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ABSTRACT:

In this work, we take Adomian Decomposition Method (ADM) and combine it with Sumudu Transform method (STM). This
connection between the two methods is called Sumudu-Decomposition Method (SDM), then use it to solve generalized Hirota-
Satsuma Coupled kdv (H-SC kdv) systems and also we applied the STM, to find the approximate solutions of system one. Then
we compare the approximate solutions of the two way with exact solitary solutions. Clarifying the best way through tables and
drawings, then discussing the reason for the changes taking place in the roads and which one is closest to the exact solution.

KEYWORDS: Adomian Decomposition Method, Hirota-Satsuma coupled kdv systems, Sumudu Transform method.

1. INTRODUCTION

The coupled Kortweg-de Vries (Ckdv) equation describes the
interaction of two long waves with different scattering
relationships. There are several physical relationships in the
CKdv equation. The evolution of one-dimensional long
waves in a number of physical contexts, including ion plasma
sound waves, shallow water waves with mild nonlinear
restoring forces, long internal waves in a thickly layered
ocean, and sound waves on a crystal lattice, is roughly
explained. (Lawal, O. W., Loyimi, A.C. and Erinle-lIbrahim

2018).

We look at a generalized Hirota-Satsuma linked KdV
equation, which was one of alfirst .'s equations introduced by
(Wu et al. 1999). They presented a 4 x 4 matrix spectrum
problem.Three potentials were proposed, along with a
corresponding hierarchy of potentials.nonlinear equations;
one of the most common hierarchical equations is (H-SC kdv
system.in (Raslan 2004) he solved the system using
decomposition method. Where (Lawal, O. W., Loyimi, A.C.
and Erinle-lbrahim 2018) solved it used Homotopy
Perturbation Transform Method (HPTM).And (Yagmurlu,
Karaagac, and Esen 2019), apply Lumped Galerkin finite
element method using quadratic B-splines to solved it.

The decomposition approach has been proven (G. Adomian
1988; George Adomian 1994)to solve a vast class of linear
and nonlinear, ordinary or partial, deterministic or stochastic
differential equations effectively, easily, and accurately with
approximates that converge quickly to accurate solutions.

In this paper, the Sumudu Transform method (Fethi Bin
Muhammad Belgacem 2009; Fethi Bin Muhammed
Belgacem and Karaballi 2006; Fethi Bin Muhammad
Belgacem 2010), and Sumudu Decomposition Method
(Bildik and Deniz 2016; Eltayeb and Kiligman 2012; Eltayeb,
Klgman, and Mesloub 2014; Ahmed and Elzaki 2015), are
applied to the H-SC kdv systems.

The model based on mathematics of (H-SC kdv) equation

are:
1
Uz

T2

Uyyy — 3UU, +3(VW),

* Corresponding author

Ve = —Viyy + 30UV, 1)
W, = =Wy, + 3UW,

The exact solitary solution of Eq. (1) as in (Mehdi Hosseini,
Mohyud-Din, and Ghaneai 2012)

are:
Uy, t) = ;(y —2a?) + 2a” tanh?(a(y + y1))
Vix,1) = —4azc30C(12y+a2) 4a2§z:a2)tanh(a(x +y1)) 2

W(x,7) = ¢o + ¢4 tanh(a(x + y7))
And initial conditions are:
U(x,0) = g(y — 2a?) + 2a? tanh?(ay)

T2 2 2 2
V(y,0) = =22 ;"g” ) | 4a ;}:a ) tanh(ay)

W(x,0) = ¢y + ¢, tanh(ay) 3)
Where a, ¢y, ¢c; # 0 and y arbitrary constants.

2. BASIC IDEA OF STM

To comprehend the essence of STM, consider the
inhomogeneous nonlinear partial differential equations of the
following form with the following initial condition (Fethi Bin
Muhammad Belgacem 2009; Fethi Bin Muhammed Belgacem
and Karaballi 2006; Fethi Bin Muhammad Belgacem 2010):
w(y,t)+Gw(y, 1)+ Nw(y,t) =h(x,1)

o) =a 4)
if € is first order derivative, G is a linear differential factor, NY
represents the non-linear term and h(t) is the phrase that came
from the source.

