Optimization of Arsenic Adsorption onto Activated Carbon of Potato Peel Using Response Surface Methodology

Authors

  • Akram A. Haji Department of Chemistry, Faculty of Science, University of Zakho, Kurdistan Region-Iraq.
  • Nidhal M.Sh. Mohammed Department of Chemistry, Faculty of Science, University of Zakho, Kurdistan Region-Iraq.

DOI:

https://doi.org/10.25271/sjuoz.2019.7.2.594

Keywords:

Activated Carbon, Potato Peel, Adsorption, Heavy Metal, Central Composite Design

Abstract

The present study was designed to optimize the adsorption of arsenic onto potato peel derived activated carbon (MPP-AC) by employing response surface method and central composite design. Adsorbent of cheap and locally available potato residue was produced based on chemical activation with H3PO4subsequently carbonization to produce the porous activated carbon. The individual and interactive effects of five variables including initial arsenic concentration, temperature, time, dosage amount and pH of the medium were investigated. Based on the statistic analysis (ANOVA), the quadratic model was developed associating the adsorption capacity (qe). The optimum conditions were obtained of 9.98 mg L-1of initial As (V) concentration, 28 °C of temperature, 39.7 min of time, 0.97 g of adsorbent dose and 7.3 of pH. The maximum adsorption capacity was 0.27 mg g-1and 76.5% removal efficiency. The equilibrium isotherms and kinetic studies for estimating the mechanism of process demonstrated a good fit to Langmuir model and the pseudo-second order, respectively. The results of this study showed that the feasibility of central composite design (CCD) to control adsorption process and indicated the use of activated carbon of potato residue have important implications for As (V) removal.

Author Biographies

Akram A. Haji, Department of Chemistry, Faculty of Science, University of Zakho, Kurdistan Region-Iraq.

Department of Chemistry, Faculty of Science, University of Zakho, Kurdistan Region-Iraq.

Nidhal M.Sh. Mohammed, Department of Chemistry, Faculty of Science, University of Zakho, Kurdistan Region-Iraq.

Department of Chemistry, Faculty of Science, University of Zakho, Kurdistan Region-Iraq.

