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ABSTRACT: 
In this paper, we propose two new techniques for solving system of nonlinear partial differential equations numerically, which we 
first combine Laplace transformation method into a successive approximation method. Second, we combine Padé [2,2] technique 
into the first proposed technique. To test the efficiency of our techniques, Jaulent-Miodek system was used, which contains partial 
differential equations and has strongly nonlinear terms. Experimental results revealed that the first proposed technique gives better 
results when the interval of t is small in terms of error approximation in tabular and graphical manners. Moreover, the results also 
demonstrated that the second proposed technique gives better results regardless of the given interval of t in terms of the least square 
errors.  

KEYWORDS: Jaulent-Miodek, Successive Approximation Method, Laplace Transformation, Padé Technique 

1. INTRODUCTION 

The majority of scientific problems and occurrences are 
nonlinear in nature. Except for a few situations, 
mathematicians, physicists, and engineers are fascinated by 
nonlinear partial differential equations (NLPDEs). In most 
cases, accurate solutions to NLPDEs are unavailable. 
Nonlinear optics, hydrodynamics, plasma physics, radar and 
rheology, quantum physics, and optical fiber communication, 
among other domains, use differential equations. There has 
been a significant amount of research into linear and 
nonlinear PDE systems. For example, these models appear in 
the propagation of shallow water waves, ice streaming, the 
Brusselator model of the chemical reaction-diffusion model, 
granular matter theory, and several scientific domains such 
as mathematical biology, solid-state physics, and the fields 
described above. Because the majority of them lack accurate 
analytical answers, they must be solved using other 
approaches (Tracinà & Khalique, n.d.). 
In this paper, the successive approximation method (SAM), 
and we propose two new techniques for solving strongly 
nonlinear  Jaulent-Miodek (JM) system (Fan, 2003; 
Veeresha et al., 2019). 

The Mathematical model of (JM) equation are: 

𝑢! + 𝑢""" +
3
2𝑣𝑣""" +

9
2𝑣"𝑣"" − 6𝑢𝑢" − 6𝑢𝑣𝑣"

−
3
2𝑢"𝑣

# = 0 (1) 

𝑣! + 𝑣""" − 6𝑢"𝑣 − 6𝑢𝑣" −
15
2 𝑣"𝑣

# = 0, 
 
The exact solitary solution of Eq. (1) as in (Jalili et al., 2008) 
are: 

𝑢(𝑥, 𝑡) = 𝑠 −
𝑏 ∗ 𝑘 ∗ sech:𝑘(𝑅𝑡 + 𝑥)<

2

−
3 ∗ 𝑐 ∗ :sech:𝑘(𝑅𝑡 + 𝑥)<<

#

4  
(2) 
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𝑣(𝑥, 𝑡) = 𝑏 + 𝑘 ∗ sech:𝑘(𝑅𝑡 + 𝑥)< 
Where 𝑠, 𝑏, 𝑘, 𝑅,	and 𝑐 are arbitrary constants, while  
𝑠 = $

%
(𝑐 − 𝑏#), 𝑘 = √𝑐 , and 𝑅 = $

#
(𝑏# + 𝑐)  

And initial conditions are: 

𝑢(𝑥, 0) = 𝑠 −
𝑏 ∗ 𝑘 ∗ sech(𝑘𝑥)

2 −
3 ∗ 𝑐 ∗ (sech(𝑘𝑥))#

4  (3) 
𝑣(𝑥, 0) = 𝑏 + 𝑘 ∗ sech(𝑘𝑥) 

2. BASIC IDEA OF SUCCESSIVE APPROXIMATION 
METHOD  

SAM is a method used to solve any initial value problem such as 
𝑢& = 𝑓(𝑡, 𝑢), u(𝑥, 𝑡') = 𝑢'. This method can be expressed 
mathematically as shown in Eq. (7). For more details about the 
derivation of this method,  the reader is referred to (Manaa et al., 
2013). Recently, this method has attracted the attention of many 
authors such as (Hashem, 2015; Jafari, 2014) due to its simplicity 
and its outstanding results. Inspired by the aforementioned merits 
of SAM, we use it in our proposed techniques to be applied to the 
system of equations (1).   
Suppose we have initial value problem: 

