ISOLATION AND MOLECULAR CHARACTERIZATION OF Campylobacter jejuni FROM LOCAL BROILER CHICKEN (LBC) AND FROZEN IMPORTED CHICKENS (IFC) IN DUHOK PROVINCE, KURDISTAN REGION- IRAQ

Authors

  • Nacheervan M. Ghaffar bCollege of Veterinary Medicine, University of Duhok, Kurdistan Region –Iraq
  • Niwar H. Mohialdeen Duhok Veterinary Directorate, Ministry of Agriculture and Water Resources, Kurdistan Region- Iraq

DOI:

https://doi.org/10.25271/sjuoz.2023.11.3.1136

Keywords:

C. jejuni, hipo, (110) GaAs, antibiotics resistant, phylogenetic tree

Abstract

Campylobacter jejuni is one of the major foods borne pathogen that cause diarrhea in human. Consumption of undercooked poultry meats and its by-products is believed to be the main source of human campylobacteriosis.  This study aims to determine the prevalence of this bacteria in LBC and IFC using conventional culture methods and conventional PCR assay, with molecular identification by sequencing of 16S rRNA. Two hundred and twenty-five samples from LBC (n=150) and IFC (n=75) were collected. Conventionally, overall, 21.3% (n = 48) were identified as C. jejuni. In LBC 30% (45/150), from this 9% and 72% identifies as C. jejuni when used enrichment and direct isolation method, respectively. Generally, the PCR confirmed 53.3% from LBC and 66.6% from IFC to be C. jejuni.  All isolates were strongly resistant to Tetracycline, Ciprofloxacin, Nalidixic acid, and Oxytetracycline, while susceptible to Erythromycin and Gentamycin. Therefore,  they were considered as Multi drug resistant strains. Based on the 16S rRNA sequencing, LBC and IFC  were similar and genetically related to each other. Comparing with respective databases in NCBI, these isolates  had the variation in their closeness with different strains from other countries isolated from different sources. Further study  recommended, related to the virulence genes, physio-morphological characteristic, and whole genome sequencing of some isolated strains.

References

Abukhattab, S., Taweel, H., Awad, A., Crump, L., Vonaesch, P., Zinsstag, J., Hattendorf, J., & Abu-Rmeileh, N. M. E. (2022). Systematic Review and Meta-Analysis of Integrated Studies on Salmonella and Campylobacter Prevalence, Serovar, and Phenotyping and Genetic of Antimicrobial Resistance in the Middle East—A One Health Perspective. Antibiotics, 11(5). doi: 10.3390/antibiotics11050536

Ahmed, O. B., & Dablool, A. S. (2017). Quality Improvement of the DNA extracted by boiling method in Gram negative bacteria. International Journal of Bioassays, 6(04), 5347. doi: 10.21746/ijbio.2017.04.004

Alaboudi, A. R., Malkawi, I. M., Osaili, T. M., Abu-Basha, E. A., & Guitian, J. (2020). Prevalence, antibiotic resistance and genotypes of Campylobacter jejuni and Campylobacter coli isolated from chickens in Irbid governorate, Jordan. International Journal of Food Microbiology, 327, 108656. doi: 10.1016/j.ijfoodmicro.2020.108656

Authority, E. F. S., & Control, E. C. for D. P. and. (2022). The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2019–2020. EFSA Journal, 20(3), e07209. doi: https://doi.org/10.2903/j.efsa.2022.7209

Boelsen, L. K., Dunne, E. M., Mika, M., Eggers, S., Nguyen, C. D., Ratu, F. T., Russell, F. M., Mulholland, E. K., Hilty, M., & Satzke, C. (2019). The association between pneumococcal vaccination, ethnicity, and the nasopharyngeal microbiota of children in Fiji. Microbiome, 7(1), 1–16. doi: 10.1186/s40168-019-0716-4

CLSI. (2015). Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria. (Clinical and Laboratory Standards Institute CLSI guideline M45. (ed.); 3rd ed.). Wayne: PA: Clinical and Laboratory Standards Institute;

Divsalar, G., Kaboosi, H., Khoshbakht, R., Shirzad-Aski, H., & Ghadikolaii, F. P. (2019). Antimicrobial resistances, and molecular typing of Campylobacter jejuni isolates, separated from food-producing animals and diarrhea patients in Iran. Comparative Immunology, Microbiology and Infectious Diseases, 65(December 2018), 194–200. doi: 10.1016/j.cimid.2019.06.001