References

Alswat, A. A., Ahmad, M. B., & Saleh, T. A. (2016). Zeolite modified with copper oxide and iron oxide for lead and arsenic adsorption from aqueous solutions. Journal of Water Supply: Research and Technology-Aqua, 65(6), 465-479. doi:10.2166/aqua.2016.014
Aman, T., Kazi, A. A., Sabri, M. U., & Bano, Q. (2008). Potato peels as solid waste for the removal of heavy metal copper(II) from waste water/industrial effluent. Colloids and Surfaces B: Biointerfaces, 63(1), 116-121. doi:https://doi.org/10.1016/j.colsurfb.2007.11.013
Arampatzidou, A. C., & Deliyanni, E. A. (2016). Comparison of activation media and pyrolysis temperature for activated carbons development by pyrolysis of potato peels for effective adsorption of endocrine disruptor bisphenol-A. Journal of Colloid and Interface Science, 466, 101-112. doi:https://doi.org/10.1016/j.jcis.2015.12.003
Aryal, M., Ziagova, M., & Liakopoulou-Kyriakides, M. (2010). Study on arsenic biosorption using Fe(III)-treated biomass of Staphylococcus xylosus. Chemical Engineering Journal, 162(1), 178-185. doi:https://doi.org/10.1016/j.cej.2010.05.026
ATSDR. (2017). Agency for toxic substances and disease registry, substance priority list. Retrieved from https://www.atsdr.cdc.gov/spl/
Babarinde, A., & Onyiaocha, G. O. J. C. I. (2016). Equilibrium sorption of divalent metal ions onto groundnut (Arachis hypogaea) shell: kinetics, isotherm and thermodynamics. Chemistry international, 2(3).
Bernardo, M., Rodrigues, S., Lapa, N., Matos, I., Lemos, F., Batista, M. K. S., . . . Fonseca, I. (2016). High efficacy on diclofenac removal by activated carbon produced from potato peel waste. International Journal of Environmental Science and Technology, 13(8), 1989-2000. doi:10.1007/s13762-016-1030-3
Bhatnagar, A., Choi, Y., Yoon, Y., Shin, Y., Jeon, B.-H., & Kang, J.-W. (2009). Bromate removal from water by granular ferric hydroxide (GFH). Journal of Hazardous Materials, 170(1), 134-140. doi:https://doi.org/10.1016/j.jhazmat.2009.04.123
Bibi, S., Farooqi, A., Hussain, K., & Haider, N. (2015). Evaluation of industrial based adsorbents for simultaneous removal of arsenic and fluoride from drinking water. Journal of Cleaner Production, 87, 882-896. doi:https://doi.org/10.1016/j.jclepro.2014.09.030
Bibi, S., Kamran, M. A., Sultana, J., & Farooqi, A. J. E. c. l. (2017). Occurrence and methods to remove arsenic and fluoride contamination in water. Environmental Chemistry Letters, 15(1), 125-149.
Brown, K. G., & Ross, G. L. (2002). Arsenic, Drinking Water, and Health: A Position Paper of the American Council on Science and Health. Regulatory Toxicology and Pharmacology, 36(2), 162-174. doi:https://doi.org/10.1006/rtph.2002.1573
Chaudhry, S. A., Zaidi, Z., & Siddiqui, S. I. (2017). Isotherm, kinetic and thermodynamics of arsenic adsorption onto Iron-Zirconium Binary Oxide-Coated Sand (IZBOCS): Modelling and process optimization. Journal of Molecular Liquids, 229, 230-240. doi:https://doi.org/10.1016/j.molliq.2016.12.048
Eloussaief, M., Sdiri, A., & Benzina, M. (2013). Modelling the adsorption of mercury onto natural and aluminium pillared clays. Environmental Science and Pollution Research, 20(1), 469-479. doi:10.1007/s11356-012-0874-4
Gaur, N., Kukreja, A., Yadav, M., & Tiwari, A. (2018). Adsorptive removal of lead and arsenic from aqueous solution using soya bean as a novel biosorbent: equilibrium isotherm and thermal stability studies. Applied Water Science, 8(4), 98. doi:10.1007/s13201-018-0743-5
Genç-Fuhrman, H., Wu, P., Zhou, Y., & Ledin, A. (2008). Removal of As, Cd, Cr, Cu, Ni and Zn from polluted water using an iron based sorbent. Desalination, 226(1), 357-370. doi:https://doi.org/10.1016/j.desal.2007.02.117
Günay, A., Arslankaya, E., & Tosun, İ. (2007). Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kinetics. Journal of Hazardous Materials, 146(1), 362-371. doi:https://doi.org/10.1016/j.jhazmat.2006.12.034
