MULTI-CLASSIFICATION OF EYE DISEASES USING A CNN-HARALICK HYBRID FRAMEWORK

Authors

  • Oluwaseyi Ezekiel Olorunshola Department of Computer Science,Faculty of Computing, Air Force Institute of Technology, Kaduna,
  • Nanji Emmanuella Lakan Department of Computer Science,Faculty of Computing, Air Force Institute of Technology, Kaduna, Nigeria
  • Fatimah Adamu-Fika Department of Cyber Security, Faculty of Computing, Air Force Institute of Technology, Kaduna, Nigeria
  • Joshua Caleb Ishaya Department of International Relations, Faculty of Social and Management Science, Air Force Institute of Technology, Kaduna, Nigeria

DOI:

https://doi.org/10.25271/sjuoz.2025.13.4.1593

Keywords:

Eye Diseases, CNN, Haralick, Hybrid Model, Spatial Analysis, Texture Analysis, Dual-Branch Architecture, Multi-Classification

Abstract

The detection and classification of eye diseases, including Diabetic Retinopathy, Cataract, and Normal conditions, are critical in medical imaging for early diagnosis and treatment. This study proposes a hybrid CNN-Haralick model, leveraging the lightweight MobileNetV2 CNN architecture for spatial feature extraction and Haralick texture features extraction for texture analysis to enhance the accuracy of eye disease classification. A dual-branch architecture is employed, which fuses features from both the Convolutional Neural Network  and the Haralick-based texture analysis at an early stage. The model is evaluated on a dataset consisting of images from multiple sources. Experimental results show that the hybrid CNN-Haralick model achieves an overall accuracy of 98% on the validation set, outperforming traditional CNN models. The model demonstrates exceptional performance, with a macro average F1-score of 98% for the three classes, and AUC-ROC scores of 100% for each category. The confusion matrix and classification report further validate the model's capability to accurately classify eye diseases, providing reliable decision support for clinicians. Additionally, the model's effectiveness is discussed in comparison with existing works, highlighting its superior performance in terms of both accuracy and computational efficiency.

Downloads

Download data is not yet available.

References

Al-Bander, B., Al-Nuaimy, W., Al-Taee, M., & Zheng, Y. (2017). Automated glaucoma diagnosis using deep learning approach. 2017 14th International Multi-Conference on Systems, Signals & Devices (SSD). https://doi.org/10.1109/SSD.2017.8166974

Bitto, A. K., & Mahmud, I. (2022). Multi categorical of common eye disease detect using convolutional neural network: a transfer learning approach. Bulletin of Electrical Engineering and Informatics, 11(4), 2378–2387. https://doi.org/10.11591/eei.v11i4.3834

Cleveland Clinic. (2022, November 14). Blindness (Vision Impairment): Types, Causes and Treatment. Cleveland Clinic. https://my.clevelandclinic.org/health/diseases/24446-blindness

Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C., Corrado, G., Thrun, S., & Dean, J. (2019). A Guide to Deep Learning in Healthcare. Nature Medicine, 25(1), 24–29. https://doi.org/10.1038/s41591-018-0316-z

Flaxman, S. R., Bourne, R. R. A., Resnikoff, S., Ackland, P., Braithwaite, T., Cicinelli, M. V., Das, A., Jonas, J. B., Keeffe, J., Kempen, J. H., Leasher, J., Limburg, H., Naidoo, K., Pesudovs, K., Silvester, A., Stevens, G. A., Tahhan, N., Wong, T. Y., Taylor, H. R., & Bourne, R. (2017). Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. The Lancet Global Health, 5(12), e1221–e1234. https://doi.org/10.1016/s2214-109x(17)30393-5

Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973a). Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6), 610–621. https://doi.org/10.1109/tsmc.1973.4309314

Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973b). Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6), 610–621. https://doi.org/10.1109/tsmc.1973.4309314

Ibomoiye Domor Mienye, Swart, T. G., Obaido, G., Jordan, M., & Ilono, P. (2025). Deep Convolutional Neural Networks in Medical Image Analysis: A Review. Information, 16(3), 195. https://doi.org/10.3390/info16030195

Kiziltoprak, H., Tekin, K., Inanc, M., & Goker, Y. S. (2019). Cataract in diabetes mellitus. World Journal of Diabetes, 10(3), 140–153. https://doi.org/10.4239/wjd.v10.i3.140

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. Neural Information Processing Systems; Curran Associates, Inc.

