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ABSTRACT: 
Automated facial recognition is rapidly being used to reliably identify the identities of individuals for a variety of applications, 
from automated border control to unlocking mobile phones. The attack of Morphing has presented a significant risk to the face 
recognition system (FRS) at automated border control. Face morphing is a technique for blending the facial images of two or more 
people such that the outcome looks like both of them.  For example, a morphing attack may be used to get a fake passport by using 
a morphed image. This passport can be used by both the modified image contributors while crossing the border. Due to the publicly 
available digital altering tools that criminals may use to carry out face morphing attacks. Morph Attack Detection (MAD) systems 
have received a lot of attention in recent years. In the absence of automated morphing detection, Face Recognition Systems (FRS) 
are extremely susceptible to morphing attacks. Due to the limited number of publicly available face morph datasets to investigate, 
especially to our knowledge, there is no Kurdish morph dataset. In this work, we decided to generate a new face dataset, including 
morphed images which we named as "KurdFace" dataset. OpenCV was used to generate morphed images. Then we study the 
susceptibility of biometric systems to such morphed face attacks by designing and creating a Morph Attack Detection model to 
distinguish morphed images from genuine ones. To evaluate the robustness of our dataset regarding morphing attack detection, we 
compare it with the AMSL dataset to determine the classification error rate on both datasets to see how our dataset is different 
from others.  Local Binary Pattern and Uniform Local Binary Pattern are used as feature extraction techniques, and as a classifier, 
SVM is utilized. The experimental result shows that our dataset is suitable for research purposes. 
 
KEYWORDS: Face Recognition System, Biometric System, Morphing Attacks, OpenCV, LBP, Dataset creation. 

1. INTRODUCTION 

Nowadays, biometric verification systems are present in many 
fields of daily life. Biometrics is based on a human’s biological 
or behavioural features such as the face, fingerprint, gait, iris, 
and keystroke style. The benefit of biometric systems over 
traditional authentication techniques such as token-based 
authentication or passwords is that biometric attributes cannot 
be lost, forgotten, or shared (Yang et al., 2021). However, one 
drawback of this technology is the impossibility of exchanging 
the corresponding characteristics (and hence the extractable 
features) if someone obtains unauthorized possession of 
another individual's biometric features. Although, owing to the 
uniqueness of face images, their reliability, and availability, 
face biometrics play a key role in biometric systems.  
Moreover, the widespread use of facial biometric systems, 
particularly in secure border control to identify and verify 
individuals, makes them more vulnerable to different types of 
attacks. On the one hand, presentation attack also known as 
direct attacks or spoof attacks, are introduced as one of the 
attacks on face biometric systems, i.e., the face biometric 
systems are vulnerable to a variety of attacks, including 
presentation attacks such as electronic display attacks, print 
attacks, replay attacks, and 3-D face mask attacks, which aim 
to corrupt the FRS by presenting an artifact. On the other hand, 
another attack on these kinds of applications is the face 
morphing attack, as first announced by Ferrara and his team in 
2014 (Ferrara et al., 2014). So, the accuracy of the face 
biometric recognition system needs to be high, especially in 
some sensitive applications such as border controls 
(Ramachandra & Busch, 2018). 
 

 
* Corresponding author 
This is an open access under a CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/) 

The morphing attack's core concept is based on combining 
facial images of two or more people such that the resulting 
"morphed" image may be used to verify both the involved 
participants (a malicious actor and an accomplice) (Pikoulis et 
al., 2021). I.e., the morphing process is a particular effect that 
changes one image into another. It is a big problem. This is 
because morphed faces containing characteristics of both 
individuals. It can successfully match both identities, posing a 
security threat (Banerjee & Ross, 2021). 
Morphing attacks aim to disrupt face biometric systems at 
Automated Border Control (ABC) gates by presenting an 
eMRTD or ePassport based on a morphed facial image. As a 
result, this attack violates the principle of exclusive possession. 
As seen in Figure 1, a malicious person's face is merged with 
that of a look-alike accomplice in border control.  As we all 
know, while crossing the border, the face image stored in the 
passport or the eMRTD is matched to the individual claiming 
possession of the identification document. The data subject can 
pass the border if the enrolled face image matches the live 
image. As a result, someone with a bad purpose can employ a 
face-morphing attack to gain unauthorized access. Finally, a 
malicious individual can use a genuine passport to accomplish 
all their objectives. Unfortunately, numbers of software and 
techniques exist to generate morph images, which will be 
mentioned in the review section. Therefore, the detection of 
morphed face images has a significant impact on the reliability 
of face recognition (Venkatesh et al., 2021). 
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Figure 1. An example scenario that demonstrates FRSs' 
sensitivity to morphed images in border control. 