Hasanzadeh, M., Farajbakhsh, F., Shadjou, N., & Jouyban, A. J. E. t. (2015). Mesoporous (organo) silica decorated with magnetic nanoparticles as a reusable nanoadsorbent for arsenic removal from water samples. Journal Environmental Technology, 36(1), 36-44.
Hossain, I., Anjum, N., Tasnim, T. J. I. j. o. e. s., & technology. (2016). Removal of arsenic from contaminated water utilizing tea waste. International Journal of Environmental Science and Technology, 13(3), 843-848.
Jain, C., & Ali, I. J. W. r. (2000). Arsenic: occurrence, toxicity and speciation techniques. Water Research, 34(17), 4304-4312.
Jaiswal, V., Saxena, S., Kaur, I., Dubey, P., Nand, S., Naseem, M., . . . Barik, S. K. (2018). Application of four novel fungal strains to remove arsenic from contaminated water in batch and column modes. Journal of Hazardous Materials, 356, 98-107. doi:https://doi.org/10.1016/j.jhazmat.2018.04.053
Kazi, T. G., Brahman, K. D., Baig, J. A., & Afridi, H. I. (2018). A new efficient indigenous material for simultaneous removal of fluoride and inorganic arsenic species from groundwater. Journal of Hazardous Materials, 357, 159-167. doi:https://doi.org/10.1016/j.jhazmat.2018.05.069
Khezami, L., & Capart, R. (2005). Removal of chromium(VI) from aqueous solution by activated carbons: Kinetic and equilibrium studies. Journal of Hazardous Materials, 123(1), 223-231. doi:https://doi.org/10.1016/j.jhazmat.2005.04.012
Kumar, A., Pandey, J., & Kumar, S. (2018). Biosorptive removal of arsenite and arsenate from aqueous medium using low-cost adsorbent derived from ‘Pods of green peas’: Exploration of kinetics, thermodynamics and adsorption isotherms. Korean Journal of Chemical Engineering, 35(2), 456-469. doi:10.1007/s11814-017-0303-y
Lasheen, M. R., Ammar, N. S., & Ibrahim, H. S. (2012). Adsorption/desorption of Cd(II), Cu(II) and Pb(II) using chemically modified orange peel: Equilibrium and kinetic studies. Solid State Sciences, 14(2), 202-210. doi:https://doi.org/10.1016/j.solidstatesciences.2011.11.029
Lescano, M., Zalazar, C., Brandi, R. J. E. S., & Research, P. (2015). Arsenic removal from water employing a combined system: photooxidation and adsorption. Environmental Science and Pollution Research, 22(5), 3865-3875.
Mashhadi, S., Sohrabi, R., Javadian, H., Ghasemi, M., Tyagi, I., Agarwal, S., & Gupta, V. K. (2016). Rapid removal of Hg (II) from aqueous solution by rice straw activated carbon prepared by microwave-assisted H2SO4 activation: Kinetic, isotherm and thermodynamic studies. Journal of Molecular Liquids, 215, 144-153. doi:https://doi.org/10.1016/j.molliq.2015.12.040
Mazaheri, H., Ghaedi, M., Azqhandi, M. A., & Asfaram, A. J. P. C. C. P. (2017). Application of machine/statistical learning, artificial intelligence and statistical experimental design for the modeling and optimization of methylene blue and Cd (II) removal from a binary aqueous solution by natural walnut carbon. Physical Chemistry Chemical Physics, 19(18), 11299-11317.
Mondal, P., Majumder, C. B., & Mohanty, B. (2008). Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon. Journal of Hazardous Materials, 150(3), 695-702. doi:https://doi.org/10.1016/j.jhazmat.2007.05.040
Nodoushan, M. H. S., Parvizi, Z., Nodoushan, F. M., & Ghaneian, M. T. J. A. J. o. E. H. E. (2017). Adsorption of arsenite from aqueous solutions using granola modified lemon peel. Avicenna Journal of Environmental Health Engineering, 4(1), 1-6.
Nwabueze, T. U. (2010). Review article: Basic steps in adapting response surface methodology as mathematical modelling for bioprocess optimisation in the food systems. International Journal of Food Science & Technology, 45(9), 1768-1776. doi:10.1111/j.1365-2621.2010.02256.x
Pandey, P. K., Choubey, S., Verma, Y., Pandey, M., & Chandrashekhar, K. (2009). Biosorptive removal of arsenic from drinking water. Bioresource Technology, 100(2), 634-637. doi:https://doi.org/10.1016/j.biortech.2008.07.063
Pandiarajan, A., Kamaraj, R., Vasudevan, S., & Vasudevan, S. (2018). OPAC (orange peel activated carbon) derived from waste orange peel for the adsorption of chlorophenoxyacetic acid herbicides from water: Adsorption isotherm, kinetic modelling and thermodynamic studies. Bioresource Technology, 261, 329-341. doi:https://doi.org/10.1016/j.biortech.2018.04.005