𝑢& = 𝑓(𝑡, 𝑢), u(𝑥, 𝑡') = 𝑢' (4) 
SAM is used for solving Eq. (4) as follows: 
Start with taking the integration for both sides of Eq. (4), to obtain 
a first approximation 𝑢$(𝑥, 𝑡) 

𝑢$(𝑥, 𝑡) = 𝑢'(𝑥, 0) + B 𝑢:𝜂, 𝑢'(𝑥, 𝜏)<𝑑𝜂	
!

'
 (5) 

Then this 𝑢$(𝑥, 𝑡) is substituted again in the integral of Eq. (5) to 
obtain a second approximation 𝑢#(𝑥, 𝑡) 

𝑢#(𝑥, 𝑡) = 𝑢'(𝑥, 0) +B 𝑢:𝜂, 𝑢$(𝑥, 𝜏)<𝑑𝜂	
!

'
 (6) 

This process can be continued to obtain the 𝑛!( approximation or 
(the general form) of SAM can be written as: 

𝑢)*$(𝑥, 𝑡) = 𝑢'(𝑥, 0) + B 𝑢:𝜂, 𝑢)(𝑥, 𝜏)<𝑑𝜂	
!

'
 (7) 
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3. LAPLACE TRANSFORMATION 

There are many techniques when we apply Laplace 
Transformation with any other methods such as, Laplace 
Substitution Method (Mahavidyalaya, 2012), Laplace 
Decomposition Method (Mohamed & Torky, 2013), and the 
VIM-Laplace-Padé (Abassy et al., 2007), He-Laplace 
Method (Adam, 2015). 

4. PADE TECHNIQUE  

The main advantage of the Padé approximation over the 
Taylor series approximation is that the Taylor series 
approximation can oscillate, resulting in an approximation 
error bound. Furthermore, in a finite region, Taylor series 
approximations can never blow up. The Padé approximation 
is used to address these flaws. A ratio of two polynomials 
gives the Padé approximation of a function. Using the 
coefficients in the Tylor series expression of the function, the 
coefficients of the polynomial in both the numerator and 
denominator. The Padé approximation of a function, 
symbolized by G+!(")."(")

H or for simplicity G/0H, is a rational 
function defined by 

I
𝑀
𝑁
L =

𝑝' + 𝑝$𝑥 + 𝑝#𝑥# +⋯+ 𝑝/𝑥/

1 + 𝑞$𝑥 + 𝑞#𝑥# +⋯+ 𝑞0𝑥0
	, (8) 

For further understanding this technique step by step, the 
reader is referred to (Sabali et al., 2018). 

5. SAM WITH LAPLACE THEN PADE 
TECHNIQUE  

Here, we use a different technique from that used by  (Abassy 
et al., 2007), which includes the following steps: 
Taking Laplace Transformation on both sides of equation (7) 

𝐿:𝑢)*$(𝑥, 𝑡)< = 𝐿Q𝑢'(𝑥, 0)

+B 𝑢:𝜂, 𝑢)(𝜂, 𝜏)<𝑑𝜂	
!

'
R 

(9) 

𝐿:𝑢)*$(𝑥, 𝑡)<

= 𝑢'(𝑥, 0) +
1
𝑠 S𝐿 QB 𝑢:𝜂, 𝑢)(𝜂, 𝜏)<𝑑𝜂	

!

'
RT 

(10) 

Taking Laplace inverse on both sides of equation (10), we 
get: 
𝑢)*$(𝑥, 𝑡)

= 𝑢'(𝑥, 0) + 𝐿1$ U
1
𝑠 S𝐿 QB 𝑢:𝜂, 𝑢)(𝜂, 𝜏)<𝑑𝜂	

!

'
RTV (11) 

Now, solving equation (11) by usual SAM (such as Taking 
𝑛 = 0, 1) 
𝑢#(𝑥, 𝑡)

= 𝑢'(𝑥, 0) + 𝐿1$ U
1
𝑠 S𝐿 QB 𝑢:𝜂, 𝑢$(𝜂, 𝜏)<𝑑𝜂	

!