Londhe, M. (n.d.). Classification of Eye Diseases using Hybrid CNN-RNN Models MSc Research Project Data Analytics. Retrieved October 21, 2022, from

Malik, S., Kanwal, N., Asghar, M. N., Sadiq, M. A. A., Karamat, I., & Fleury, M. (2019). Data Driven Approach for Eye Disease Classification with Machine Learning. Applied Sciences, 9(14), 2789. https://doi.org/10.3390/app9142789

Mateen, M., Wen, J., Hassan, M., Nasrullah, N., Sun, S., & Hayat, S. (2020, March 11). Automatic Detection of Diabetic Retinopathy: A Review on Datasets, Methods and Evaluation Metrics | IEEE Journals & Magazine | IEEE Xplore. Ieeexplore.ieee.org.

Ouda, O., AbdelMaksoud, E., Abd El-Aziz, A. A., & Elmogy, M. (2022). Multiple Ocular Disease Diagnosis Using Fundus Images Based on Multi-Label Deep Learning Classification. Electronics, 11(13), 1966. https://doi.org/10.3390/electronics11131966

Pooja Bidwai, Shilpa Gite, Pahuja, N., Kishore Pahuja, Kotecha, K., Jain, N., & Sheela Ramanna. (2024). Multimodal Image Fusion for the Detection of Diabetic Retinopathy Using Optimized Explainable AI-based Light GBM Classifier. Information Fusion, 111, 102526–102526. https://doi.org/10.1016/j.inffus.2024.102526

Pratap, U., Surico, P. L., Singh, R. B., Romano, F., Salati, C., Spadea, L., Musa, M., Gagliano, C., Mori, T., & Zeppieri, M. (2024). Artificial Intelligence (AI) for Early Diagnosis of Retinal Diseases. Medicina-Lithuania, 60(4), 527–527. https://doi.org/10.3390/medicina60040527

Sarki, R., Ahmed, K., Wang, H., & Zhang, Y. (2020). Automated detection of mild and multi-class diabetic eye diseases using deep learning. Health Information Science and Systems, 8(1). https://doi.org/10.1007/s13755-020-00125-5

Sarki, R., Ahmed, K., Wang, H., Zhang, Y., & Wang, K. (2021). VU Research Repository. VU Research Repository | Victoria University| Melbourne Australia.

Shukla, U. V., & Tripathy, K. (2023a). Diabetic Retinopathy. PubMed; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK560805/

Shukla, U. V., & Tripathy, K. (2023b). Diabetic Retinopathy. PubMed; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK560805/

Şükran Yaman Atcı, Güneş, A., Metin Zontul, & Arslan, Z. (2024). Identifying Diabetic Retinopathy in the Human Eye: A Hybrid Approach Based on a Computer-Aided Diagnosis System Combined with Deep Learning. Tomography, 10(2), 215–230. https://doi.org/10.3390/tomography10020017

Sushith, M., Sathiya, A., Kalaipoonguzhali, V., & Sathya, V. (2025). A hybrid deep learning framework for early detection of diabetic retinopathy using retinal fundus images. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-99309-w

Downloads

Published

2025-10-02

How to Cite

Olorunshola, O. E., Lakan, N., Adamu-Fika, F., & Caleb Ishaya, J. (2025). MULTI-CLASSIFICATION OF EYE DISEASES USING A CNN-HARALICK HYBRID FRAMEWORK. Science Journal of University of Zakho, 13(4), 479–488. https://doi.org/10.25271/sjuoz.2025.13.4.1593

Issue

Section

Science Journal of University of Zakho