BIOINFORMATICS AND MOLECULAR ANALYSES IDENTIFIED THE CONTROL REGION AS THE MOST POWERFUL MITOGENOMIC MARKER FOR DISTINGUISHING THE MAIN MATERNAL HAPLOGROUPS IN GOATS

Authors

  • Sarbast I. Mustafa Department of Animal Production, College of Agricultural Engineering Sciences, University of Duhok

DOI:

https://doi.org/10.25271/sjuoz.2024.12.2.1252

Keywords:

Bioinformatics, Capra hircus, mtDNA marker, Mitochondrial genome, Phylogeny

Abstract

Identification of genetic markers to distinguish animals within and between species demands extensive genomic and bioinformatics investigation. Previous studies have not carefully taken into consideration the effect of mitogenomic components on the genetic differentiation of the maternal lineages in goats. As a precaution, the complete goat mitogenome was downloaded from the NCBI database and used in the current study to assess the effects of the choice of mitogenomic fragments on phylogenetic studies and to identify any potential polymorphic region by which the main maternal haplogroups of goats can be classified. Phylogenetic results confirmed that all 13 individual mitochondrial protein-coding genes and 2 ribosomal genes are not applicable to differentiate the maternal lineages. Instead, a single novel polymorphic region with a length of 756 bp within the control region was successfully amplified by newly designed primers. Both phylogenetic analysis and principal components analysis of the sequenced mitogenomic region of the mtDNA control region efficiently differentiated the main maternal haplogroups in goats. Higher numbers of polymorphic sites were found in the control region and the mitogenomic marker region. Highly significant correlations were discovered between the polymorphic sites and the length of each individual mitogenomic component. Our results demonstrate useful guidance and cautionary notes for researchers who are interested in the investigation of genetic diversity in animal species using mtDNA sequences. The bioinformatics and molecular methods used herein can be powerful in selecting a minimum amount of data using PCR amplification when the entire sequences of the mitogenome are unavailable.

References

Al-Araimi, N.A., Al-Atiyat, R.M., Gaafar, O.M., Vasconcelos, R., Luzuriaga-Neira, A., Eisa, M.O., Amir, N., Benaissa, M.H., Alfaris, A.A., Aljumaah, R.S., Elnakhla, S.M., Salem, M.M.I., Ishag, I.A., El Khasmi, M. and Beja-Pereira, A. (2017a). Maternal genetic diversity and phylogeography of native Arabian goats, Livestock Science, 206, 88–94. Available at: https://doi.org/https://doi.org/10.1016/j.livsci.2017.09.017.

Al-Araimi, N.A., Gaafar, O.M., Costa, V., Neira, A.L., Al-Atiyat, R.M. and Beja-Pereira, A. (2017b). Genetic origin of goat populations in Oman revealed by mitochondrial DNA analysis., PloS one, 12(12), p. e0190235. Available at: https://doi.org/10.1371/journal.pone.0190235.

Al-Jumaili, A.S., Boudali, S.F., Kebede, A., Al-Bayatti, S.A., Essa, A.A., Ahbara, A., Aljumaah, R.S., Alatiyat, R.M., Mwacharo, J.M., Bjørnstad, G., Naqvi, A.N., Gaouar, S.B.S. and Hanotte, O. (2020). The maternal origin of indigenous domestic chicken from the Middle East, the north and the horn of Africa, BMC Genetics, 21(1), 1–16. Available at: https://doi.org/10.1186/s12863-020-0830-0.

Baenyi Simon, P., Owino Junga, J., Tarekegn, G.M., Machuka, E., Tiambo, C.K., Kabange, D., Musale M. Dieudinné, K., Vumilia Kizungu, R., Ochieng, J.W. and Pelle, R. (2022). Haplotype analysis of the mitochondrial DNA d‐loop region reveals the maternal origin and historical dynamics among the indigenous goat populations in east and west of the Democratic Republic of Congo. Ecology and Evolution, 12(3), p.e8713. Available at: https://doi.org/10.1002/ece3.8713.

Bruford, M.W., Bradley, D.G. and Luikart, G. (2003). DNA markers reveal the complexity of livestock domestication, Nature Reviews Genetics, 4(11), 900–910. Available at: https://doi.org/10.1038/nrg1203.

Bulut, Z., Kurar, E., Ozsensoy, Y., Altunok, V. and Nizamlioglu, M. (2016). Genetic Diversity of Eight Domestic Goat Populations Raised in Turkey., BioMed research international, 2016, p. 2830394. Available at: https://doi.org/10.1155/2016/2830394.