'
RTV (12) 

Finally, Apply Padé [2,2] Technique of equation (12). 

6. APPLICATION  

In this section, we demonstrate the analysis of numerical 
methods such as SAM, SAM-Laplace Transformation, and 
SAM-Laplace-Padé Technique by applying them to the 
system of nonlinear partial differential Equations (1)  

Note that we used MATHEMATICA software to obtain all 
numerical results using all of the above methods. This is due 
to its simplicity and powerful manipulation. 

The numerical results of System (1) obtained by SAM using 
three approximate terms can be seen below: 
 

      𝑢(𝑥, 𝑡) = 𝑢#(𝑥, 𝑡) 

	𝑢(𝑥, 𝑡) =
1

16384 𝑡
%(−35640𝑏2𝑐2 #⁄ − 17820𝑏4𝑐5 #⁄

− 2970𝑏6𝑐$$ #⁄ − 165𝑏𝑐$6 #⁄

− 225504𝑏7𝑐%Cosh[√𝑐𝑥]… 
And  

 											𝑣(𝑥, 𝑡) = 𝑣#(𝑥, 𝑡) 

𝑣(𝑥, 𝑡) =
1

1024 𝑡
%(19440𝑏7𝑐2 #⁄ Cosh[√𝑐𝑥]

+ 9720𝑏%𝑐5 #⁄ Cosh[√𝑐𝑥]
+ 1620𝑏#𝑐$$ #⁄ Cosh[√𝑐𝑥]… 

Due to the very long resulting series obtained by SAM, this paper 
only refers to a few parts of the resulting series. 
The numerical results of System (1) obtained by SAM-Laplace 
transformation using three approximate terms can be seen below: 
					𝑢(𝑥, 𝑡) = 𝑢#(𝑥, 𝑡)	

𝑢(𝑥, 𝑡) =
1
4 (−𝑏

# + 𝑐 − 2𝑏√𝑐Sech[√𝑐𝑥]

− 3𝑐Sech_√𝑐𝑥`
#
) +

1
4 𝑡

#(5𝑏𝑐#Sech_√𝑐𝑥`
6
Tanh[√𝑐𝑥]

+ 24𝑐4 #⁄ Sech_√𝑐𝑥`
%
Tanh[√𝑐𝑥] −		…		

And	
 					𝑣(𝑥, 𝑡) = 𝑣#(𝑥, 𝑡) 

   𝑣(𝑥, 𝑡) = 𝑏 + √𝑐Sech_√𝑐𝑥` +
												$

#
𝑡# f−5𝑐#Sech_√𝑐𝑥`

6
Tanh_√𝑐𝑥` +

													𝑐#Sech_√𝑐𝑥`Tanh_√𝑐𝑥`
6
g +	… 

 Again, due to the very long resulting series obtained by SAM-
Laplace transformation, this paper only refers to a few parts of 
the resulting series. 
 
The numerical results of System (1) obtained by SAM-Laplace-
Padé [2, 2] technique using three approximate terms can be seen 
below: 
 
			𝑢(𝑥, 𝑡) = 𝑢#(𝑥, 𝑡)	

	𝑢(𝑥, 𝑡) =
#

$%&'(14'%8√:1%7#8
(;<=>[√:"]1$'4':;<=>[√:"]1		…

	($*(C	(	$D'	E	F	GHI>[D		J]*6'8(√:GHI>[5√:"]1		…
			

And	
 											𝑣(𝑥, 𝑡) = 𝑣#(𝑥, 𝑡) 

𝑣(𝑥, 𝑡) =
( 1
128(35𝑏+70√𝑐Cosh[√𝑐𝑥]+56𝑏Cosh[2√𝑐𝑥]+		…

1+		𝑡(−2322𝑏
2𝑐3 2⁄ Cosh"√𝑐𝑥$−387𝑐5 2⁄ Cosh"√𝑐𝑥$−		

6𝑐(43Sinh[√𝑐𝑥]+63Sinh[3√𝑐𝑥]+	 		…
   

Again, due to the very long resulting series obtained by SAM-
Laplace-Padé technique, this paper only refers to a few parts of 
the resulting series. 
 