One of the study's aims is to create a novel face dataset 
containing five different emotions (Normal, Happy, Sad, 
Surprised, and Angry) and generate morphed images from 
normal face images. We decided to create this dataset to serve 
academic researchers in the Kurdistan region of Iraq as well as 
other researchers across the world who are passionate in this 
regard (face processing and face morphing). As mentioned 
before, morphs are an attack on face biometric systems. Since 
there is no Morph Attack Detection (MAD) system at most 
border control and airports (especially in the Kurdistan region 
of Iraq), most of the fake passports may pass undetected. To 
prevent morphing attacks, it is imperative to find a solution to 
preserve the security of face verification systems against such 
attacks. Especially if the morphed images are generated with 
high quality, then detection becomes more difficult by human 
observers (border officers) despite being an expert in facial 
comparison. So, we intend to design and create a simple Morph 
Attack Detection model to differentiate morphed images from 
genuine ones. To the best of the author's knowledge, such a 
system is not available in the Kurdistan region that helps the 
airport-related authorities easily control this type of attack. The 
final aim is to train and test the MAD model with our novel 
dataset and the AMSL dataset with two different data 
separations to see how our dataset is different than others 
regarding resistance to morph attack detection. 
Our dataset creation scheme consists of capturing images and 
generating Morphs. To test the robustness of the created 
dataset, we designed a simple MAD scheme which includes 
pre-processing, feature extraction, and classification. The 
details are described in the methodology section. The rest of 
this paper is organized as follows: In Section 2, we present a 
literature review of morph generation techniques, datasets that 
exist in this field and MAD classification. Our dataset creation 
and the proposed MAD to evaluate the performance of our 
dataset are presented in Section 3. Section 4 presents the 
experimental results, discussion, and datasets used in this work. 
Finally, in Section 5, we end the paper by giving some 
conclusions and future direction. 

2. RELATED WORKS 

In this section, we will present a general review of the 
morphing generation approaches, face morph datasets, and 
MAD classification. 

2.1 Morph Generation Approaches 

Several morphing techniques exist to generate morphed images 
that mimic the biometric information of two (or more) 

individuals in the image and feature domain (Scherhag, 
Rathgeb, et al., 2019). Using one of the freely available 
software, morphing may be achieved quickly and simply. Even 
non-technical individuals can perform morphing with 
simplicity, such as MorphThing1, Sqirlz Morph 2.12, 
FaceMorpher3, 3Dthis Face Morph4, Abrosoft FantaMorph5, 
MagicMorph6, GIMP7, and Face Swap Online8. There are 
several ways to create morphs, from basic image warping to 
more advanced generative adversarial networks  (GANs) such 
as OpenCV, StyleGAN, ReGenMorphs,… etc. (H. Zhang et al., 
2021). Besides software, there are two basic categories of face 
morphing generating methods shown in Figure 2. deep 
learning-based approaches and landmark-based approaches. 
Additionally, Scherhag et al., in their study, provided a 
comprehensive list of every publicly available morphing tool, 
both open source and commercial  (Scherhag, Rathgeb, et al., 
2019).  
The landmark-based strategy is employed in most of morph 
generation methods (Scherhag, et al., 2019), where the face 
morphing process is carried out by merging the images 
concerning corresponding landmarks, and the texture 
information is blended. Encoding two images into the latent 
space where the two latent vectors are interpolated and the 
GAN generator converts the interpolated latent vector into the 
morphing image and alleviates the restrictions imposed by 
landmarks (Damer et al., 2018; H. Zhang et al., 2021). 
Moreover, Damer et al. in 2021 developed the 
ReGenMorphand, a unique face morphing idea that avoids both 
artifacts of blending in LMA and artifacts of artificial striping 
in GAN-based morphs (Damer et al., 2021). With the newly 
designed loss function that takes use of perceptual quality and 
identity variables, Zhang et al. 2021 developed MIPGAN, 
which is based on StyleGAN but has higher resolution and 
fewer artifacts (H. Zhang et al., 2021). 

2.2 Face Morph Dataset 

This subsection will cover some of the datasets that exist in the 
morph attacks field that were proposed by former researchers. 
It's important to show the number of morphed images in each 
dataset, their availability and unavailability for research, which 
is presented in Table 1. 
In 2014, Ferrara et al. presented the first face morph database. 
The authors created morphs of people's faces based on 
landmarks using the GIMP/GAP tool. In total, there are only 
14 digital morphing photos in this dataset, produced from 8 
genuine images, including both male and female participants. 

 
Figure 2. Taxonomy of morph attack generation approaches. 
 

 

