The Influence of the Growth Time on the Size and Alignment of Zno Nanorods

  • Ahmed F. Abdulrahman University of Zakho
  • Sabah M. Ahmed University of Duhok
  • Naser M. Ahmed Universiti Sains Malaysia
Keywords: Nanorods, CBD, Growth time, ZnO, Semiconductor


Vertically aligned ZnO nanorods arrays were synthesized on glass substrates. ZnO seed layers were prepared on the glass substrate by RF Sputtering technique. ZnO nanorods synthesized using low-cost chemical bath deposition method at low temperature (95 ºC). The effect of the different growth time such as (0.5, 1, 2, 3, 4 and 5) h on the morphology, elemental chemical composition and structure of the ZnO nanorods were obtained systemically, and tested by Field emission scanning electron microscopy (FESEM), Energy dispersive analysis (EDX), and XRD measurements. The results found that the ZnO nanorods with hexagonal wurtzite structure grow vertically on the glass substrates. Most of the prepared samples have strong and sharp (002) peak intensities and the diffraction peaks (002) become higher and narrower as growth time increasing, obtaining that the ZnO crystalline quality became better with growth time increasing. The growth rate was decreased with increasing growth time, and the high aspect ratio was found at 4 h as a growth time. The size, length and crystalline size of the ZnO nanorods increase with increasing growth time. Furthermore, the ZnO nanorods vertically grow at (002) direction along the c-axis on the glass substrate, with elementary chemical compositions of zinc and oxygen only for all prepared samples.

Author Biographies

Ahmed F. Abdulrahman, University of Zakho

Dept. of Physics, Faculty of Science, University of Zakho, Kurdistan Region, Iraq

Sabah M. Ahmed, University of Duhok

Dept. of Physics, Faculty of Science, University of Duhok, Kurdistan Region, Iraq