Tables 1 and 2 show the differences between exact and 
approximate solutions using SAM, SAM-Laplace, and SAM-
Laplace-Padé [𝟐, 𝟐] technique for 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡), 
respectively, when 𝑥 = 0.1 [arbitrary chosen] and 𝑡 ∈ [	0,1	]. 
 

Table 1. 
𝒖(𝒙, 𝒕) Exact SAM 

SAM-
Laplace 

SAM-
Laplace-Padé 

(𝟎. 𝟏, 𝟎. 𝟎) −0.00552 
4225051 

−0.00552 
4225051 

−0.00552 
4225051 

−0.00552 
4225051 

(𝟎. 𝟏, 𝟎. 𝟐) −0.00552 
4209319 

−0.00552 
4101465 

−0.00552 
4201029 

−0.00552 
420103 

(𝟎. 𝟏, 𝟎. 𝟒) −0.00552 
4193429 

−0.00552 
3943504 

−0.00552 
4130614 

−0.00552 
4130652 

(𝟎. 𝟏, 𝟎. 𝟔) −0.00552 
4177381 

−0.00552 
3751167 

−0.00552 
4015738 

−0.00552 
4016017 

(𝟎. 𝟏, 𝟎. 𝟖) −0.00552 
4161175 

−0.00552 
3524454 

−0.00552 
3857575 

−0.00552 
3858721 

(𝟎. 𝟏, 𝟏. 𝟎) −0.00552 
4144811 

−0.00552 
3263364 

−0.00552 
365651 

−0.00552 
3659914 
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Table 2. 

𝒗(𝒙, 𝒕)	 Exact	 SAM	 SAM-
Laplace	

SAM-
Laplace-
Padé	

(𝟎. 𝟏, 𝟎. 𝟎)	 0.10999	
50002	

0.10999	
50002	

0.10999	
50002	

0.10999	
50002	

(𝟎. 𝟏, 𝟎. 𝟐)	 0.10999	
48987	

0.10999	
4953	

0.10999	
49176	

0.10999	
49172	

(𝟎. 𝟏, 𝟎. 𝟒)	 0.10999	
47962	

0.10999	
50233	

0.10999	
47361	

0.10999	
47273	

(𝟎. 𝟏, 𝟎. 𝟔)	 0.10999	
46926	

0.10999	
52112	

0.10999	
4549	

0.10999	
4495	

(𝟎. 𝟏, 𝟎. 𝟖)	 0.10999	
45881	

0.10999	
55166	

0.10999	
44403	

0.10999	
4257	

(𝟎. 𝟏, 𝟏. 𝟎)	 0.10999	
44825	

0.10999	
59395	

0.10999	
44851	

0.10999	
40312	

Again, Tables 3 and 4 show the absolute error between the 
exact solution and approximate solutions by SAM, SAM-
Laplace, and SAM-Laplace-Padé technique for 𝑢(𝑥, 𝑡) 
and 𝑣(𝑥, 𝑡) respectively, when 𝑥 = 0.1 and 𝑡 ∈ [	0,1	]. 

Table 3. 
𝒖(𝒙, 𝒕)	 |	Exact	–	

SAM	|	
|	Exact	–	SAM,	
Laplace	|	

|	Exact	–	
SAM,Laplace,Padé	|	

(𝟎. 𝟏, 𝟎. 𝟎) 0	 2.60209
× 10"#$	

6.61797	
× 10"#%	

(𝟎. 𝟏, 𝟎. 𝟐) 1.07854
× 10"&	

8.28985
× 10"'	

8.28863	
× 10"'	