 
1 https://www.morphthing.com/ 

2 https://download.cnet.com/Sqirlz-Morph/3000-2186_4-10304209.html 

3 http://www.facemorpher.com/ 

4 https://3dthis.com/morph.htm 

5 https://www.fantamorph.com/ 

6 https://www.effectmatrix.com/morphing/ 

7 https://www.gimp.org/ 

8 https://icons8.com/swapper 
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Only digital versions of the morphed images are included in 
this dataset, which is not publicly available. (Ferrara et al., 
2014). In addition, Ferrara et al. used the same tool to generate 
more morphs and extend this dataset in 2016. Approximately 
80 morphing facial images from 10 male and 9 female subjects 
make up the expanded dataset.  This dataset is in digital version 
but not open to the public.  (Ferrara et al. 2016). In 2016, 
Raghavendra et al. introduced the first huge dataset using face 
landmarks and the GIMP/GAP morph generation technique, 
which includes a variety of ethnicities including Asians, 
Americans, Middle Easterners, Europeans, Latin Americans, 
and Caucasians.  There are a total of 450 morphing face images 
in this dataset, which were created using 110 people of various 
racial and ethnic backgrounds. This dataset has not been 
released to the public and consists only of digital images.  
(Raghavendra et al., 2016). 
In 2017, Raghavendra et al. announced a novel morph dataset 
that included digital and print-scan images. OpenCV, which is 
a publicly available automatic tool, was used to create the face 
morphs. This database produces averaged and morphed face 
images simultaneously, resulting in a set of 1423 + 1423 
morphed face images. (Raghavendra et al., 2017a).  Another 
dataset with morphed faces was introduced in 2017 by Gomez-
Barrero et al., which includes 840 morphed images produced 
from 210 genuine images. This dataset has not been released to 
the public and consists only of digital images.  (Gomez-Barrero 
et al., 2017). Furthermore, the first face morphing dataset using 
deep learning-based morph images was introduced in 2018 by 
Damer and his colleagues.  Morph images were made using 
OpenCV and a GAN architecture by the authors. This dataset 
is private and limited to digital morphed face images. It 
contains a total of 1000 morphed images.  (Damer et al., 2018).  
In 2018, Neubert et al. presented another dataset by members 
of Prof. Jana Dittmann’s research team at the AMSL lab of the 
university of Magdeburg for providing digital and P&S 
segmented face images. The morphed face images have been 
created based on landmarks and by a combined approach with 
0.5 alpha blending. This dataset consists of 102 genion images 
and 2175 morph images. This dataset is public and requires 
some license to obtain it (Neubert et al., 2018).  
Another face morph dataset using the both complete and splice 
method was introduced by Makrushin et al. in 2019. This 
dataset contains 1326 morphed images in digital forms. The 
morph images in this database are not available for academic 
purposes (Makrushin et al., 2019). An additional dataset using 
the OpenCV morph generation technique to create facial 
morphs was introduced by Singh et al. in 2019. This dataset is 
the first to include live probing images taken from ABC gates 
in varied lighting situations, making it ideal for differential 
morphing attack detection. There are both digital and print scan 
images in this dataset. Only 90 morphed facial images exist in 
this private dataset (Singh et al., 2019). Also, another face 
morph dataset was introduced in 2019 by Scherhag and his 
colleagues. It was created with a variety of morphing tools such 
as OpenCV, FaceFusion, and FaceMorpher. This private 
dataset includes both digital and print-scan versions of 
morphed images, with a total of 964 + 964 + 529 morphed face 
images derived from the source images in the FRGCv2 and 

FERET datasets (Scherhag, Debiasi, et al., 2019). In 2020, 
Venkatesh et al. introduced another dataset using deep 
learning-based morph generation. In order to generate morph 
images, they utilized StyleGAN network. The 2500 morphed 
images in this dataset were created using 1270 genuine images. 
It exclusively contains digitally morphed faces and is not 
accessible to the general public (Venkatesh, Zhang, et al., 
2020). 
To summarize, not all of the datasets we have mentioned in the 
Table 1 are available for research purposes except the dataset 
created by Neubert et al. in 2018, which is publicly available 
called the AMSL dataset. Even when using publicly available 
face datasets, the license terms prohibit the redistribution of the 
resultant morphed face datasets. Although there is no Kurdish 
morph dataset in the Kurdistan region of Iraq, and the 
maximum number of morphs in the mentioned dataset is 2500 
morphs, here, we decided to create a Kurdish morph dataset 
with more morphs than the morphs in the earlier mentioned 
datasets. 

2.3 MAD Classification 

The seriousness of morphing attacks motivates researchers to 
think about a way to design and create a morph detection or 
prevention scheme. Researchers broadly consider two 
scenarios for morph attack detection: single morph attack 
detection (S-MAD) also called (no reference), and differential 
morph detection (DMA). Single morph detection is when the 
algorithm bases its classification result only on the potential 
morphed image and there is no additional source to compare 
with it. However, differential morph detection uses an 
additional trusted image, typically a live capture at border 
control, to compare to the potential morphed image to make its 
decision. Differential morph detection is not within the scope 
of our investigation , but readers interested in learning more 
can refer to the work done by (Ferrara et al., 2018). 
In 2016, Raghavendra et al. were the first researchers that 
presented a morph attack detector model. They extracted 
features by using binarized statistical image features (BSIF) 
from gray-scale images. In order to make classification, the 
SVM classifier was used (Raghavendra et al., 2016). Moreover, 
in 2017, Kraetzer et al. proposed a method for the purpose of 
detecting morphed facial images using keypoint descriptors 
and edge operators. 
They used Speed Up Robust Feature (SURF), Features from 
Accelerated Segment Test (FAST), Generic Accelerated 
Segment Test AGAST, Scale Invariant Feature Transform 
(SIFT), and Adaptive and Oriented BRIEF (ORB) to get face 
keypoints. The classification was conducted with a decision 
tree classifier (Kraetzer et al., 2017). In 2017, Raghavendra et 
al. trained a Probabilistic Collaborative Representation 
Classifier (Pro-CRC) using LBP-feature derived from the color 
channels (HSV, YCbCr) (Raghavendra et al., 2017b). Due to 
the fact that our focus is on morph dataset creation, we are not 
going into detail about former MAD methods here. Readers 
interested in can return  to (Venkatesh et al., 2021). 
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Table 1. Summary of Face Morph datasets 

