t), i.e.

we can definite u, (x, t),

(o) = ) G an
i=0

Bt = ) gGoe (18)
i=0

Pu(60) = ) hE! (19
i=0

Now, substituting equation (13) into equations (17), (18) and
(19) we get:

(6 8) = fo(O) + ) fi(e 20)
i=1

B, 0) = go () + ) gi)E!. @
i=1

0,6 8) = ho (%) + T,(X)t + Z h ()¢t 22)
i=2

In order to calculate the value of coefficients

fi (%), gi(x) and h;(x), of equations (20), (21) and (22), for all

i=1,23,...,n. We defined the function for

equation(2), as:

Resu(x,t) = uy + avy, + bvg . (23)

Resv(x,t) = v, — Ay, — bug. (24)
Resp(x,t) = @ — 2y + B2 — Au? — 2. (25)

residual

Then, the n-th residual function Resu,(x,t), Resv,(x,t) and
Res,(x,t) is defined as follow:

n

du a
Resu,(x,t) =——+a

R 32 + bv, @, . (26)
ov, 0%u,
Resv,(x,t) = 5t %2 bu, @,. (27)

Respn(x,t) =200 — 2200 4 B2 2 (u,)? —
A(v,)2. (28)
For equations (26) and (27) n = 1,2,3, ..... and for equations (28)
n = 2,3, ...[9]. Then, we will have :
e Resu(x,t) = 0,Resv(x,t) =0 and Resp(x,t) = 0.
. 1111_r)r°10 Resu,(x,t) = Resu(x,t) 'r{l—r& Resv,(x,t) =
Resv(x,t) and
rlll_r)l;lo Res@,(x,t) = Resp(x,t) ,Vx €I, t=0

N d™Resuy, (x,t) 0™Resvy(x,t)

|t=0=01 t=0 =0and

atm atm
am‘;fﬁm =0 =0,m=0,12,...,n (29)

Therefore, to find the solution of equation (2), we need evaluate
all required coefficients f;(x) , g;(x) and h;(x) (forall i ).

For n = 1 substitute into equations (20) , (21) and (22), then the
first RPS approximate solution of equation (2) is :

w(xt) = o) + fik)e. (30)

v1(%,t) = go(x) + g1(x) t. (31)
Because, in (25) we have ¢, , then[9],
1= ho(x) + Ty(x)¢t . (32)
From equations (26) , (27) we get:
ou,y 0%v,
Resu, (x,t) = ¥ + a7 + bv; @4. (33)
ov, 0%u,
Resv,(x,t) = P bu, ¢;. (34)

By substituting equations (30) and (31) into equations (33) and
(34), we get the 1% residual functions as:
Resuy (x,t) = f1(x) +a(g",(x) + 9", ()t ) + b(go(x) +

91(0)8) (ho (x) + hy (X)0). (35
Resv, (x,t) = g1(x) — a(f" ;(x) + f", (x)t) = b(fo(x)
+1(x)t) (ho(x) + hy (X)0). (36)

Applying equation (29) on (30) and (31) we have
Resu; (%, O)le=o = f;(x) +a(g",(x)) + b(go () (ho(x))
=0
Resv, (x, B)le=o = 91 (6) — a (", () = b(£fo () (ho(x))
=0
Which leads to:
i) = —a(g",@) = b(go () (ho (). (37)
9:0) = a(f" () + (o)) (ho(x)). (38)
We can rewrite equations (37) and (38) as:
fi() = Ry (). (39
91(x) = 5, (). (40)
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For Ry (x) = —a (g",()) = b(g0()) (ho(x))
and §;(x) = a (", () + b(fo()) (ho(x))

Again, substituting equations (39) and (40) into equations
(30) and (31) respectively, with equation (32), we get the first
approximate  solutions of residual power series
method(RPSM) of equation (2):
w(x, ) = fo(x) + Ry(x)t,
vi(x,t) = go(x) + S1(0)t, (41)
o1(x,8) = ho(x) + Ty(x)¢t.