Naser M. Ahmed, Universiti Sains Malaysia

School of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia


Abdulrahman, A. F., Ahmed, S. M., Ahmed, N. M., & Almessiere, M. A. (2016a). Different substrates effects on the topography and the structure of the ZnO nanorods grown by chemical bath deposition method. Digest Journal of Nanomaterials and Biostructures, 11(3), 1007-1016.
Abdulrahman, A. F., Ahmed, S. M., Ahmed, N. M., & Almessiere, M. A. (2016b). Novel process using oxygen and air bubbling in chemical bath deposition method for vertically well aligned arrays of ZnO nanorods. Digest Journal of Nanomaterials and Biostructures, 11(4), 1073-1082.
Ahn, C. H., Han, W. S., Kong, B. H., & Cho, H. K. (2009). Ga-doped ZnO nanorod arrays grown by thermal evaporation and their electrical behavior. Nanotechnology, 20, 015601.
Amin, G., Asif, M. H., Zainelabdin, A., Zaman, S., Nur, O., & Willander, M. (2011). Influence of pH, Precursor Concentration, Growth Time, and Temperature on the Morphology of ZnO Nanostructures Grown by the Hydrothermal Method. Journal of Nanomaterials, 9.
B.D.Cullity. (2007). Elements of X-ray Diffraction. second edition, Addison Wesley.
Boyle, D. S., Govender, K., & O’Brien, P. (2002). Novel low temperature solution deposition of perpendicularly orientated rods of ZnO: substrate effects and evidence of the importance of counter-ions in the control of crystallite growth. Chem. Commun., 80-81.
C, S., & G, N. (1998). X-Ray Diffraction: A Practical Approach. Springer Science + Business Media, LLC, 233 Spring Street, New York, NY 10013, USA: Plenum Press.
Gayen, R. N., Bhar, R., & Pal, A. K. (2010). Synthesis and characterization of vertically aligned ZnO nanorods with controlled aspect ratio. Indian Journal of Pure & Applied Physics (IJPAP), 48, 385-393.
Guo, H., Zhou, J., & Lin, Z. (2008). ZnO nanorod light-emitting diodes fabricated by electrochemical approaches. Electrochem. Commun., 10, 146-150.
Guo, Z., Zhao, D. X., Liu, Y., Shen, D., Zhang, J., & Liu, B. (2008). Visible and ultraviolet light alternative photodetector based on ZnO nanowire/n-Si heterojunction. Appl. Phys. Lett., 93, 163501-163503.
Hejazi, S. R., Hosseini, H. R. M., & Ghamsari, M. S. (2008). The role of reactants and droplet interfaces on nucleation and growth of ZnO nanorods synthesized by vapor–liquid–solid (VLS) mechanism. J. Alloys Compd., 455, 353-357.
Hou, K., Li, C., Lei, W., Zhang, X. B., Yang, X. X., Qu, K., X.WSun. (2009). Influence of synthesis temperature on ZnO nanostructure morphologies and field emission properties. Physica E 41, 470.
Kashif, M., Hashim, U., Ali, M. E., Ali, S. M. U., Rusop, M., Ibupoto, Z. H., & Willander, M. (2012). Effect of Different Seed Solutions on the Morphology and Electro optical Properties of ZnO Nanorods. Hindawi Publishing Corporation Journal of Nanomaterials, Article ID 452407.
Kurda, A. H., Hassan, Y. M., & Ahmed, N. M. (2015). Controlling Diameter, Length and Characte-rization of ZnO Nanorods by Simple Hydrothermal Method for Solar Cells. World Journal of Nano Science and Engineering, 5, 34-40.
Lai, C. L., Wang, X. X., Zhao, Y., Fong, H., & Zhu, Z. T. (2013). Effects of humidity on the ultraviolet nanosensors of aligned electrospun ZnO nanofibers. RSC Adv., 3, 6640-6645.
Law, M., Greene, L. E., Johnson, J. C., Saykally, R., & Yang, P. D. (2005). Nanowire dyesensitized solar cells. Nat. Mater., 4, 455-459.
Lee, J., & Gao, W. (2005). Sputtered deposited nanocrystalline ZnO films: a correlation between electrical, optical and microstructural properties. Appl Phys A Mater Sci Process, 80(8), 1641-1646.
Li, Y., You, L., Duan, R., Shi, P., & Qin, G. (2004). Oxidation of a ZnS nanobelt into a ZnO nanotwin belt or double single-crystalline ZnO nanobelts. Solid State Commun., 129, 233.
Lipson, H. (1979). Elements of X-ray diffraction. Contemp. Phys., 20 (1), 87-88.
Liu, C. H., Zapien, J. A., Yao, Y., Meng, X. M., Lee, C. S., Fan, S. S., Lee, S. T. (2003). High-density, ordered ultraviolet light-emitting ZnO nanowire arrays. Adv. Mater., 15, 838.
Liu, Y. S., Han, J., Qiu, W., & Gao, W. (2012). Hydrogen peroxide generation and photocatalytic degradation of estrone by microstructural controlled ZnO nanorod arrays Appl. Surf. Sci., 263, 389-396.
Nam, G. H., Baek, S. H., & Park, I. K. (2014). Growth of ZnO nanorods on graphite substrate and its application for Schottky diode. J. Alloys Comp., 613, 37-41.
Pei, L. Z., Zhao, H. S., & Tan, W. (2010). Hydrothermal oxidization preparation of ZnO nanorods on zinc substrate. Physica E: Low-Dimensional Systems and Nanostructures, 42(5), 1333-1337.
Polsongkram, D., Chamninok, P., Pukird, S., Chow, L., Lupan, O., Chai, G., J., D. (2008). Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method. Physica B, 403, 3713-3717.
Robin, I. C., Marotel, P., EI-Shaer, A. H., Petukhov, V., Bakin, A., Waag, A., .Feuillet, G. (2009). Compared optical properties of ZnO heteroepitaxial, homoepitaxial 2D layers and nanowires. J. Cryst. Growth, 311, 2172.
Schneider, J. J., Hoffmann, R. C., Engstler, J., Klyszcz, A., Erdem, E., Jakes, P., Bill, J. (2010). Synthesis, characterization, defect chemistry, and fet properties of microwave-derived nanoscaled zinc oxide Chem. Mater., 22, 2203-2212.
Shabannia, R. (2016). Effects of Growth Duration and Precursor Concentration on the Growth of ZnO Nanorods Synthesized by Chemical Bath Deposition. Iran. J. Sci. Technol. Trans. Sci.
Shi, R. X., Yang, P., Dong, X. B., Ma, Q., & Zhang, A. Y. (2013). Growth of flower-like ZnO on ZnO nanorod arrays created on zinc substrate through low-temperature hydrothermal synthesis. Applied Surface Science, 264, 162-170.
Thambidurai, M., Muthukumarasamy, N., Velauthapillai, D., & Lee, C. (2014). Rosa centifolia sensitized ZnO nanorods for photoelectrochemical solar cell applications. Solar Energy, 106, 143-150.
Tsay, C. Y., Fan, K. S., Chen, S. H., & Tsai, C. H. (2010). Preparation and characterization of ZnO transparent semiconductor thin films by sol–gel method. J. Alloys Compd., 495, 126-130.
Wang, Z. L. (2009). ZnO nanowire and nanobelt platform for nanotechnology Mater. Sci. Eng., 64, 33-71.
Warren, B. E. (1969). X-ray Diffraction. Courier Dover Publications, New York.
Willander, M., Yang, L. L., Wadeasa, A., Ali, S. U., Asif, M. H., Zhao, Q. X., & Nur, O. (2009). Zinc oxide nanowires: controlled low temperature growth and some electrochemical and optical nano-devices J. Mater. Chem., 19, 13.
Wu, C. L., Chang, L., Chen, H. G., Lin, C. W., Chang, T. F., Chao, Y. C., & Yan, J. K. (2006). Growth and characterization of chemical vapor deposition Zinc Oxide nanorods. Thin Solid Films, 498, 137-141.
Xie, J., Wang, H., Duan, M., & Zhang, L. (2011). Synthesis and photocatalysis properties of ZnO structures with different morphologies via hydrothermal method. Applied Surface Science, 257, 6358-6363.
Xu, S., Wei, Y., Kirkham, M., & Wang, Z. L. (2008). Patterned Growth of Vertically Aligned ZnO Nanowire Arrays on Inorganic Substrates at Low Temperature without Catelyst. J. Am. Chem. Soc., 130, 14958.
Yu, D., Hu, L., Li, J., Hu, H., Zhang, H., Zhao, Z., & Fu, Q. (2008). Catalyst-free synthesis of ZnO nannorods arrays on InP (001) substrate by pulsed laser deposition. Mater. Lett., 62, 4063-4065.
Zhou, Y., Liu, C., Zhong, X., Wu, H., Li, M., & Wang, L. (2014). Simple hydrothermal preparation of new type of sea urchin-like hierarchical ZnO micro/nanostructures and their formation mechanism. Ceramics International, 40, 10415-10421.
How to Cite
Abdulrahman, A., Ahmed, S., & Ahmed, N. (2017). The Influence of the Growth Time on the Size and Alignment of Zno Nanorods. Science Journal of University of Zakho, 5(1), 128-135.
Science Journal of University of Zakho