(𝟎. 𝟏, 𝟎. 𝟒) 2.49925
× 10"&	

6.28147
× 10"$	

6.27768	
× 10"$	

(𝟎. 𝟏, 𝟎. 𝟔) 4.26214
× 10"&	

1.61643
× 10"&	

1.61364	
× 10"&	

(𝟎. 𝟏, 𝟎. 𝟖) 6.36721
× 10"&	

3.036
× 10"&	

3.02454	
× 10"&	

(𝟎. 𝟏, 𝟏. 𝟎) 8.81447
× 10"&	

4.88301
× 10"&	

4.84897	
× 10"&	

Least 
square 
error 

𝟐. 𝟒𝟑𝟎𝟏𝟓
× 𝟏𝟎"𝟏𝟑	

𝟓. 𝟕𝟕𝟐𝟕𝟒
× 𝟏𝟎"𝟏𝟒 

𝟓. 𝟕𝟏𝟐𝟗 
× 𝟏𝟎"𝟏𝟒 

 
Table 4. 

𝒗(𝒙, 𝒕)	 |	Exact	–	SAM	
|	

|	Exact	–	SAM,	
Laplace	|	

|	Exact	–	
SAM,Laplace,Padé	|	

(𝟎. 𝟏, 𝟎. 𝟎) 0	 1.38778
× 10"#&	

7.34135	
× 10"#+	

(𝟎. 𝟏, 𝟎. 𝟐) 1.07854
× 10"&	

1.88647
× 10"$	

1.85192	
× 10"$	

(𝟎. 𝟏, 𝟎. 𝟒) 2.49925
× 10"&	

6.00576
× 10"$	

6.8925	
× 10"$	

(𝟎. 𝟏, 𝟎. 𝟔) 4.26214
× 10"&	

1.43673
× 10"&	

1.97651	
× 10"&	

(𝟎. 𝟏, 𝟎. 𝟖) 6.36721
× 10"&	

1.47818
× 10"&	

3.31063	
× 10"&	

(𝟎. 𝟏, 𝟏. 𝟎) 8.81447
× 10"&	

2.58779
× 10"'	

4.51328	
× 10"&	

Least 
square 
error 

𝟓. 𝟑𝟒𝟐𝟑
× 𝟏𝟎"𝟏𝟑	

𝟗. 𝟑𝟖𝟗𝟑𝟓
× 𝟏𝟎"𝟏𝟓 

𝟔. 𝟎𝟎𝟖𝟏𝟗
× 𝟏𝟎"𝟏𝟒 

 
Also, the Fig. 2, Fig. 3, Fig. 4, and Fig. 5 below are the 
surfaces for the exact solution of J.M system, SAM, SAM-
Laplace, and SAM-Laplace-Padé[𝟐, 𝟐] technique, 
respectively, when 𝑥 ∈ [−20, 20] and 𝑡 ∈ [0,1]. 
 

  
(a) 	𝒖(𝒙, 𝒕) (b)		𝒗(𝒙, 𝒕) 

Fig. 2 The surfaces of exact solutions. 
 

  
(a) 	𝒖(𝒙, 𝒕) (b)		𝒗(𝒙, 𝒕) 

Fig. 3 The surfaces of SAM solutions. 

 

  
(a) 	𝒖(𝒙, 𝒕) (b) 	𝒗(𝒙, 𝒕) 

Fig. 4 The surfaces of SAM-Laplace solutions. 

  
(a) 	𝒖(𝒙, 𝒕) (b) 	𝒗(𝒙, 𝒕) 

Fig. 5 The surfaces of SAM-Laplace-Padé solutions. 
 
The Curves in Fig. 6, Fig. 7, Fig. 8, Fig. 9, Fig. 10, and Fig. 11 
show us how the SAM, SAM-Laplace, and SAM-Laplace-
Padé [𝟐, 𝟐] curves are close to the exact solution curve, when 
𝑥 = 𝟎. 𝟏 and 𝑡 has different values 𝑡 = {10, 30, 50, 100}. The 
reason for that is to show how the method are stable when we 
increase the value of  𝑡, but as 𝑡 increases, we see the SAM-
Laplace curve blows up and diverges from the exact solution 
curve while SAM and SAM-Laplace-Padé curve preserves its 
path with the exact solution curve. Although the curves cannot 
give us the precise results as can be seen from Tables 3 and 4, the 
reason for this will be explained later. 
 