Facciolà, A., Riso, R., Avventuroso, E., Visalli, G., Delia, S. A., & Laganà, P. (2017). Campylobacter: From microbiology to prevention. Journal of Preventive Medicine and Hygiene, 58(2), E79–E92. doi: 10.15167/2421-4248/jpmh2017.58.2.672

Georgsson, F., Þorkelsson, Á. E., Geirsdóttir, M., Reiersen, J., & Stern, N. J. (2006). The influence of freezing and duration of storage on Campylobacter and indicator bacteria in broiler carcasses. Food Microbiology, 23(7), 677–683. doi: https://doi.org/10.1016/j.fm.2005.10.003

Ghaffar, N. M., Connerton, P. L., & Connerton, I. F. (2015). Filamentation of Campylobacter in broth cultures . In Frontiers in Microbiology (Vol. 6).

Gorman, R., & Adley, C. C. (2004). An evaluation of five preservation techniques and conventional freezing temperatures of -20°C and -85°C for long-term preservation of Campylobacter jejuni. Letters in Applied Microbiology, 38(4), 306–310. doi: 10.1111/j.1472-765X.2004.01490.x

Griffiths, P. L. (1993). Morphological changes of Campylobacter jejuni growing in liquid culture. Letters in Applied Microbiology, 17(4), 152–155. doi: 10.1111/j.1472-765x.1993.tb00382.x

Hansson, I., Persson, M., Svensson, L., Engvall, E. O., & Johansson, K. E. (2008). Identification of nine sequence types of the 16S rRNA genes of Campylobacter jejuni subsp. jejuni isolated from broilers. Acta Veterinaria Scandinavica, 50(1), 1–10. doi: 10.1186/1751-0147-50-10

Howe, R. A., & Andrews, J. M. (2012). BSAC standardized disc susceptibility testing method (version 11). The Journal of Antimicrobial Chemotherapy, 67(12), 2783–2784. doi: 10.1093/jac/dks391

Kaakoush, N. O., Castaño-Rodríguez, N., Mitchell, H. M., & Man, S. M. (2015). Global Epidemiology of Campylobacter Infection. doi: 10.1128/CMR.00006-15

Kim, S. M., Kim, E. C., Choi, M. R., So, H. A., Shim, E. S., Kim, E. S., Park, S. C., Seong, C. N., & Chong, Y. (2008). Cytolethal distending toxin production, genotypes and atimicrobial susceptibility of Campylobacter jejuni isolates from diarrhea patients and chickens. Journal of Bacteriology and Virology, 38(4), 207–219. doi: 10.4167/jbv.2008.38.4.207

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. doi: 10.1093/molbev/msy096

Magiorakos, A., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., & Hindler, J. F. (2011). Bacteria : an International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clinical Microbiology and Infection, 18(3), 268–281.

McCrackin, M. A., Helke, K. L., Galloway, A. M., Poole, A. Z., Salgado, C. D., & Marriott, B. p. (2016). Effect of Antimicrobial Use in Agricultural Animals on Drug-resistant Foodborne Campylobacteriosis in Humans: A Systematic Literature Review. Critical Reviews in Food Science and Nutrition, 56(13), 2115–2132. doi: 10.1080/10408398.2015.1119798

Michael P. Doyle, R. B. (2013). Food microbiology : fundamentals and frontiers (4th ed.). Washington: ASM Press.

Mughini Gras, L., Smid, J. H., Wagenaar, J. A., de Boer, A. G., Havelaar, A. H., Friesema, I. H. M., French, N. P., Busani, L., & van Pelt, W. (2012). Risk factors for campylobacteriosis of chicken, ruminant, and environmental origin: A combined case-control and source attribution analysis. PLoS ONE, 7(8). doi: 10.1371/journal.pone.0042599

Neogi, S. B., Islam, M. M., Islam, S. K. S., Akhter, A. H. M. T., Sikder, M. M. H., Yamasaki, S., & Kabir, S. M. L. (2020). Risk of multi-drug resistant Campylobacter spp. and residual antimicrobials at poultry farms and live bird markets in Bangladesh. BMC Infectious Diseases, 20(1), 278. doi: 10.1186/s12879-020-05006-6

