NUMERICAL SOLUTION OF CUBIC-QUINTIC NONLINEAR SCHRÖDINGER EQUATION

Authors

  • kazheen Hasan Omar Department of Mathematics, College of Science, University of Zakho, Kurdistan Region, Iraq
  • Fadhil H. Easif Department of Mathematics, College of Science, University of Zakho, Kurdistan Region, Iraq

DOI:

https://doi.org/10.25271/sjuoz.2025.13.4.1595

Keywords:

Numerical solution, (100) GaAs, Residual Power Series Method, Variational Iteration Method, Lagrange multiplier

Abstract

This paper is devoted to investigating and comparing the variational iteration method (VIM) and the residual power series method (RPSM) for solving the cubic-quintic nonlinear Schrödinger equation (CQNLSE) initially developed to elucidate the propagation of pulses in optical fibers. Next, we use the initial conditions to get the numerical solutions of the CQNLSE. We compared the known exact solutions with the approximate results obtained using both the VIM and RPSM. The exact solution and the results from RPSM are evaluated against those from VIM. The findings demonstrated that VIM outperformed RPSM in terms of accuracy, efficiency, and ease of implementation for solving the CQNLSE. In addition, the current results are shown graphically and in the table

Downloads

Download data is not yet available.

References

Alquran, M. (2014). Analytical solutions of fractional foam drainage equation by residual power series method. Mathematical Sciences, 8(4), 153–160.

Al-Saif, A.-S., Al-Saif, A. S. J., & Hattim, T. A. K. (2011). Variational Iteration Method for Solving Some Models of Nonlinear Partial Differential Equations. In International Journal of Pure and Applied Sciences and Technology (Vol. 4, Issue 1).

Caplan, R. M., Carretero-Gonzalez, R., Kevrekidis, P. G., & Malomed, B. A. (2009). Existence, Stability, and Dynamics of Bright Vortices in the Cubic-Quintic Nonlinear Schr"odinger Equation. https://doi.org/10.1016/j.matcom.2010.11.019.

Cifani, S., & Jakobsen, E. R. (2011). Entropy solution theory for fractional degenerate convection-diffusion equations. Annales de l’Institut Henri Poincare (C) Analyse Non Lineaire, 28(3), 413–441. https://doi.org/10.1016/j.anihpc.2011.02.006.

Golam Hafez, M., Kauser, M. A., & Tahmina Akter, M. (2014). Some New Exact Travelling Wave Solutions of the Cubic Nonlinear Schrodinger Equation using the (Exp    )-Expansion Method.

Hao, R., Li, L., Li, Z., Xue, W., & Zhou, G. (2004). A new approach to exact soliton solutions and soliton interaction for the nonlinear Schrödinger equation with variable coefficients. Optics Communications, 236(1–3), 79–86. https://doi.org/10.1016/j.optcom.2004.03.005

He, J. H. (1999). Some applications of nonlinear fractional differential equations and their approximations. Bull. Sci. Technol, 15(2), 86-90.

He, J. R., Yi, L., & Li, H. M. (2014). Self-similar propagation and asymptotic optical waves in nonlinear waveguides. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 90(1). https://doi.org/10.1103/PhysRevE.90.013202.

Inc, M., Korpinar, Z. S., Al Qurashi, M. M., & Baleanu, D. (2016). A new method for approximate solutions of some nonlinear equations: Residual power series method. Advances in Mechanical Engineering, 8(4), 1–7. https://doi.org/10.1177/1687814016644580.

Inokuti, M. (1978). General use of the Lagrange multiplier in nonlinear mathematical physics. Variational method in the mechanics of solids, 156-162

Jumarie, G. (2011). Path Probability of Random Fractional Systems Defined by White Noises In Coarse-Grained Time. Application Of Fractional Entropy. In F ractional Differential Calculus (Vol. 1, Issue 1).

Komashynska, I., Al-Smadi, M., Ateiwi, A., & Al-Obaidy, S. (2016). Approximate analytical solution by residual power series method for system of Fredholm integral equations. Applied Mathematics and Information Sciences, 10(3), 975–985. https://doi.org/10.18576/amis/100315.