Taking the STM (denoted in the paper by S) on the equation (4),
we have

Sltw(y, )]+ S[Gw(y, 1)] + S[INw(x, t)] = S[h(x, )]

o 0)=a (5)
using the ST differentiation with the initial circumstances listed
above, shows

MeUDE0U0 4 S[6w(y, 1] + SINw(r )] = S[h(x, 7)]
(6)

on both sides of the equation (6), use the Inverse STM, let's get
w0 =HQ 1) =S sS[Gw(x,T) + No(r, 1] (7)
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where H(y, t) is a term that arises from the original term as
well as the pre-specified beginning conditions.

As a result, the solution can be represented as an infinite
series:

w(, 1) =XiZowi(X, T) (8)
Z?io (‘)i(X! T) = H(Xr T) - S_l[SS[G Zloio (ui(X! T) +
NYZowi(x, 1] 9)

using standard STM and comparing both sides of the last
equation, given by:
a)o()(,T) = H(X:T)
(U1O(' T) = _S_l[SS[G(‘)O(X' T) + Nw() (Xr T)] ]
w, (X, 1) = =S MsS[Gw; (X, T) + Nw; (x, 1] ]
and the general relation is given by
wi+1(x' T) = _S_I[SS[G(’)L'(X' T) + Nwi(}("[)] ],l =0

(11)
eventually, taking the STM of the right hand side of the final

(10)

The numerical results of System (1) obtained by SDM using
three approximate terms can be seen below:

Ulx,7) = %(y —2a?) - 2y%a*t®(-2 +
Cosh[2ay])Sech[ax]* + 4ya3tSech[ay]*Tanh[ay] +
2a?Tanh[ay]?

4coa?(y+a?) | aya’(y+a?)tSechlay]?
V(X; T) — _ %% yz ya~\y X. +
3¢, e
4a?(y+a®)Tanh[ay] 4y%a*(y+a?)r?Sech[ay]?Tanh[ay]
3¢, 3¢,

W (x, 1) = ¢y +yciatSech[ay]? + c¢;Tanh[ay] —
y2c,a?t?Sech[ay]?Tanh[ay]

equation and then taking the Inverse STM. Tables 1-3 show the differences between Exact and approximate

solutions using STM and SDM for U (x, 1),V (x,t) and W (x, 1),
respectively. From the tables, we notice that the solution by
SDM is more convergent than STM way, when y = 1 [arbitrary
chosen],a =0.1,¢p =1.5,c; =0.y =15 andt€[0,1].