References 
Morph 

Generation 
Type 

Morph 
Generation 

Method 

Digital _ Print 
& Scan 

Genuine & 
Morph Limitations 

(Ferrara et al., 
2014) Landmark GIMP/GAP digital 14 morphs Limited in number of samples and it is 

private dataset 
(Ferrara et al., 

2016) Landmark GIMP/GAP digital 80 morphs Limited in number of samples and it is 
private dataset 

(Raghavendra et 
al., 2016) Landmark GIMP/GAP digital and 

Print & Scan 
1423+1423 

morph 
It is private dataset and researchers could 

not access it. 
(Raghavendra et 

al., 2017b) Landmark GIMP/GAP digital 450 morphs This dataset is private, and limited in 
number of samples 

(Gomez-Barrero 
et al., 2017) --- --- digital 840 morphs The dataset is private and limited in 

number of samples 

(Damer et al., 
2018) 

Generative 
Adversarial 

Network 
GAN digital 1000 morphs The dataset is private. 

(Neubert et al., 
2018) Landmark combined_alpha0.5 digital 102 genuine 

2175 morphs 
The dataset is public but limited in number 

of morph and genuine samples.  

(Makrushin et 
al., 2019) Landmark Complete and 

splice digital 1326 morphs The dataset is private. 

(Singh et al., 
2019) Landmark OpenCV digital and print 

scan 90 morphs The dataset is private and limited in 
number of samples.  

(Scherhag, 
Debiasi, et al., 

2019). 
Landmark 

OpenCV, 
FaceFusion, Face 

Morpher 

digital and print 
& scan 

964+964+529 
morphs The dataset is private. 

(Venkatesh, 
Zhang, et al., 

2020) 

Landmark, 
Generative 
Adversarial 

Network 

MorGAN and 
StyleGAN digital 2500 morphs It is unavailable dataset for research 

purposes. 

 

3. METHODOLOGY 

Regarding the limitation mentioned above in the previous 
section. This section discusses the dataset generation in detail. 
Our dataset creation scheme consists of capturing images and 
generating Morphs. To test the robustness of the created 
dataset, we designed a simple MAD scheme which includes 
pre-processing, feature extraction, and classification. 

3.1 Dataset Creation 

Data was introduced as the oil of the 21st century, i.e., data is 
an important part of the research area. To investigate and solve 
real-world problems, there is a serious need to access robust 
and reliable data. However, there is a limit to the datasets 
available, especially in the field of “Morphing Attacks 
Detection,” because most datasets are private. The decision to 
create a morph dataset was based on this limitation. The main 
goal of our dataset creation is to serve academic research in the 
Kurdistan region of Iraq as well as other scholars across the 
world who are passionate in this regard. The face image dataset 
generation needs some procedures, such as getting permission 
from our university to collect data. 
In addition, we prepared permission forms for individuals who 
wanted to participate in the experiments (see Figure 3). On 
October 15, 2021, we began the collection of (capturing) face 
images at the Computer Science and IT Department of 
Salahaddin University in the Kurdistan region of Iraq, as well 
as several subjects from various cities and universities. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Samples of our dataset permission form 

We named our dataset KurdFace, which consists of 845 facial 
images from 169 individuals, and for each individual, five 
different emotions (Normal, Happy, Sad, Surprised, and 
Angry) are taken. The individuals are distributed among 
various age groups between 18 to 45, and both genders (male 
and female). Some samples are shown in Figure 4. 
 

 
Figure 4. Samples of our dataset. 

The frontal faces are captured as the first step in our data 
collection. To capture frontal face images, we used a Canon 
camera model EOS Kiss X5 with a Canon zoom LENS EF_S 
18_135MM 1:3.5_5.6 IS. We used normal face images to 
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generate morphed face images (the generation process is 
explained in the next subsection). Figure 5 provides instances 
of morphing facial images acquired from two separate 
individuals. 
To the best of the author’s knowledge, this is the first dataset 
in the Kurdistan region of Iraq with 169 genuine images of 
individuals. The genuine images were merged to produce 3951 
distinct morphing face images, and our dataset could be used 
in several applications related to face recognition, emotion 
recognition, and morph attack detection. 

 
Figure 5. Samples of morphed face images in our dataset. 

3.2 The KurdFace dataset’s limitation 

In this subsection, the limitations of our dataset are described 
as follows: 

•  The dataset does not contain a diversity of images. 
• Images were taken under uncontrolled illumination 

conditions due to the unavailability of a studio to 
capture images.  

• Images were taken from various distances to 
represent the attacker’s scenario, which is the 
unavailability of passport images in some scenarios. 

• The dataset consists of more young individuals than 
older ones. 

