Mapping Flood Vulnerability by Applying EBF And AHP Methods, in the Iraqi Mountain Region

Authors

  • Abdulrazaq Qasim Mikail Scientific Research Center, GIS & Remote Sensing Department, Delzyan Campus, Soran University, Soran 44008, Iraq.
  • Rahel Hamad Scientific Research Center, GIS & Remote Sensing Department, Delzyan Campus, Soran University, Soran 44008, Iraq.

DOI:

https://doi.org/10.25271/sjuoz.2023.11.1.1033

Keywords:

Flood Vulnerability, Susceptibility, Hazard, Rezan River, Mergasor

Abstract

Flood hazards are a member of the world's catastrophic events with a hydrological climate origin. They are referred to as a situation in which the river flow and water level increase suddenly and cause human and financial losses. This research aims to determine flood-prone zones and evaluate the efficacy of RS and GIS-based evidence-based belief function (EBF) and hierarchical analysis (AHP) models in flood-prone area mapping. Using the Rezan River basin in the Mergasor area of Erbil governorate, Iraq, as an example, 11 factors such as slope, slope direction, land use, distance to the stream, distance to the road, elevation, soil, rainfall, geology, NDVI, and drainage density were utilized for flood moderation. The prediction rates of the EBF and AHP models were also analyzed to be 0.869% and 0.836%, respectively, indicating that these two models are better predictors. The findings of the study area revealed that 32% of the study area is under very high to high flooding hazard zones for the EBF method and 22% for the AHP method. This research’s conclusions are crucial for flood-prone region management, decision-making, and local administrative planning.

Author Biographies

Abdulrazaq Qasim Mikail, Scientific Research Center, GIS & Remote Sensing Department, Delzyan Campus, Soran University, Soran 44008, Iraq.

a Scientific Research Center, GIS & Remote Sensing Department, Delzyan Campus, Soran University, Soran 44008, Iraq.

b Faculty of Science, Delzyan Campus, Soran University, Soran 44008, Iraq (abdulrazaq.mikail@soran.edu.iq)

Rahel Hamad, Scientific Research Center, GIS & Remote Sensing Department, Delzyan Campus, Soran University, Soran 44008, Iraq.

a Scientific Research Center, GIS & Remote Sensing Department, Delzyan Campus, Soran University, Soran 44008, Iraq.

c Faculty of Science, Petroleum Geosciences Department, Delzyan Campus, Soran University, Soran 44008, Iraq.

References

Al-Hinai, H., & Abdalla, R. (2021). Mapping coastal flood susceptible areas using Shannon’s entropy model: the case of muscat governorate, Oman. ISPRS International Journal of Geo-Information, 10(4), 252.

Althuwaynee, O. F., Pradhan, B., & Lee, S. (2012). Application of an evidential belief function model in landslide susceptibility mapping. Computers & Geosciences, 44, 120-135.

Althuwaynee, O. F., Pradhan, B., Park, H.-J., & Lee, J. H. (2014). A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena, 114, 21-36.

Arabameri, A., Rezaei, K., Cerdà, A., Conoscenti, C., & Kalantari, Z. (2019). A comparison of statistical methods and multi-criteria decision making to map flood hazard susceptibility in Northern Iran. Science of the Total Environment, 660, 443-458.

Awasthi, A., & Chauhan, S. S. (2011). Using AHP and Dempster–Shafer theory for evaluating sustainable transport solutions. Environmental Modelling & Software, 26(6), 787-796.

Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1-2), 15-31.

Azadi, F., Sadough, S. H., Ghahroudi, M., & Shahabi, H. (2020). Zoning of Flood Risk in Kashkan River basin using Two Models WOE and EBF. Journal of Geography and Environmental Hazards, 9(1), 45-60.

Booij, M. J. (2005). Impact of climate change on river flooding assessed with different spatial model resolutions. Journal of hydrology, 303(1-4), 176-198.

Büchele, B., Kreibich, H., Kron, A., Thieken, A., Ihringer, J., Oberle, P., Merz, B., & Nestmann, F. (2006). Flood-risk mapping: contributions towards an enhanced assessment of extreme events and associated risks. Natural Hazards and Earth System Sciences, 6(4), 485-503.

Carranza, E., Woldai, T., & Chikambwe, E. (2005). Application of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing pegmatites, Lundazi district, Zambia. Natural Resources Research, 14(1), 47-63.

Carranza, E. J. M. (2009). Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features. Ore Geology Reviews, 35(3-4), 383-400.

Carranza, E. J. M., & Hale, M. (2003). Evidential belief functions for data-driven geologically constrained mapping of gold potential, Baguio district, Philippines. Ore Geology Reviews, 22(1-2), 117-132.