3. BASIC IDEA OF SDM

In equation (9), when we find the nonlinear term by using

Adomian polynomials (Bildik and Deniz 2016; Eltayeb and Table 1
Kiligman 2012; Eltayeb, Klgman, and Mesloub 2014; Ahmed Ulx, 1) Exact STM SDM
?\;‘dé'za)k' 2%12)* zhanog'“”ear term can be broken do‘é‘ﬁ;"s (1,0)  0.4935320075 0.4935320075  0.4935320075
WX T) = Li=o LilX, T
where C; are Adomian polynomials of wg, w;, w5, ... and we (1,0.1) 04935955187 = 0.4935910862 = 0.4935955368
can calculate it by: (1,0.2)  0.4936675614 @ 0.4936498365 = 0.4936677111
1d! o .
G =3 Z(E% W @) a0, i = 0,1,2, (13) (1,0.3) | 0.4937480088 | 0.4937081502 = 0.4937485305
Substituting (8) and (12) into (7) , we get (1,0.4)  0.4938367203 | 0.493765919  0.4938379949
Y2owi (1) = H(, 1) — STYsS[G T2 i (X, ) + (1,0.5)  0.4939335417 | 0.4938230347 = 0.4939361044
Y26 D]] (14) (1,0.6) | 0.4940383061 0.4938793889  0.4940428589
on comparing both sides of last equation and by using
standard ADM to find- (1,0.7) | 0.4941508341 | 0.4939348735 = 0.4941582585
_ (1,0.8)  0.4942709348 | 0.4939893801  0.4942823032
wo(x,7) =H(x,7)
w1, 1) = =S YsS[Gwo(x,T) + Col ] (15) (1,0.9) | 0.4943984062 @ 0.4940428006 | 0.4944149929
w2 (r, 7) = =S sS[Gw, (x,7) + 1] ] (1,1)  0.4945330364 0.4940950266  0.4945563276
and the general relation is given by
w1 (0 T) = =S [sS[Gw; (L T) + G11i =0 (16) Table 2
Eq.(16) called Sumudu-Decomposition Method (SDM) Vi, T Exact STM SDM
4. APPLICATION 1,0) —2.99993351 = —2.99993351 = —2.99993351
(1,0.1)  —2.996948197 = —2.996943745 @ —2.99694798
An?]lysis of numeéical appgoachels is prehsented ir;] this section (1,0.2)  —2.99397312 = —2.993954452  —2.99397139
such as STM, and SDM by applying them to the system of
nonlinear partial differential Equations (1). (1,0.3) | —2991009557 | —2.990965633 | —2.991003741
All numerical results were obtained using MATHEMATICA (1,0.4)  —2.988058768 = —2.98797729 = —2.988045031
software utilizing all of the above approaches. This is owing (1,0.5) —2.985121988 @ —2.984989425 @ —2.985095262
to its ease of use and ability to manipulate data.
X ; . 1,0.6) —2.982200431  —2.98200204  —2.982154433
The numerical results of System (1) obtained by STM using ( )
(1,0.8) —2.976407697 = —2.97602872  —2.976299596
Uly,1) = i(y — 2a?) + 4ya®tSech[ay]?*Tanh[ay] + (1,0.9) —2.973538807 @ —2.973042789 @ —2.973385588
2a?Tanh[ay]? — %yaSSech[a)(]6(120a1'2 - (1,1)  —2.970689709 | —2.970057347 —2.970480519
75at?Cosh[3ay]Sech[ay] + 3ar?Cosh[5ay]Sech[ay] +
8y213Sech[ay]Sinh[3ay] — Table3
40ya?1r3Sech[ay]Sinh[3ay] + 8y2t3Tanh[ay] + WX, Exact ST™M sbm
248ya?r3Tanh[ay]) (1,0) 1.509966799 = 1.509966799 1.509966799
rendra®)  aya(yratyesechlag]? (1,0.1) 1511449571  1.511451782 1.511449679
Coa +a a +a“)tSech|a,
Vo) =—— 36; + 2T 3¢, £+ (1,0.2) 1512927258  1.51293653 1.512928117
4a*(y+a®)Tanhlay] _ 4ya®(y+a®)Sechlay]*Tanh[ay] ((9-[2 _ (1,0.3) | 1.514399227 @ 1.514421043 1.514402115
3¢, 3¢,
t2Cosh[3ay]Sech[ay] + 8yar*Tanh[ax])) (1,0.4)  1.51586485 1.51590532 1.515871673
(1,0.5)  1.517323516  1.517389359 1.51733679
W(x,7) = o + ycyarSech[ax]? + ¢; Tanh[ay] — (1,0.6) = 1518774621 @ 1.518873159 1.518797467
4 4 2 _ .2
ycia”Sechay]"Tanh[ay] (97" — 7°Cosh[3ay]Sech[ay] + (1,0.7) | 1520217576  1.52035672 1.520253703

8yar3Tanh[ay])
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(1,0.8) | 1.521651806
(1,0.9) | 1.523076751
(1,1) | 1.524491866

1.52184004
1.523323118
1.524805954

1.521705499
1.523152854
1.524595769

and, Tables 4-6 show the difference in absolute error between
the exact and approximate solutions by STM and SDM for
U(x,7),V(x,7) and W (x, ) respectively. From these tables,
there is a clear change in the results that shows the accuracy
of the solution by SDM, when y = 1,a=0.1,¢y =
1.5,¢c; =0.y=15andt € [0,1].