Neves, M. I., Malkawi, I., Walker, M., Alaboudi, A., Abu-Basha, E., Blake, D. P., Guitian, J., & Crotta, M. (2018). Epidemiology and Infection The transmission dynamics of Campylobacter jejuni among broilers in semi-commercial farms in Jordan. doi: 10.1017/S0950268818003308

Newell, D. G., Mughini-Gras, L., Kalupahana, R. S., & Wagenaar, J. A. (2017). Campylobacter epidemiology-sources and routes of transmission for human infection. In Campylobacter: Features, Detection, and Prevention of Foodborne Disease. Elsevier Inc. doi: 10.1016/B978-0-12-803623-5.00005-8

Oh, E., Andrews, K. J., McMullen, L. M., & Jeon, B. (2019). Tolerance to stress conditions associated with food safety in Campylobacter jejuni strains isolated from retail raw chicken. Scientific Reports, 9(1), 1–9. doi: 10.1038/s41598-019-48373-0

Parkhill, J., Wren, B. W., Mungall, K., Ketley, J. M., Churcher, C., Basham, D., Chillingworth, T., Davies, R. M., Feltwell, T., Holroyd, S., Jagels, K., Karlyshev, A. V., Moule, S., Pallen, M. J., Pennk, C. W., Quail, M. A., Rajandream, M.-A., Rutherford, K. M., van Vliet, A. H. M., … Barrell, B. G. (2000). The genome sequence of C. jejuni. Nature, 403(6770), 665–668.

Quinn, P. J., Markey, B. K., Carter, M. E., Donnelly, W. J. C., & Leonard, F. C. (2011). veterinary microbiology and microbial disease ( Second Edition ) (second).

Ricke, S. C., Feye, K. M., Chaney, W. E., Shi, Z., Pavlidis, H., & Yang, Y. (2019). Developments in Rapid Detection Methods for the Detection of Foodborne Campylobacter in the United States . In Frontiers in Microbiology (Vol. 9).

Shakir, Z. M., Alhatami, A. O., Ismail Khudhair, Y., & Muhsen Abdulwahab, H. (2021). Antibiotic Resistance Profile and Multiple Antibiotic Resistance Index of Campylobacter Species Isolated from Poultry. Archives of Razi Institute, 76(6), 1677–1686. doi: 10.22092/ari.2021.356400.1837

Staji, H., Birgani, S. F., & Raeisian, B. (2018). Comparative clustering and genotyping of Campylobacter jejuni strains isolated from broiler and turkey feces by using RAPD-PCR and ERIC-PCR analysis. Annals of Microbiology, 68(11), 755–762. doi: 10.1007/s13213-018-1380-9

Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680. doi: 10.1093/nar/22.22.4673

Urdaneta, S., Dolz, R., & Cerdà-Cuéllar, M. (2015). Assessment of two different types of sample for the early detection and isolation of thermophilic Campylobacter in broiler farms. Avian Pathology, 44(2), 103–105. doi: 10.1080/03079457.2015.1006576

Vaz, C. S. L., Voss-Rech, D., Pozza, J. S., Coldebella, A., & S. Silva, V. (2014). Isolation of Campylobacter from Brazilian broiler flocks using different culturing procedures. Poultry Science, 93(11), 2887–2892. doi: 10.3382/ps.2014-03943

Yu, Z., Joossens, M., Kerkhof, P. J., & Houf, K. (2021). Bacterial shifts on broiler carcasses at retail upon frozen storage. International Journal of Food Microbiology, 340(July 2020), 109051. doi: 10.1016/j.ijfoodmicro.2021.109051

Downloads

Published

2023-08-10

How to Cite

Ghaffar, N. M., & Mohialdeen, N. H. (2023). ISOLATION AND MOLECULAR CHARACTERIZATION OF Campylobacter jejuni FROM LOCAL BROILER CHICKEN (LBC) AND FROZEN IMPORTED CHICKENS (IFC) IN DUHOK PROVINCE, KURDISTAN REGION- IRAQ. Science Journal of University of Zakho, 11(3), 386–. https://doi.org/10.25271/sjuoz.2023.11.3.1136

Issue

Section

Science Journal of University of Zakho