Chapi, K., Singh, V. P., Shirzadi, A., Shahabi, H., Bui, D. T., Pham, B. T., & Khosravi, K. (2017). A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environmental modelling & software, 95, 229-245.

Chen, Y.-R., Yeh, C.-H., & Yu, B. (2011). Integrated application of the analytic hierarchy process and the geographic information system for flood risk assessment and flood plain management in Taiwan. Natural hazards, 59(3), 1261-1276.

Chowdhuri, I., Pal, S. C., & Chakrabortty, R. (2020). Flood susceptibility mapping by ensemble evidential belief function and binomial logistic regression model on river basin of eastern India. Advances in Space Research, 65(5), 1466-1489.

Cinelli, M., Coles, S. R., & Kirwan, K. (2014). Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment. Ecological indicators, 46, 138-148.

Das, S. (2020). Flood susceptibility mapping of the Western Ghat coastal belt using multi-source geospatial data and analytical hierarchy process (AHP). Remote Sensing Applications: Society and Environment, 20, 100379.

Dash, P., & Sar, J. (2020). Identification and validation of potential flood hazard area using GIS‐based multi‐criteria analysis and satellite data‐derived water index. Journal of Flood Risk Management, 13(3), e12620.

Devkota, K. C., Regmi, A. D., Pourghasemi, H. R., Yoshida, K., Pradhan, B., Ryu, I. C., Dhital, M. R., & Althuwaynee, O. F. (2013). Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Natural hazards, 65(1), 135-165.

Fernández, D., & Lutz, M. A. (2010). Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis. Engineering Geology, 111(1-4), 90-98.

Fontanine, I., & Costache, R. (2013). Using GIS techniques for surface runoff potential analysis in the Subcarpathian area between Buzãu and Slãnic rivers, in Romania. Cinq Continents, 3(7), 47-57.

Grahn, T., & Nyberg, L. (2017). Assessment of pluvial flood exposure and vulnerability of residential areas. International Journal of Disaster Risk Reduction, 21, 367-375.

Hammami, S., Zouhri, L., Souissi, D., Souei, A., Zghibi, A., Marzougui, A., & Dlala, M. (2019). Application of the GIS based multi-criteria decision analysis and analytical hierarchy process (AHP) in the flood susceptibility mapping (Tunisia). Arabian Journal of Geosciences, 12(21), 1-16.

Hongoh, V., Hoen, A. G., Aenishaenslin, C., Waaub, J.-P., Bélanger, D., & Michel, P. (2011). Spatially explicit multi-criteria decision analysis for managing vector-borne diseases. International Journal of Health Geographics, 10(1), 1-9.

Huang, X., Tan, H., Zhou, J., Yang, T., Benjamin, A., Wen, S. W., Li, S., Liu, A., Li, X., & Fen, S. (2008). Flood hazard in Hunan province of China: an economic loss analysis. Natural Hazards, 47(1), 65-73.

Khosravi, K., Nohani, E., Maroufinia, E., & Pourghasemi, H. R. (2016). A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Natural Hazards, 83(2), 947-987.

Lee, J.-m., Hyun, K.-h., Choi, J.-s., Yoon, Y.-j., & Geronimo, F. K. F. (2012). Flood reduction analysis on watershed of LID design demonstration district using SWMM5. Desalination and Water Treatment, 38(1-3), 255-261.

Levy, J. K., Hartmann, J., Li, K. W., An, Y., & Asgary, A. (2007). Multi‐criteria decision support systems for flood hazard mitigation and emergency response in urban watersheds 1. JAWRA Journal of the American Water Resources Association, 43(2), 346-358.

Li, Y., & Chen, W. (2019). Landslide susceptibility evaluation using hybrid integration of evidential belief function and machine learning techniques. Water, 12(1), 113.

Mondal, S., & Mandal, S. (2020). Data-driven evidential belief function (EBF) model in exploring landslide susceptibility zones for the Darjeeling Himalaya, India. Geocarto International, 35(8), 818-856.

Mühlbacher, A. C., & Kaczynski, A. (2016). Making good decisions in healthcare with multi-criteria decision analysis: the use, current research and future development of MCDA. Applied health economics and health policy, 14(1), 29-40.

Nampak, H., Pradhan, B., & Abd Manap, M. (2014). Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. Journal of Hydrology, 513, 283-300.

Oh, H.-J., & Pradhan, B. (2011). Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Computers & Geosciences, 37(9), 1264-1276.