Setting n = 2 in equations (20), (21) and (22), then the 2"¢
RPS approximate solution of equation (2) is:
uy(x, ) = fo(x) + Ry ()t + fL(x) t2,

v, (x, 1) = go(x) + S; ()t + g, (x)t?, (42)
@2(x,t) = ho(x) + T, ()t + hy(X)t?.

Then, the 2 residual  functions Resu,(x,t)
,Resv,(x,t) and Resg,(x,t) is:
ou 0%v
Resu,(x,t) = 6_1:2 +a ax 22 +bv, @,
6172 6 Uy
Resv,(x,t) = ot %oz — bu, @5, (43)
9%, 2 o* (Pz 2 2 2
Res@,(x,t) = Pz + B0, — Aup)* — A(wp)%

By substituting equation (42) into equation (43), we get the
2% residual functions as:

Resu,(x,t) = Ry (x) + 2f,(x) t + a(g"o(x) +S",(Ot+
g",(0)t* ) +b(go(x) + S ()t + g2 ()t ) (ho (x) +

T, (0t + hy (X)t?),

Resv,(x,t) = S;(x) +2g,(x) t — a(f”o(x) +R" ()t +
£, ) = b(fo(x) + Ry (Ot + ()t ) (ho(x) +

T, ()t + hy (0)t?), (44)
Res@,(x,t) = 2h,(x) — c2(h"o(x) + T"1 (X)t +

R (0)E%) + B2 (ho(x) + T1 ()t + hy (0)t?)  —A(fo(x) +
R0t + f,(0)t2)? — A(go(x) + S1 ()t + g, (x)t?)? .

Applying equation (29) on (44) we get
el Ly = 2,(0) + 08", () + b(go(OTy(x) +
S;(0)he(x)) =0
=0 = 29,(x) —aR"1(x) — b(fo()T1 (x) +

Ri(x)ho(x)) =0
Res@, =g = 2Ry (x) — c*h"" o (x) + BZho(x)
—A(fo(x))? — Ago(x))* =0

OResv,(x,t) |
at

Which leads to:
1
() =—-5 (aS"l(x) + b(go(N)Ty(x) + S1(0)ho(x))),

9,(x) = <aR" ) + b(i‘%f’&ﬁlg’a; )> (45)

hy(x) = 3 (2R o (x) — B2ho(X) +A(fo(0))” +
A(go(x))?).
We can rewrite equations (45) as:
f2(x) = Ry (x),
92(x) = S, (%), (46)

hy (x) = To(x).
For

1
R,(x) = _E(aS”1(x) + b(go ()T (x) + S (x)ho(x) ))
$,(x) = 5 (aR"1(x) + b(fo()T; () + Ry (¥)ho(x)))
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And
1
T,(0) = 5 (2R () = Bho(x) +A(fo()” + A(go(x))?)

Again, substituting (46) into (42), we get the 2" approximate
solutions of RPSM of equation (2):
Uy (x, t) = fo(x) + Ry (x)t + Ry(x) %,
vy (x,8) = go(x) + S1(0t + S, ()2, (47)
@2(x,t) = ho(x) + Ty ()t + T, (0)t?,

And so we can follow the same way for n = 3,4, -,
f;},fs, v s 935 94, G5 oo and h3, h4, hs,

Then, the approximate solutions of RPSM can take the following
forms:

to find f3,

uGwt) = ) fiGoe
i=0

vt = ) gt (48)
i=0

e, =D Mt .
i=0

5. APPLICATION WITH NUMERICAL RESULTS
(TABLES, FIGURES)

This section will be devoted to find the numerical results (Tables,
Figures) of Klein-Gordon Schrodinger (KGS) Equation by using
RPSM.

Example: If we take the arbitrary constants of equations (1) and

(2) to be: {b =c=A=f=1land a =%}[11].Thenweget:

, 1
Me = =5 % = 9 xERE>0, i =v—1 (49)
Pee = Prx — @ + 14|

and

1
ut=—§17xx—17§0,
50
Ut=5uxx+u90, ( )
Pt = Prx — @ + U + V2

The exact solitary wave solution of system (49) as in [11],[12]
are:

— — . 2 1
3Sech? [7’52 1‘0 tza] A ()
vVi—a«a
2V2 — 20{2 ' (51)

3Sech?[f—Xo— ¢ 2\/— 4
a2 —1)

qx,t) =

(p(xr t) =-

With the initial conditions:
3Sech? [ﬁ

2V1—a?
2V2 20(2 ’ (52)
3Sech?[——20_

]
4(a?—1)

] eixa

q(x,0) =
(p(x'o)z_ Zvl_az .