Chen, C., Chen, H., Zhang, Y., Thomas, H.R., Frank, M.H., He, Y. and Xia, R. (2020) TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data, Molecular Plant, 13(8), 1194–1202. Available at: https://doi.org/https://doi.org/10.1016/j.molp.2020.06.009.

Colli, L., Lancioni, H., Cardinali, I., Olivieri, A., Capodiferro, M.R., Pellecchia, M., Rzepus, M., Zamani, W., Naderi, S., Gandini, F., Vahidi, S.M.F., Agha, S., Randi, E., Battaglia, V., Sardina, M.T., Portolano, B., Rezaei, H.R., Lymberakis, P., Boyer, F., Coissac, E., Pompanon, F., Taberlet, P., Ajmone Marsan, P. and Achilli, A. (2015). Whole mitochondrial genomes unveil the impact of domestication on goat matrilineal variability, BMC Genomics, 16(1), p. 1115. Available at: https://doi.org/10.1186/s12864-015-2342-2.

Diwedi, J., Singh, A.W., Ahlawat, S., Sharma, R., Arora, R., Sharma, H., Raja, K.N., Verma, N.K. and Tantia, M.S. (2020). Comprehensive analysis of mitochondrial DNA based genetic diversity in Indian goats., Gene, 756, p. 144910. Available at: https://doi.org/10.1016/j.gene.2020.144910.

Doro, M.G., Piras, D., Leoni, G.G., Casu, G., Vaccargiu, S., Parracciani, D., Naitana, S., Pirastu, M. and Novelletto, A. (2014). Phylogeny and patterns of diversity of goat mtDNA haplogroup A revealed by resequencing complete mitogenomes. PLoS One, 9(4), p.e95969. Available at:https://doi.org/10.1371/journal.pone.0095969.

E, G.-X., Huang, Y.-F., Liu, N., Zhao, Y.-J., He, J.-N., Na, R.-S., Zhao, Z.-Q., Jiang, C.-D., Zhang, J.-H., Ma, Y.-H., Chen, L.-P., Qiu, X.-Y., Sun, Y.-W., Zeng, Y., Sun, Y.-Z., Yu, C.-H. and Wei, S.-Y. (2016). Characteristics of the mitochondrial genome of four native goats in China (Capra hircus), Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis, 27(5), 3308–3309. Available at: https://doi.org/10.3109/19401736.2015.1015016.

Fernández, J., Meuwissen, T.H.E., Toro, M.A. and Mäki-Tanila, A. (2011). Management of genetic diversity in small farm animal populations, Animal, 5(11), 1684–1698. Available at: https://doi.org/10.1017/S1751731111000930.

Ganbold, O., Lee, S.-H., Paek, W.K., Munkhbayar, M., Seo, D., Manjula, P., Khujuu, T., Purevee, E. and Lee, J.H. (2020). Mitochondrial DNA variation and phylogeography of native Mongolian goats., Asian-Australasian journal of animal sciences, 33(6), 902–912. Available at: https://doi.org/10.5713/ajas.19.0396.

Ghernouti N, Bodinier N, Ranebi M, Maftah D, Petit D, Gaouar S B S. (2017). Control region of mtDNA identifies three migration events of sheep breeds in Algeria. Small Ruminant Research, 155, 66–71. Available at: https://doi.org/10.1016/j.smallrumres.2017.09.003.

Hassanin, A., Ropiquet, A., Couloux, A. and Cruaud, C. (2009) Evolution of the mitochondrial genome in mammals living at high altitude: new insights from a study of the tribe Caprini (Bovidae, Antilopinae)., Journal of molecular evolution, 68(4), 293–310. Available at: https://doi.org/10.1007/s00239-009-9208-7.

Huang, Z.H. and Tu, F.Y. (2016). Characterization and evolution of the mitochondrial DNA control region in Ranidae and their phylogenetic relationship., Genetics and molecular research : GMR, 15(3). Available at: https://doi.org/10.4238/gmr.15038491.

Jamandre, B.W., Durand, J.-D. and Tzeng, W.-N. (2014). High Sequence Variations in Mitochondrial DNA Control Region among Worldwide Populations of Flathead Mullet Mugil cephalus, International Journal of Zoology. Edited by T. Iliffe, 2014, p. 564105. Available at: https://doi.org/10.1155/2014/564105.

Jiang, Y., Nie, L.W., Huang, Z.F., Jing, W.X., Wang, L., Liu, L. and Dai, X.T. (2011). Comparison of complete mitochondrial DNA control regions among five Asian freshwater turtle species and their phylogenetic relationships., Genetics and molecular research : GMR, 10(3), 1545–1557. Available at: https://doi.org/10.4238/vol10-3gmr1205.