Ossola, A., Hahs, A. K., & Livesley, S. J. (2015). Habitat complexity influences fine scale hydrological processes and the incidence of stormwater runoff in managed urban ecosystems. Journal of Environmental Management, 159, 1-10.

Park, N.-W. (2011). Application of Dempster-Shafer theory of evidence to GIS-based landslide susceptibility analysis. Environmental earth sciences, 62(2), 367-376.

Pham, B. T., Avand, M., Janizadeh, S., Phong, T. V., Al-Ansari, N., Ho, L. S., Das, S., Le, H. V., Amini, A., & Bozchaloei, S. K. (2020). GIS based hybrid computational approaches for flash flood susceptibility assessment. Water, 12(3), 683.

Pourghasemi, H. R., & Beheshtirad, M. (2015). Assessment of a data-driven evidential belief function model and GIS for groundwater potential mapping in the Koohrang Watershed, Iran. Geocarto International, 30(6), 662-685.

Poussin, J. K., Botzen, W. W., & Aerts, J. C. (2014). Factors of influence on flood damage mitigation behaviour by households. Environmental Science & Policy, 40, 69-77.

Pradhan, B., & Althuwaynee, O. Ensemble of data-driven EBF model with knowledge based AHP model for slope failure assessment in GIS using cluster pattern.

Rahmati, O., Pourghasemi, H. R., & Zeinivand, H. (2016). Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran. Geocarto International, 31(1), 42-70.

Regmi, A. D., & Poudel, K. (2016). Assessment of landslide susceptibility using GIS-based evidential belief function in Patu Khola watershed, Dang, Nepal. Environmental Earth Sciences, 75(9), 1-20.

Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of mathematical psychology, 15(3), 234-281.

Shafer, G. (1976). A mathematical theory of evidence (Vol. 42). Princeton university press.

Shariat, S. F., Lotan, Y., Vickers, A., Karakiewicz, P. I., Schmitz-Dräger, B. J., Goebell, P. J., & Malats, N. (2010). Statistical consideration for clinical biomarker research in bladder cancer. Urologic Oncology: Seminars and Original Investigations,

Tehrany, M. S., & Kumar, L. (2018). The application of a Dempster–Shafer-based evidential belief function in flood susceptibility mapping and comparison with frequency ratio and logistic regression methods. Environmental Earth Sciences, 77(13), 1-24.

Tehrany, M. S., Kumar, L., & Shabani, F. (2019). A novel GIS-based ensemble technique for flood susceptibility mapping using evidential belief function and support vector machine: Brisbane, Australia. PeerJ, 7, e7653.

Thomas, P. G., & Doherty, P. C. (1980). The Analytic Hierarchy. Process: Planning, Priority Setting, Resource Allocation, McGraw-Hill,

Tien Bui, D., Khosravi, K., Shahabi, H., Daggupati, P., Adamowski, J. F., Melesse, A. M., Thai Pham, B., Pourghasemi, H. R., Mahmoudi, M., & Bahrami, S. (2019). Flood spatial modeling in northern Iran using remote sensing and gis: A comparison between evidential belief functions and its ensemble with a multivariate logistic regression model. Remote Sensing, 11(13), 1589.

Tien Bui, D., Shahabi, H., Shirzadi, A., Chapi, K., Alizadeh, M., Chen, W., Mohammadi, A., Ahmad, B. B., Panahi, M., & Hong, H. (2018). Landslide detection and susceptibility mapping by airsar data using support vector machine and index of entropy models in cameron highlands, malaysia. Remote Sensing, 10(10), 1527.

Wiles, T. J., & Sharp Jr, J. M. (2008). The secondary permeability of impervious cover. Environmental & engineering geoscience, 14(4), 251-265.

Yariyan, P., Avand, M., Abbaspour, R. A., Torabi Haghighi, A., Costache, R., Ghorbanzadeh, O., Janizadeh, S., & Blaschke, T. (2020). Flood susceptibility mapping using an improved analytic network process with statistical models. Geomatics, Natural Hazards and Risk, 11(1), 2282-2314.

Zhao, G., Pang, B., Xu, Z., Yue, J., & Tu, T. (2018). Mapping flood susceptibility in mountainous areas on a national scale in China. Science of the Total Environment, 615, 1133-1142.

Downloads

Published

2023-01-01

How to Cite

Mikail, A. Q., & Hamad, R. (2023). Mapping Flood Vulnerability by Applying EBF And AHP Methods, in the Iraqi Mountain Region. Science Journal of University of Zakho, 11(1), 1–10. https://doi.org/10.25271/sjuoz.2023.11.1.1033

Issue

Section

Science Journal of University of Zakho