3.3 Morph Generation 

To study morphing attack detection, a large number of 
morphed face images are required. The reader who’s interested 
in morphing generation steps in detail can refer to (Scherhag, 
Rathgeb, et al., 2019) and (Neubert et al., 2018). In this work, 
an open-source automated generating morphed images called 
OpenCV (Mallick, 2021) based on landmarks has been used. 
We utilized OpenCv for several reasons. First, it is publicly 
available. Second, it quickly generates a large number of morph 
images automatically. Third, it proved from previous research 
that obtained images are secure. 
OpenCV is a self-implementation morphing method, that is 
easy to be use. An interested researcher can follow this tutorial 
"Face Morph Using OpenCV" for more details. It employs the 
Dlib library's 68-point annotator for face morphing (King, 
2009). Facial landmarks are extracted from both genuine 
source images, and Delaunay triangles are created from these 
landmarks, which are then warped and alpha-blended. 
We consider the gender of participants during the generation of 
morph images since morphing people of various genders 
usually results in morphs that look unnatural. In the real 
scenario, the generation of morphs with subjects of a different 
gender is not predictable; thus, they are excluded from the 
dataset. Morph images were formed in a way to keep the ratio 
between two genuine images in balance with a 0.5 alpha 
blending factor. To ensure a clear separation of datasets during 
training and testing, the morph images are created within a 
single folder. While open-source software OpenCV can 
generate a large number of morphs, it has the drawback of 
requiring a significant effort to post-processing the generated 
images. 

3.4 Morphed Face Detection Framework 

To test the robustness of our dataset, we aimed to implement a 
simple Morph Attack Detection (MAD) algorithm based on the 
extraction of texture features from the faces. Texture is one of 
the most important characteristics of images in general and 
especially in face images. Different texture descriptors were 
used in many different applications, such as Local Binary 
Patterns (LBP) (Asma & Brahim, 2022), Local Phase 
Quantization (LPQ) features (Raghavendra et al., 2018), and 
the Binarized Statistical Image Feature (BSIF) (Adjabi et al., 
2021). These texture descriptors are important for more 
applications, especially face recognition (Rashid et al., 2013), 
and face morph detection (Damer et al., 2018). The design of 
our morphing detector is based on the idea that the morphing 
process changes the variation in the micro_texture of images. 
If the morphed images are generated accurately, and with high 
quality, the differences between these textures will not be 
visible to the human eye. Due to this, it is important to generate 
MAD systems at border controls. The proposed scheme uses 
LBP and uniform LBP as texture descriptors to adequately 
distinguish between genuine and morphed face images.   
 
3.4.1 Local Binary Pattern (LBP): LBP is a texture 
descriptor whose aim is to efficiently summarize the local 
structures of images. In terms of representing local structures, 
LBP is one of the strongest descriptors, it has the ability against 
illumination changes, and it is easy to compute. Ojala and 
Pietikainen were the first researchers who introduced LBP to 
characterize texture in images (Ojala and Pietikainen, 1996). 
Subtracting the central pixel from its eight neighbours is the 
first step in the LBP process. From the upper-left corner, the 
subtraction result will determine whether each place gets 0 or 
1. Concatenation and encoding of binary strings are performed 
clockwise on the resulting bits for all neighbouring pixels.  LBP 
codes, or Local Binary Patterns, are the derived binary strings.  
Figure 6 displays the decimal LBP code for the central pixel. 
 

Figure 6. Basic LBP operator 
Uniform LBP codes have 0 or 2 bitwise transitions from 0 to 1 
or vice versa.  It has been demonstrated that uniform LBP 
(ULBP) codes represent 90% of the LBP codes in face images 
(Ojala et al., 2002). 00000000 (0 transitions) and 10000001 (2 
transitions) are examples of uniform values, but 10100101 (6 
transitions) and 01100110 (4 transitions) are not. It is simple to 
demonstrate that only 58 uniform patterns can be found in the 
8-1 neighbourhood, and the standard LBP histogram contains 
59 bins for the 58 uniform patterns and one bin for the 
summation of non-uniform patterns. Our proposed approach 
for robust morphing facial image detection is shown in a block 
diagram in Figure 7. Pre-processing, feature extraction, and 
classification are the three main steps of our proposed 
technique.  
 

 
Figure 7. The block diagram of our proposed approach 

The idea behind the pre-processing is to extract the 
standardized face size. In this work, face detection is carried 
out using the Dlib landmark detector (King, 2009). 
Subsequently, we automatically select the maximum size of 

Threshol
d 

Binary: 
10101110 
Decimal: 
174 
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face images from both genuine and morph images, and then all 
face images are rescaled with the selected maximum size, 
which is cropped to 315×302 pixels to ensure that the detection 
algorithm is only applied to the facial region. Finally, the 
cropped face part is converted to a grayscale image. 
The strategy of extracting discriminant features of a face image 
that are robust to varying conditions is crucial to the reliability 
of face morph attack detection. In the feature extraction step, 
256 bins of Local Binary Pattern (LBP) and 59 bins of the 
Uniform LBP are extracted separately. Then the histogram of 
the obtained LBP code is calculated. These histograms are the 
final feature vectors describing the images. After labelling the 
features (Genuine = 0 and Morph = 1), we separate them into 
training and testing sets, which will be mentioned in the next 
section. We use 5-fold cross-validation for our experiments. 
Finally, the classification is conducted by an SVM classifier. 
We train the model with the training set features and test the 
model with the testing set features. 