Table 4
A7) |USTM — UExact| |USDM — UExact|
1,0) 0 0
(1,0.1) 4.4325x 107° 1.8113 x 1078
(1,0.2) 1.77249 x 1075 1.49773 x 1077
(1,0.3) 3.98586 x 107° 5.21718 x 1077
(1,0.4) 7.08013 x 107° 1.27464 x 107°
(1,0.5) 1.10507 x 107* 2.56269 x 107°
(1,0.6) 1.58917 x 107* 4.55286 x 107°
(1,0.7) 2.15961 x 107* 7.42446 x 1076
(1,0.8) 2.81555 % 107* 1.13684 x 1075
(1,0.9) 3.55606 x 107* 1.65866 x 107°
1,1) 4.3801 x 10~* 2.32912 x 107°
Table 5
a7 |VSTM — VExact| |VSDM — VExact|
1,0) 0 0
(1,0.1) 4.45179 x 107° 2.16888 x 1077
(1,0.2) 1.86676 x 107° 1.72938 x 107°
(1,0.3) 439241 x107° 5.81633 x 107
(1,0.4) 8.14779 x 107° 1.37364 x 107°
(1,0.5) 1.32563 x 107* 2.67261 x 1075
(1,0.6) 1.9839 x 10~* 4.59974 x 107°
(1,0.7) 2.80143 x 107* 7.27364 x 1075
(1,0.8) 3.78977 x 107* 1.08101 x 10™*
(1,0.9) 496018 x 10~* 1.5322x 107*
(1,1) 6.32363 x 107* 2.0919 x 10~*
Table 6
. |WSTM — WExact| |WSDM — WExact|
1,0) 0 0
(1,0.1) 2.21115x 107° 1.07726 x 1077
(1,0.2) 9.27198 X 107 8.58961 x 1077
(1,0.3) 2.18166 x 107° 2.88891 x 107°
(1,0.4) 4.04692 x 1075 6.82273 x 107
(1,0.5) 6.58427 x 107° 1.32745 x 1075
(1,0.6) 9.85383 x 1075 2.28464 x 1075
(1,0.7) 1.39144 x 107* 3.61273 x 107°
(1,0.8) 1.88234 x 107* 5.36926 x 1075
(1,0.9) 2.46367 x 107* 7.61026 x 1075
(1,1) 3.14087 x 107* 1.03902 x 107*

Also, the Figurel-3, below are the surfaces for the solitary
solution of H-SC kdv system, STM, and SDM respectively,
when y € [-10, 10] and 7 € [0,1].

(@) U, D) b) V(x, 1)

© WD

Figure 1 Surfaces of Exact solutions.

(@ UG, b)) V1)

© w1

Figure 2 Surfaces of STM solutions.

(@ UG, 1) (b) V(x,T)

(© Wy, 1)

Figure 3 Surfaces of SDM solutions.

The curves in Figure4, and Figure5, show that how the STM,
SDM curves are close to the solitary solution curve, when y €
[-10, 10] and T € [0,10], T =0.01.
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(@ UQuD) ) Vi, 1)

N o
u wELTMG. 01)

(o Wkt
Figure 4 Curves of STM for ye[—10,10], 7€[0,10]

(@) U(x,1) () V(x. 1)

(© Wk,
Figure 5 Curves of SDM for ye[—10,10], 7€[0,10]

The curves in Figure6, and Figure?7, show that how the STM,
SDM curves are close to the solitary solution curve, when y
€[-10,10] and 7 € [0,10], T = 2.

(@ U, 1) (B Vi,

© Wk
Figure 6 Curves of STM for ye[—10,10], 7€[0,10]

(@ V(v D) (b) V(x, 1)

(0 Wk,
Figure 7 Curves of SDM for ye[—10,10], 7€[0,10]

Finally, as for the graphics, we note how the best method of
convergence to the solitary solution is the SDM than STM
through clarification when we taking the t = 2.

Now, Tables 7,8 and 9 show the least square errors between

STM and SDM respectively, from this table that is clear the
change and best method when we decomposed the method

46

using Adomian Decomposition method , when y = 1,a =
0.1,co=15,¢c;, =0.y=15and7€[0,1].

Table 7
|USTM — UExact|
488622 x 1078

|{USDM — UExact]|
1.03118 x 1071

ux.o)
Least square
error

Table 8
|VSTM — VExact|
9.33888 x 1078

|VSDM — VExact|
8.72688 x 107°

V1)
Least square
error

Table 9
Wy, 1) |WSTM — WExact)| |[WSDM — WExact|
Least square 2.3039x 1078 2.15292 x 107°
error

5. CONCLUSION

SDM and STM are two method which it has been applied of
non-linear H-SC KdV equations. We used one example of the
equation to compare our solutions to the precise solution, and we
demonstrated that both methods are extremely accurate and
successful in solving the problem (H-SC KdV) equation.
However, it is clear from the Table 4, Table 5 and Table 6 that
the difference in absolute error between exact and approximate
solution by SDM s better than the approximate solutions STM,
This means that when we decomposed the method using
Adomian Decomposition method we get a better result. Also
from the curves in Figures 4-7 The convergence of the solution
indicates which one is closer.
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