Korpinar, Z. (2019). On comparison of approximate solutions for linear and nonlinear schrodinger equations. Acta Scientiarum - Technology, 41. https://doi.org/10.4025/actascitechnol.v41i1.36596.

Lai, X., Zhang, J. & Luo, J. (2006). Adomian Decomposition Method for Approximating the Solution of the High-Order Dispersive Cubic-Quintic Nonlinear Schrödinger Equation. Zeitschrift für Naturforschung A, 61(5-6), 205-215. https://doi.org/10.1515/zna-2006-5-601.

Mahmood, B. A., & Yousif, M. A. (2017). A residual power series technique for solving Boussinesq–Burgers equations. Cogent Mathematics, 4(1), 1279398. https://doi.org/10.1080/23311835.2017.1279398.

Mainardi, F. (2012). Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics. https://doi.org/10.1007/978-3-7091-2664-6_7.

Manaa, S. A., Easif, F. H., & Murad, J. J. (2021). Residual Power Series Method for Solving Klein-Gordon Schrödinger Equation. Science Journal of University of Zakho, 9(2), 123–127. https://doi.org/10.25271/sjuoz.2021.9.2.810.

Miller, K. S. (1993). An introduction to the fractional calculus and fractional differential equations. John Willey & Sons.

Momani, S., & Abuasad, S. (2006). Application of He’s variational iteration method to Helmholtz equation. Chaos, Solitons and Fractals, 27(5), 1119–1123. https://doi.org/10.1016/j.chaos.2005.04.113.

Odibat, Z. M. (2010). A study on the convergence of variational iteration method. Mathematical and Computer Modelling, 51(9–10), 1181–1192. https://doi.org/10.1016/j.mcm.2009.12.034

Odibat, Z. M. (2010). A study on the convergence of variational iteration method. Mathematical and Computer Modelling, 51(9–10), 1181–1192. https://doi.org/10.1016/j.mcm.2009.12.034.

Oldham, K. B., & Spanier, J. (1974). Theory and applications of differentiation and integration to arbitrary order. The Fractional Calculus.

Serkin, V. N., Belyaeva, T. L., Alexandrov, I. V., & Melo Melchor, G. (2001). Novel topological quasi-soliton solutions for the nonlinear cubic-quintic Schrodinger equation model. Optical Pulse and Beam Propagation III, 4271, 292. https://doi.org/10.1117/12.424706

Tang, X. Y., & Shukla, P. K. (2007). Solution of the one-dimensional spatially inhomogeneous cubic-quintic nonlinear Schrödinger equation with an external potential. Physical Review A - Atomic, Molecular, and Optical Physics,76(1). https://doi.org/10.1103/PhysRevA.76.013612

Ubriaco, M. R. (2009). Entropies based on fractional calculus. https://doi.org/10.1016/j.physleta.2009.05.026.

Wazwaz, A. M. (2008). A study on linear and nonlinear Schrodinger equations by the variational iteration method. Chaos, Solitons and Fractals, 37(4), 1136–1142. https://doi.org/10.1016/j.chaos.2006.10.009.

Zunino, L., Pérez, D. G., Martín, M. T., Garavaglia, M., Plastino, A., & Rosso, O. A. (2008). Permutation entropy of fractional Brownian motion and fractional Gaussian noise. Physics Letters, Section A: General, Atomic and Solid State Physics, 372(27–28), 4768–4774. https://doi.org/10.1016/j.physleta.2008.05.026

Downloads

Published

2025-10-02

How to Cite

Hasan Omar, K., & Easif, F. (2025). NUMERICAL SOLUTION OF CUBIC-QUINTIC NONLINEAR SCHRÖDINGER EQUATION. Science Journal of University of Zakho, 13(4), 499–509. https://doi.org/10.25271/sjuoz.2025.13.4.1595

Issue

Section

Science Journal of University of Zakho