  
(a) 𝒙 ∈ [−𝟐𝟎, 𝟐𝟎] and 𝒕 ∈ [𝟎, 𝟏𝟎] (b)  𝒙 ∈ [−𝟐𝟎, 𝟐𝟎] and 𝒕 ∈ [𝟎, 𝟓𝟎] 
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(c)  𝒙 ∈ [−𝟐𝟎, 𝟐𝟎] and 𝒕 ∈ [𝟎, 𝟏𝟎𝟎] 

Fig. 6 The Curves of SAM for different values of 𝑡 for 𝑢(𝑥, 𝑡) 
 

  
(a) 𝒙 ∈ [−𝟐𝟎, 𝟐𝟎] and 𝒕 ∈ [𝟎, 𝟏𝟎] (b) 𝒙 ∈ [−𝟐𝟎, 𝟐𝟎] and 𝒕 ∈ [𝟎, 𝟓𝟎] 

 
(c) 𝒙 ∈ [−𝟐𝟎, 𝟐𝟎] and 𝒕 ∈ [𝟎, 𝟏𝟎𝟎] 

Fig. 7 The Curves of SAM for different values of 𝑡 for 𝑣(𝑥, 𝑡) 
 

  
(a) 𝒙 ∈ [−𝟐𝟎, 𝟐𝟎] and 𝒕 ∈ [𝟎, 𝟏𝟎] (b) 𝒙 ∈ [−𝟐𝟎, 𝟐𝟎] and 𝒕 ∈ [𝟎, 𝟓𝟎] 

 
 

 

(c) 𝒙 ∈ [−𝟐𝟎, 𝟐𝟎] and 𝒕 ∈ [𝟎, 𝟏𝟎𝟎] 

Fig. 8 The Curves of SAM-Laplace for different values of 𝑡 for 𝑢(𝑥, 𝑡) 

 

  
(a) 𝒙 ∈ [−𝟐𝟎, 𝟐𝟎] and 𝒕 ∈ [𝟎, 𝟏𝟎] (b) 𝒙 ∈ [−𝟐𝟎, 𝟐𝟎] and 𝒕 ∈ [𝟎, 𝟓𝟎] 

 
(c)  𝒙 ∈ [−𝟐𝟎, 𝟐𝟎] and 𝒕 ∈ [𝟎, 𝟏𝟎𝟎] 

Fig. 9 The Curves of SAM-Laplace for different values of 𝑡 for 𝑣(𝑥, 𝑡) 

 

  
 (a) 𝒙 ∈ [−𝟐𝟎, 𝟐𝟎] and 𝒕 ∈ [𝟎, 𝟏𝟎] (b) 𝒙 ∈ [−𝟐𝟎, 𝟐𝟎] and 𝒕 ∈ [𝟎, 𝟓𝟎] 

 
 

 

(c) 𝒙 ∈ [−𝟐𝟎, 𝟐𝟎] and 𝒕 ∈ [𝟎, 𝟏𝟎𝟎] 
Fig. 10 The Curves of SAM-Laplace-Padé for different values of 𝑡 for 𝑢(𝑥, 𝑡) 

 

  
(a) 𝒙 ∈ [−𝟐𝟎, 𝟐𝟎] and 𝒕 ∈ [𝟎, 𝟏𝟎] (b) 𝒙 ∈ [−𝟐𝟎, 𝟐𝟎] and 𝒕 ∈ [𝟎, 𝟓𝟎] 

 
(c)  𝒙 ∈ [−𝟐𝟎, 𝟐𝟎] and 𝒕 ∈ [𝟎, 𝟏𝟎𝟎] 

Fig. 11 The Curves of SAM-Laplace-Padé for different values of 𝑡 for 𝑣(𝑥, 𝑡) 

 
Again, the family curves in Fig. 12 and Fig. 13 show how the 
SAM and the SAM-Laplace-Padé [𝟐, 𝟐] curves are close to the 
exact solution curve when 𝑥 = 𝟎. 𝟏 and 𝑡 has different values 𝑡 =
{10, 30}, which indicate that the curves preserve their path with 
the exact solution curve. As its evident from the results, the 
SAM-Laplace method does not preserve its path with the exact 
solution curve. Thus, to overcome this flaw, we combine Padé 
[2,2] technique into it for solving the system of (JM) equations. 