4. EXPERIMENTAL DATA, RESULTS, AND 
DISCUSSION 

4.1 MAD performance measurements 

The following measurements were widely used to evaluate the 
performance of face-morphing attack detection methods. For 
more details, go back to study (Misra & Arumugam, 2022).  

 
1. False Rejection Rate (FRR) or Bona Fide 

Presentation Classification Error Rate (BPCER)  
2. False Acceptance Rate (FAR) or Attack Presentation 

Classification Error Rate (APCER) 
3. Detection-Equal Error Rate (D-EER)  
4. Average Classification Error Rate (ACER) 
5. Accuracy (ACC) 
6. True Positive Rate (TPR) TPR. 

Most of the researchers used the mentioned  metrics for MAD 
performance evaluation in their investigations (Kraetzer et al., 
2017) (Wandzik et al., 2017) (Jassim & Asaad, 2018) (L.-B. 
Zhang et al., 2018) (Makrushin et al., 2018) (Debiasi et al., 
2018) (Damer et al., 2019) (Ramachandra et al., 2019) 
(Venkatesh et al., 2019) (Scherhag, Rathgeb, et al., 2020) 
(Ferrara et al., 2021). Due to this, we used the BPCER, 
APCER, and ACER metrics to evaluate the performance of our 
proposed method, as explained in Table 2.  
When the values of BPCER are high, it indicates many false 
rejects (false negatives), while when the values of APCER are 
high, it represents a huge number of false positives resulting 
from successful attacks. Thus, low values of both metrics and 
lower ACER indicate robust MAD performance. 
 

Table 2. Metrics definitions and equations 
Metrics Definition Equation 

False Acceptance Rate (FAR) or 
Attack Presentation Classification 
Error Rate (APCER) 

It is defined as the proportion of attack images misclassified as 
genuine images (Scherhag et al., 2017)i.e., the ratio at which 
morph attacks are misclassified as genuine 

APCER = {False Positive / (False 
Positive + True Negative)}                                            
(1) 

False Rejection Rate (FRR) or 
Bona Fide Presentation 
Classification Error Rate 
(BPCER) 

It is defined as the proportion of bona fide (genuine) images 
misclassified as presentation (morph) attacks (Scherhag et al., 
2017). i.e., the ratio at which genuine images are misclassified as 
morph images. 

BPCER = {False Negative / (False 
Negative + True Positive) }                                           
(2) 

Average Classification Error Rate 
(ACER) 
 

The average between APCER and BPCER can be represented in 
an Average Classification Error Rate (ACER). i.e., the rate of 
error classification of the model generally 

ACER = (APCER + BPCER) / 2                                                                                           
(3) 

 
 

4.2 Datasets used 

Due to the limited number of publicly available face morphing 
datasets and the lack of a Kurdish morph dataset, we 
constructed a face morph dataset which we named as KurdFace 
Dataset, described in section 3.1. Thus, to compare the 
robustness of our morph dataset regarding how morph images 
were generated in our dataset, whether they were as robust as 
morph images in other datasets or not, and the classification 
error rate, we used the AMSL dataset in our experiments to 
compare with it. AMSL stands for Advanced Multimedia and 
Security Lab. The morph images in the AMSL dataset were 
generated by the Combined Morphs tool, which is presented in 
(Neubert et al., 2018). This dataset was created at the 
University of Magdeburg, in Germany. The AMSL dataset 
consists of 102 genuine neutral, 102 smiling passport images, 
and 2175 morph images. The morph images from the AMSL 
dataset are generated from bona fide images of the FRLL 
dataset (DeBruine & Jones, 2021) and the Utrecht ECVP 
Dataset9. 

4.3 Performance evaluation protocol, results, and 
discussion 

In order to effectively evaluate the performance of algorithms, 
we divide both the mentioned datasets separately into training 
and testing sets without overlapping subjects. We keep an equal 
number of genuine and morphed images during the training and 

 
9 http://pics.stir.ac.uk/ 

testing of the model to avoid unbalancing issues (different 
numbers of genuine and morphed images). The SVM classifier 
is trained entirely on images from the training set, which 
consists of 75% (50%) genion images and 75% (50%) morphed 
images. The testing set consists of 25% (50%) of genion and 
25% (50%) of morphed images to share the findings of the 
morph face detection method. We used these two percentages 
of data separation because most of the papers in the field of 
morph attack detection utilized the percentages of between 50 
to 80 of the datasets to train and test the models(Venkatesh, 
Ramachandra, et al., 2020), (Hamza et al., 2022). 
Table 3–10 illustrates the quantitative results of Normal LBP 
and Uniform LBP on both kurdFace and AMSL datasets with 
two different data separation scenarios. In the first scenario, 
75% of the datasets were used for training the model, and 25% 
of the datasets were used for testing the model. In the second 
scenario, 50%, which is half of the datasets, goes to train the 
model, and the other half is used to test the model. 
We pick morph features at random five times (no. of the trail). 
In each trial, we select the morph feature sets along with the 
genuine feature sets to train the model. This means that a model 
is trained five times, and we. repeated the same procedure for 
testing the model. As mentioned before, the classification was 
performed using an SVM classifier. In the next step, the 
performances are calculated for each run separately. Then, the 
final classification error was calculated by averaging the results 
from all five runs. In each case, we measure the APCER, 