Therefore, the exact solitary wave solutions the system (50)
are:
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2[x=xo—ta a? 1
3Sech [zm]Cos[xaHt( 2 +2—2‘12)] Q’(X t) o)
2vV2-2a? ’ P

u(x,t) =

x—x0—ta| .. £ 1 o

2/1-a? ]Sln[xa+t(— 2 +2—2a2)] 1 %10 418x10
2vV2-2a? ’ (53) X 416x10™

3Sech? [X——xo—ta] 414x101
2V1-a?

4(a?-1) ' 8.X10-14 0302 0304 0306 0308 0310

3Sech2[

v(x, t) =

(P(x, t) =

With the initial conditions
3Sech2[z\ﬁ]Cos[xa] 6.x 10-14

—_a?
zdﬁ ’
2| x=x0 . Z
i v i [HS” , 54 4x107¢ " aer
3Sech2[%] t
Px,0) = —— =2 02 04 06 08 10
Where x, is the initial phase and |a| > 0 is the propagating Figure 2: The comparison between RPSM and the exact solution for
velocity of the wave [11]. @(x,t).when x = 10 and t € [0,1].

u(x,0) =

Comparing Solution at x=10

1 v(x,0) =

In the following table and figures we considered initial-
values (a = 0.8, x, = —10) [11].

Table 1. The absolute error between the exact solution and laGx 0]

approximate solutions by RPSM of equation (49),
x=10andt €[0,1].

Time |qRPSM — qExact| |@RPSM — @Exact|
0 0 0
0.1 2.03011067 * 10717 1.136640964 * 10~17
0.2 1.67971031 « 10716 9.410909187 * 10717

0.3 5.864410163 * 1071 3.289471049 * 1071
0.4 1.4382761 x 10715 8.081125316 x 10716
0.5 2.907058086 * 1015 1.636992592 * 10715

0.6 5.199395215 % 10~1° 2.93600597 x 10715

0.7 8.547065525 % 10-15 4.842746766 * 10~15 Figure 3:The surfaces of exact solutions |q(x, t)|, when x € [—10,20]
and t € [0,0.5].

0.8 1.320930239 = 10~ 4 7.514434237 * 10715

0.9 1.947523274 « 10~1* 1113071195 10~

1 2.766648102 x 10714 1.589684618 * 10~ 14
o) e
g_x10'14 357x10™
8 x 10_14 .\;fxm'“
6.x 107
5- X 1 0-14 Comparing Solution at x=10
lq-Exact]
4.x10™ — 19-RPSM|
3x10™
t
2.x10™ 02 04 06 08 10
Figure 1: The comparison between RPSM and the exact solution Figure 4:The surfaces of exact solutions ¢ (x, t), when x € [—10,20]
for |q(x,t)|, when x = 10 and t € [0,1]. and t € [0,0.5].

126



S.A.Manaa et al.,/ Science Journal of University of Zakho 9(2), 123-127, June-2021

19(x, )]

Figure 5: The surfaces of approximate solutions |q(x, t)| by RPSM
when x € [—10,20] and ¢t € [0,0.5].

N

o
T

n o
e AN

Figure 6: The surfaces of approximate solutions ¢ (x, t) by RPSM
when x € [—10,20] and ¢t € [0,0.5].

6. CONCLUSION

In this paper the Klein-Gordon Schrédinger (KGS) equation
was solved numerically by using Residual Power Series
Method. We took an example of (KGS) equation to find the
comparison between our solution and the exact solution.
Moreover, we concluded from Tabl.1 and Figures (1-6) that
the RPSM is very accurate and effective in solving (KGS)
equation.
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