  
(a) 𝒙 ∈ [−𝟐𝟎, 𝟐𝟎] and 𝒕 ∈ [𝟎, 𝟏𝟎] (b) 𝒙 ∈ [−𝟐𝟎, 𝟐𝟎] and 𝒕 ∈ [𝟎, 𝟑𝟎] 

Fig. 12 The Family Curves of SAM, SAM-Laplace, SAM-Laplace-Padé for 
different values of 𝑡 for 𝑢(𝑥, 𝑡) 

 

  
(a) 𝒙 ∈ [−𝟐𝟎, 𝟐𝟎] and 𝒕 ∈ [𝟎, 𝟏𝟎] (b) 𝒙 ∈ [−𝟐𝟎, 𝟐𝟎] and 𝒕 ∈ [𝟎, 𝟑𝟎] 

Fig. 13 The Family Curves of SAM, SAM-Laplace, SAM-Laplace-Padé for 
different values of 𝑡 for 𝑣(𝑥, 𝑡) 

 
Finally, to see the precise difference exactly when 𝑡 increases, 
Tables 5 and 6 show the least square errors between SAM, SAM-
Laplace, and SAM-Laplace-Padé [𝟐, 𝟐] when 𝑥 = 0.1 and 𝑡 ∈
[0, 100]. 
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Table 5. 
𝑢(𝒙, 𝒕)	 |	Exact	–	

SAM	|	
|	Exact	–	SAM,	
Laplace	|	

|	Exact	–	
SAM,Laplace,Padé	|	

Least square 
error 

𝟑. 𝟕𝟕𝟐𝟗
× 𝟏𝟎"𝟒	

𝟏. 𝟐𝟏𝟓𝟏𝟖
× 𝟏𝟎𝟑 

𝟐. 𝟗𝟏𝟓𝟎𝟓 
× 𝟏𝟎"𝟓 

 
Table 6. 

𝒗(𝒙, 𝒕)	 |	Exact	–	
SAM	|	

|	Exact	–	SAM,	
Laplace	|	

|	Exact	–	
SAM,Laplace,Padé	|	

Least square 
error 

𝟒. 𝟑𝟗𝟔𝟗𝟕
× 𝟏𝟎"𝟑	

𝟑. 𝟓𝟐𝟓𝟖𝟗
× 𝟏𝟎𝟒 

𝟔. 𝟖𝟓𝟒𝟒𝟖 
× 𝟏𝟎"𝟕 

 

7. CONCLUSION  

In this paper, a strongly nonlinear system of partial 
differential equations, which is well known as (JM) equation, 
was solved numerically by using Successive approximation 
method, Successive approximation with Laplace, and 
Successive approximation with Laplace then Padé [2, 2] 
technique. From the results obtained by Tables 1-4 and 
Figures 6(a), 7(a), 10(a), and 11(a), we can conclude that 
SAM-Laplace and SAM-Laplace-Padé [2,2] methods 
perform better than SAM when 𝑡 is small in terms of least 
square error. Moreover, the results obtained from Tables 5-6 
and Figures 6-13 indicate that with increasing 𝑡, SAM-
Laplace deviates from the exact solution, while SAM and 
SAM-Laplace-Padé [2,2] keep their trajectory with the 
exact solution. However, SAM-Laplace-Padé [2,2] gives 
better results than SAM in terms of least squared error 
despite the t-value used as shown in Table 5-6. In general, the 
results validated the efficiency and the accuracy of the 
proposed two techniques: SAM-Laplace and SAM-
Laplace-Padé [2,2] in terms of least square error. This due 
to the fact of combining Laplace and Laplace-Padé [2,2] 
methods into SAM. One point to mention here is that this 
conclusion is limited to solving this kind of strong nonlinear 
system of partial differential equations. Thus, for future 
work, we aim to apply these modification techniques to all 
types of equations. 
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