A. R. Hussein and R. Dh. Rashid / Science Journal of University of Zakho, 10(4), 258-267, October-December 2022 
 

 264 

BPCER, and ACER of the model, as you can see from Tables 
(3–10). 
4.3.1 Results of Normal LBP on KurdFace and AMSL 
Dataset: Table 3-6 indicates the quantitative performance of 
the normal LBP method on both KurdFace and AMSL datasets 
with 75%–25% and 50%–50% data separation protocols. As 
mentioned in the earlier section, low values of BPCER and 
APCER as well as lower ACER indicate the robust 
performance of a MAD technique. 
In the 75%-25% scenario, when training and testing the 
model conducted with AMSL dataset, the average BPCER is 
12.8% after five trails. That indicates genuine images are 
incorrectly classified as morph attacks, but the result is 8 in 
some tests, such as trail four and five. In contrast, the average 
of APCER is 16.8% after five trails, which indicates morph 
attacks are incorrectly classified as genuine images. We also 
have a case where APCER is 8 in trail five. As you can see in 
Table 3, there are some cases where most of the genuine and 
morph images are correctly classified into their original classes. 

When we train and test the model with the KurdFace dataset, 
which is presented in Table 4, the average of the (A. ACER) 
after five trials is 12.85%. However, this on the AMSL dataset 
is 14.8%. It is interesting to note that the classification error of 
the proposed method is nearly equal to each other in both 
datasets. This can be attributed to the suitable texture features 
extracted from the frontal face images in both datasets. This 
also indicates that our dataset is as robust as the AMSL dataset. 
In 50%-50% scenario, when training and testing of the model 
were conducted with the AMSL dataset, the average ACER 
increased to 19.21%. As you can see in Table 5, this indicates 
that more images are misclassified into their original classes 
when compared with the 75%–25% scenario. In addition, Table 
6 presents the least average classification error rate, which 
is11.07%, when the model is trained and tested with the 
KurdFace dataset in a 50%–50% scenario.

Table 3. The quantitative results of Normal LBP on the AMSL dataset (75%_25%) 
No. of Trail TP FN FP TN BPCER APCER ACER A. BPCER A. APCER A. ACER 

1 20 5 6 19 20 24 22 

12.8 16.8 14.8 
2 22 3 4 21 12 16 14 
3 21 4 6 19 16 24 20 
4 23 2 3 22 8 12 10 
5 23 2 2 23 8 8 8 

Table 4. The quantitative results of Normal LBP on KurdFace dataset (75%_25%) 
No. of 
Trail TP FN FP TN BPCER APCER ACER A. BPCER A. APCER A. ACER 

1 37 5 5 37 11.90 11.90 11.90 

11.42 14.28 12.85 
2 37 5 7 35 11.90 16.66 14.28 
3 38 4 9 33 9.52 21.42 15.47 
4 37 5 5 37 11.90 11.90 11.90 
5 37 5 4 38 11.90 9.52 10.71 

Table 5. The quantitative results of Normal LBP on the AMSL dataset (50%_50%) 
No. of 
Trail TP FN FP TN BPCER APCER ACER A. BPCER A. APCER A. ACER 

1 43 8 5 46 15.68 9.80 12.74 

16.47 21.96 19.21 
2 41 10 13 38 19.60 25.49 22.54 
3 45 6 15 36 11.76 29.41 20.58 
4 41 10 14 37 19.60 27.45 23.52 
5 43 8 9 42 15.68 17.64 16.66 

Table 6. The quantitative results of Normal LBP on KurdFace dataset (50%_50%) 
No. of 
Trail TP FN FP TN BPCER APCER ACER A. BPCER A. APCER A. ACER 

1 77 7 8 76 8.33 9.52 8.92 

10.23 11.90 11.07 
2 75 9 9 75 10.71 10.71 10.71 
3 74 10 12 72 11.90 14.28 13.09 
4 76 8 7 77 9.52 8.33 8.92 
5 75 9 14 70 10.71 16.66 13.69 

 
4.3.2 Results of Uniform LBP on KurdFace and AMSL 
datasets: The quantitative result of Uniform LBP method on 
both KurdFace and AMSL datasets with both data separation 
protocol shows in Tables (7-10).  
In the 75%-25% scenario, when the training procedure is 
conducted with the training set features of the AMSL dataset, 
and the testing procedure is conducted with the testing set 
features of the same dataset, the average of BPCER, APCER, 
and ACER is 15.2%, 16%, and 15.6%, respectively, which is 
reported in Table 7. This indicates that the classification error 
is approximately balanced between morph and genuine images. 
As Table 8 illustrates, the average of BPCER, APCER, and 
ACER is 14.28%, 18.09%, and 16.19% achieved on the 
KurdFace dataset, respectively. This means that the rate of 

error classifications on the AMSL dataset is very close to the 
rate of error classifications on the KurdFace dataset. 
In the 50%-50% scenario, when training and testing of the 
model were conducted with the AMSL dataset, the average of 
BPCER, APCER, and ACER increased to 20.39%, 25.88%, 
and 23.13%, respectively. Table 9 presents this evidence. This 
indicates that more images are misclassified into their original 
classes when compared with the 75%–25% scenario. In 
addition, Table 10 presents the least average classification error 
rate, which is 11.66%, when the model is trained and tested 
with the KurdFace dataset in the 50%–50% scenario. 
Furthermore, we discovered in Tables 3-10 that the correct 
classification of genuine and morph images (TP and TN) is 
roughly balanced on both datasets and in both scenarios. 
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Table 7. The quantitative results of Uniform LBP on the AMSL dataset (75%_25%) 
No. of 
Trail TP FN FP TN BPCER APCER ACER A. BPCER A. APCER A. ACER 