Joshi, M.B., Rout, P.K., Mandal, A.K., Tyler-Smith, C., Singh, L. and Thangaraj, K. (2004). Phylogeography and origin of Indian domestic goats., Molecular biology and evolution, 21(3), 454–462. Available at: https://doi.org/10.1093/molbev/msh038.

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. and Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data, Bioinformatics, 28(12), 1647–1649. Available at: https://doi.org/10.1093/bioinformatics/bts199.

Kimura, B., Marshall, F.B., Chen, S., Rosenbom, S., Moehlman, P.D., Tuross, N., Sabin, R.C., Peters, J., Barich, B., Yohannes, H., Kebede, F., Teclai, R., Beja-Pereira, A. and Mulligan, C.J. (2011). Ancient DNA from Nubian and Somali wild ass provides insights into donkey ancestry and domestication, Proceedings of the Royal Society B: Biological Sciences, 278(1702), 50–57. Available at: https://doi.org/10.1098/rspb.2010.0708.

Li, Q., Zhang, P., Li, M., Li, L., Hu, Y., Mishra, S.K., Guo, A., Li, G., Li, D. and Duan, Y. (2019). Genetic diversity and relationship of Dulong chickens using mitochondrial DNA control region., Mitochondrial DNA. Part B, Resources, 5(1), 275–280. Available at: https://doi.org/10.1080/23802359.2019.1700837.

Lippold, S., Matzke, N.J., Reissmann, M. and Hofreiter, M. (2011). Whole mitochondrial genome sequencing of domestic horses reveals incorporation of extensive wild horse diversity during domestication, BMC Evolutionary Biology, 11(1), p. 328. Available at: https://doi.org/10.1186/1471-2148-11-328.

Lu, C.D. (2023). The role of goats in the world: Society, science, and sustainability, Small Ruminant Research, 227, p. 107056. Available at: https://doi.org/https://doi.org/10.1016/j.smallrumres.2023.107056.

Luikart, G., Gielly, L., Excoffier, L., Vigne, J.-D., Bouvet, J. and Taberlet, P. (2001). Multiple maternal origins and weak phylogeographic structure in domestic goats, Proceedings of the National Academy of Sciences, 98(10), 5927–5932. Available at: https://doi.org/10.1073/pnas.091591198.

Lv, F.-H., Peng, W.-F., Yang, J., Zhao, Y.-X., Li, W.-R., Liu, M.-J., Ma, Y.-H., Zhao, Q.-J., Yang, G.-L., Wang, F., Li, J.-Q., Liu, Y.-G., Shen, Z.-Q., Zhao, S.-G., Hehua, Ee., Gorkhali, N.A., Farhad Vahidi, S.M., Muladno, M., Naqvi, A.N., Tabell, J., Iso-Touru, T., Bruford, M.W., Kantanen, J., Han, J.-L. and Li, M.-H. (2015). Mitogenomic Meta-Analysis Identifies Two Phases of Migration in the History of Eastern Eurasian Sheep, Molecular Biology and Evolution, 32(10), 2515–2533. Available at: https://doi.org/10.1093/molbev/msv139.

Mustafa, S.I., Heslop-Harrison, J.S. and Schwarzacher, T. (2022) The complete mitochondrial genome from Iraqi Meriz goats and the maternal lineage using whole genome sequencing data, Iranian Journal of Applied Animal Science, 12(2), 321–328.

Mustafa, S.I., Schwarzacher, T. and Heslop-Harrison, J.S. (2018) Complete mitogenomes from Kurdistani sheep: abundant centromeric nuclear copies representing diverse ancestors, Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 29(8), 1180–1193. Available at: https://doi.org/10.1080/24701394.2018.1431226.

Naderi, S., Rezaei, H.-R., Taberlet, P., Zundel, S., Rafat, S.-A., Naghash, H.-R., el-Barody, M.A.A., Ertugrul, O, Pompanon, F, and and Econogene Consortium (2007). Large-scale mitochondrial DNA analysis of the domestic goat reveals six haplogroups with high diversity., PloS one, 2(10), p. e1012. Available at: https://doi.org/10.1371/journal.pone.0001012.