Robati, D., Rajabi, M., Moradi, O., Najafi, F., Tyagi, I., Agarwal, S., & Gupta, V. K. (2016). Kinetics and thermodynamics of malachite green dye adsorption from aqueous solutions on graphene oxide and reduced graphene oxide. Journal of Molecular Liquids, 214, 259-263. doi:https://doi.org/10.1016/j.molliq.2015.12.073
Saadon, S. A., Yunus, S. M., Yusoff, A. R., Yusop, Z., Azman, S., Uy, D., . . . Sciences, A. (2018). Heated laterite as a low-cost adsorbent for arsenic removal from aqueous solution. Malaysian Journal of Fundamental and Applied Sciences, 14(1), 1-8.
Şahan, T., & Öztürk, D. (2013). Investigation of Pb(II) adsorption onto pumice samples: application of optimization method based on fractional factorial design and response surface methodology. Clean Technologies and Environmental Policy, 16(5), 819-831. doi:10.1007/s10098-013-0673-8
Samadi, N., Hasanzadeh, R., & Rasad, M. (2014). Adsorption isotherms, kinetic, and desorption studies on removal of toxic metal ions from aqueous solutions by polymeric adsorbent. Journal of Applied Polymer Science, n/a-n/a. doi:10.1002/app.41642
Sudaryanto, Y., Hartono, S. B., Irawaty, W., Hindarso, H., & Ismadji, S. (2006). High surface area activated carbon prepared from cassava peel by chemical activation. Bioresource Technology, 97(5), 734-739. doi:https://doi.org/10.1016/j.biortech.2005.04.029
Van Thuan, T., Quynh, B. T. P., Nguyen, T. D., Ho, V. T. T., & Bach, L. G. (2017). Response surface methodology approach for optimization of Cu2+, Ni2+ and Pb2+ adsorption using KOH-activated carbon from banana peel. Surfaces and Interfaces, 6, 209-217. doi:https://doi.org/10.1016/j.surfin.2016.10.007
Wang, T., Yang, W., Song, T., Li, C., Zhang, L., Wang, H., & Chai, L. (2015). Cu doped Fe3O4 magnetic adsorbent for arsenic: synthesis, property, and sorption application. RSC Advances, 5(62), 50011-50018. doi:10.1039/c5ra03951g
Wereko-Brobby, C. Y., & Hagan, E. B. (1996). Biomass conversion and technology: John Wiley and Sons, Chichester (United Kingdom); %J.
Xiyili, H., Çetintaş, S., & Bingöl, D. (2017). Removal of some heavy metals onto mechanically activated fly ash: Modeling approach for optimization, isotherms, kinetics and thermodynamics. Process Safety and Environmental Protection, 109, 288-300. doi:https://doi.org/10.1016/j.psep.2017.04.012
Yadanaparthi, S. K. R., Graybill, D., & von Wandruszka, R. (2009). Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters. Journal of Hazardous Materials, 171(1), 1-15. doi:https://doi.org/10.1016/j.jhazmat.2009.05.103
Yoon, Y., Zheng, M., Ahn, Y.-T., Park, W. K., Yang, W. S., & Kang, J.-W. (2017). Synthesis of magnetite/non-oxidative graphene composites and their application for arsenic removal. Separation and Purification Technology, 178, 40-48. doi:https://doi.org/10.1016/j.seppur.2017.01.025
Zhang, L., Zeng, Y., & Cheng, Z. (2016). Removal of heavy metal ions using chitosan and modified chitosan: A review. Journal of Molecular Liquids, 214, 175-191. doi:https://doi.org/10.1016/j.molliq.2015.12.013
Zhang, W., Cai, Y., Tu, C., & Ma, L. Q. (2002). Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Science of The Total Environment, 300(1), 167-177. doi:https://doi.org/10.1016/S0048-9697(02)00165-1
Zhang, Z., Luo, X., Liu, Y., Zhou, P., Ma, G., Lei, Z., & Lei, L. (2015). A low cost and highly efficient adsorbent (activated carbon) prepared from waste potato residue. Journal of the Taiwan Institute of Chemical Engineers, 49, 206-211. doi:https://doi.org/10.1016/j.jtice.2014.11.024

Downloads

Published

2019-06-30

How to Cite

Haji, A. A., & Mohammed, N. M. (2019). Optimization of Arsenic Adsorption onto Activated Carbon of Potato Peel Using Response Surface Methodology. Science Journal of University of Zakho, 7(2), 37–44. https://doi.org/10.25271/sjuoz.2019.7.2.594

Issue

Section

Science Journal of University of Zakho