1 20 5 3 22 20 12 16 

15.2 16 15.6 
2 21 4 4 21 16 16 16 
3 22 3 3 22 12 12 12 
4 21 4 4 21 16 16 16 
5 22 3 6 19 12 24 18 

Table 8. The quantitative results of Uniform LBP on KurdFace dataset (75%_25%) 
No. of 
Trail TP FN FP TN BPCER APCER ACER A. BPCER A. APCER A. ACER 

1 38 4 10 32 9.52 23.80 16.66 

14.28 18.09 16.19 
2 37 5 4 38 11.90 9.52 10.71 
3 36 6 9 33 14.28 21.42 17.85 
4 35 7 8 34 16.66 19.04 17.85 
5 34 8 7 35 19.04 16.66 17.85 

Table 9. The quantitative results of Uniform LBP on the AMSL dataset (50%_50%) 
No. 
of 

Trail 
TP FN FP TN BPCER APCER ACER A. BPCER A. APCER A. ACER 

1 43 8 16 35 15.68 31.37 23.52 

20.39 25.88 23.13 
2 42 9 16 35 17.64 31.37 24.50 
3 41 10 11 40 19.60 21.56 20.58 
4 37 14 11 40 27.45 21.56 24.50 
5 40 11 12 39 21.56 23.52 22.54 

Table 10. The quantitative results of Uniform LBP on KurdFace dataset (50%_50%) 
No. of 
Trail TP FN FP TN BPCER APCER ACER A. BPCER A. APCER A. ACER 

1 76 8 12 72 9.52 14.28 11.90 

9.52 13.80 11.66 
2 79 5 13 71 5.95 15.47 10.71 
3 75 9 8 76 10.71 9.52 10.11 
4 72 12 14 70 14.28 16.66 15.47 
5 78 6 11 73 7.14 13.09 10.11 

Table 11. Summary of our experiments 
Datasets  Data Separation Normal LBP Uniform LBP 

Training set  Testing set 256 bins (ACER) 59 bins (ACER) 
AMSL First Scenario  75% 25% 14.8 15.6 

Second Scenario  50% 50% 19.21 23.13 
KurdFace First Scenario  75% 25% 12.85 16.19 

Second Scenario  50% 50% 11.07 11.66 
 
In summary, the experimental results shown in the above table 
show that the strategy of data separation has a direct effect on 
the recognition rate. In both scenarios, the average 
classification error rate (ACER) after 5 trials using normal LBP 
on both datasets achieved a lower error rate than using uniform 
LBP on the same datasets. This demonstrates that the number 
of features is affecting the classification rate. However, the 
ACER on the AMSL dataset is more than when it’s applied to 
the KurdFace dataset, but it is still close to each other. We can 
say our dataset is robust like the AMSL dataset for such kinds 
of texture features, and researchers can use it in their 
investigations. 
In addition, the results of the experiments show clear support 
for the normal LBP. This analysis found evidence that normal 
LBP outperformed uniform LBP in terms of the least average 
classification error rate. The result shows that LBP is better 
than uniform LBP because normal LBP takes 256 features of 
face images as one package, which represents the whole face 
image, while in uniform LBP only 59 features remain, and 
these features don't seem to be the exact features that are 
represented in the whole face image, i.e., these uniform LBP 
features are not enough to effectively distinguish morphed 
images from genuine ones. 

5. CONCLUSION AND FUTURE WORK 

Due to the importance of data and the unavailability of morph 
datasets in the Kurdistan region of Iraq, we constructed a 

KurdFace dataset which consists of 845 images of 169 
individuals with five different emotions to serve academic 
research, especially in the fields of Face Recognition, Emotion 
Recognition, and Face Morph Attack Detection. In addition, we 
generated 3951 morphed images from normal frontal faces 
using the OpenCV morph generator technique. 
We designed the MAD method, which is based on normal LBP 
and uniform LBP as feature extractors and SVM as classifiers 
with two different data separations, to test the robustness of our 
dataset and see how it compares to other datasets in terms of 
resistance to morph attack detection. 
The experimental results show that the rate of wrong 
classifications (ACER) on the AMSL dataset is very close to 
the rate of wrong classifications (ACER) on the KurdFace 
dataset. Moreover, the correct classification of genuine and 
morph images (TP and TN) is approximately balanced across 
both datasets and in both scenarios. This indicates that the 
KurdFace dataset is as robust as the AMSL dataset and it can 
be used for research purposes. We aim to conduct more 
investigations into our new dataset by conducting different 
feature extraction methods and classification algorithms in the 
future. 
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