Naderi, S., Rezaei, H.R., Pompanon, F., Blum, M.G.B., Negrini, R., Naghash, H.R., Balkiz, Ö., Mashkour, M., Gaggiotti, O.E., Ajmone-Marsan, P., Kence, A., Vigne, J.D. and Taberlet, P. (2008) The goat domestication process inferred from large-scale mitochondrial DNA analysis of wild and domestic individuals, Proceedings of the National Academy of Sciences of the United States of America, 105(46), 17659–17664. Available at: https://doi.org/10.1073/pnas.0804782105.

Nguluma, A., Kyallo, M., Tarekegn, G.M., Loina, R., Nziku, Z., Chenyambuga, S. and Pelle, R. (2021). Mitochondrial DNA D‐loop sequence analysis reveals high variation and multiple maternal origins of indigenous Tanzanian goat populations. Ecology and Evolution, 11(22), pp.15961-15971. Available at: https://doi.org/10.1002/ece3.8265.

Osman, S.A.-M., Nishibori, M. and Yonezawa, T. (2021). Complete mitochondrial genome sequence of Tosa-Jidori sheds light on the origin and evolution of Japanese native chickens., Animal bioscience, 34(6), 941–948. Available at: https://doi.org/10.5713/ajas.19.0932.

Sardina, M.T., Ballester, M., Marmi, J., Finocchiaro, R., van Kaam, J.B.C.H.M., Portolano, B. and Folch, J.M. (2006) Phylogenetic analysis of Sicilian goats reveals a new mtDNA lineage., Animal genetics, 37(4), 376–378. Available at: https://doi.org/10.1111/j.1365-2052.2006.01451.x.

Sultana, S., Mannen, H. and Tsuji, S. (2003). Mitochondrial DNA diversity of Pakistani goats., Animal genetics, 34(6), 417–421. Available at: https://doi.org/10.1046/j.0268-9146.2003.01040.x.

Verma, K., Sharma, S., Sharma, A., Dalal, J. and Bhardwaj, T. (2018) Data on haplotype diversity in the hypervariable region I, II and III of mtDNA amongst the Brahmin population of Haryana, Data in Brief, 17, 305–313. Available at: https://doi.org/10.1016/j.dib.2018.01.011.

Vacca, G.M., Daga, C., Pazzola, M., Carcangiu, V., Dettori, M.L. and Cozzi, M.C. (2010). D‐loop sequence mitochondrial DNA variability of Sarda goat and other goat breeds and populations reared in the Mediterranean area. Journal of Animal Breeding and Genetics, 127(5), pp.352-360. Available at: https://doi.org/10.1111/j.1439-0388.2010.00863.x.

Wanjala, G., Bagi, Z. and Kusza, S. (2021) Meta-Analysis of Mitochondrial DNA Control Region Diversity to Shed Light on Phylogenetic Relationship and Demographic History of African Sheep (Ovis aries) Breeds., Biology, 10(8). Available at: https://doi.org/10.3390/biology10080762.

Yang, H., Wang, G., Wang, M., Ma, Y., Yin, T., Fan, R., Wu, H., Zhong, L., Irwin, D.M., Zhai, W. and Zhang, Y. (2017). The origin of chow chows in the light of the East Asian breeds, BMC Genomics, 18(1), 1–13. Available at: https://doi.org/10.1186/s12864-017-3525-9.

Yi, G.U.O., Ying, G.O.N.G., Yong-meng, H.E., Bai-gao, Y.A.N.G., Wei-yi, Z.H.A.N.G., Bo-er, C.H.E.N., Yong-fu, H.U.A.N.G., Yong-ju, Z.H.A.O., Dan-ping, Z.H.A.N.G., Yue-hui, M.A. and Ming-xing, C.H.U. (2022). Investigation of mitochondrial DNA genetic diversity and phylogeny of goats worldwide. Journal of Integrative Agriculture, 21(6), pp.1830-1837. Available at: https://doi.org/10.1016/S2095-3119(21)63882-0.

Zeder, M.A. (2008). Domestication and early agriculture in the Mediterranean Basin: Origins, diffusion, and impact, Proceedings of the National Academy of Sciences of the United States of America, 105(33), 11597–11604. Available at: https://doi.org/10.1073/pnas.0801317105.

Downloads

Published

2024-05-15

How to Cite

Mustafa, S. I. (2024). BIOINFORMATICS AND MOLECULAR ANALYSES IDENTIFIED THE CONTROL REGION AS THE MOST POWERFUL MITOGENOMIC MARKER FOR DISTINGUISHING THE MAIN MATERNAL HAPLOGROUPS IN GOATS. Science Journal of University of Zakho, 12(2), 176–188. https://doi.org/10.25271/sjuoz.2024.12.2.1252

Issue

Section

Science Journal of University of Zakho