GREEN SYNTHESIS OF MANGANESE OXIDE NPS USING MICROTRICHIA PEROTITII DC PLANT EXTRACT: CHARACTERIZATION AND ANTIBACTERIAL ACTIVITY
DOI:
https://doi.org/10.25271/sjuoz.2024.12.4.1384Keywords:
Green synthesis, Manganese Oxide, NPs, Precursor, SpectroscopyAbstract
This study presents a green approach to synthesizing manganese oxide nanoparticles (NPs) utilizing Microtrichia perotitii DC plant leaf extracts as a chelating agent and manganese oxide (MnO2) as a precursor. The NPs underwent comprehensive characterization through UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis. X-ray diffraction patterns indicated the synthesis of MnO NPs with an average crystallite size of 10.12 nm. Scanning electron microscope images depicted a needle-like shape with uniform distribution. Fourier transform infrared spectrophotometer analysis identified the strongest bond at 862.025 cm-1 corresponding to the stretching vibration mode of Mn-O NPs. Thermogravimetric analysis confirmed the thermal stability of the NPs. Furthermore, the synthesized NPs exhibited antimicrobial activity against B. Subtilis with a zone of inhibition measuring 25.625±3.01 mm.
References
Abbasi, B. A., Iqbal, J., Mahmood, T., Ahmad, R., Kanwal, S., & Afridi, S. (2019). Plant-mediated synthesis of nickel oxide Nanoparticles (NiO) via Geranium wallichianum: characterization and different biological applications. Materials Research Express, 6(8), 0850a7. https://doi.org/10.1088/2053-1591/ab23e1
Abbasi, T., Anuradha, J., Ganaie, S., & Abbasi, S. (2014). Gainful utilization of the highly intransigent weed ipomoea in the synthesis of gold Nanoparticles. Journal of King Saud University - Science, 27(1), 15–22. https://doi.org/10.1016/j.jksus.2014.04.001
Abdullahi, M. (2011). Phytochemical Screening and Biological Studies of the Leaves of Microtrichia perotitii DC (Asteraceae). European Journal of Medicinal Plants, 1(3), 88–97. https://doi.org/10.9734/ejmp/2011/188
Ahmed, M., Qadir, M. A., Shafiq, M. I., Muddassar, M., Samra, Z. Q., & Hameed, A. (2016). Synthesis, characterization, biological activities and molecular modeling of Schiff bases of benzene sulfonamides bearing curcumin scaffold. Arabian Journal of Chemistry, 12(1), 41–53. https://doi.org/10.1016/j.arabjc.2016.11.017
Ahmed, S., Saifullah, N., Ahmad, M., Swami, B. L., & Ikram, S. (2015). Green synthesis of silver Nanoparticles using Azadirachta indica aqueous leaf extract. Journal of Radiation Research and Applied Sciences, 9(1), 1–7. https://doi.org/10.1016/j.jrras.2015.06.006
Akintelu, S. A., Folorunso, A. S., & Ademosun, O. T. (2019). Instrumental characterization and antibacterial investigation of silver Nanoparticles synthesized from garcinia kola leaf. Journal of Drug Delivery and Therapeutics, 9(6-s), 58–64. https://doi.org/10.22270/jddt.v9i6-s.3749
Allen, H. K., Donato, J., Wang, H. H., Cloud-Hansen, K. A., Davies, J., & Handelsman, J. (2010). Call of the wild: antibiotic resistance genes in natural environments. Nature Reviews Microbiology, 8(4), 251–259. https://doi.org/10.1038/nrmicro2312
Al-Radadi, N. S. (2018). Green synthesis of platinum Nanoparticles using Saudi’s Dates extract and their usage on the cancer cell treatment. Arabian Journal of Chemistry, 12(3), 330–349. https://doi.org/10.1016/j.arabjc.2018.05.008
Anuradha, J., Abbasi, T., & Abbasi, S. (2014). An eco-friendly method of synthesizing gold Nanoparticles using an otherwise worthless weed pistia (Pistia stratiotes L.). Journal of Advanced Research, 6(5), 711–720. https://doi.org/10.1016/j.jare.2014.03.006
Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews, 74(3), 417–433. https://doi.org/10.1128/mmbr.00016-10
Elbagory, A. M., Hussein, A. A., & Meyer, M. (2019).
The In Vitro Immunomodulatory Effects Of Gold Nanoparticles Synthesized From Hypoxis hemerocallidea Aqueous Extract And Hypoxoside On Macrophage And Natural Killer Cells
International Journal of Nanomedicine, Volume 14, 9007–9018. https://doi.org/10.2147/ijn.s216972Ezhilarasi, A. A., Vijaya, J. J., Kaviyarasu, K., Maaza, M., Ayeshamariam, A., & Kennedy, L. J. (2016). Green synthesis of NiO Nanoparticles using Moringa oleifera extract and their biomedical applications: Cytotoxicity effect of NPs against HT-29 cancer cells. Journal of Photochemistry and Photobiology B Biology, 164, 352–360. https://doi.org/10.1016/j.jphotobiol.2016.10.003
Folorunso, A., Akintelu, S., Oyebamiji, A. K., Ajayi, S., Abiola, B., Abdusalam, I., & Morakinyo, A. (2019). Biosynthesis, characterization and antimicrobial activity of gold Nanoparticles from leaf extracts of Annona muricata. Journal of Nanostructure in Chemistry, 9(2), 111–117. https://doi.org/10.1007/s40097-019-0301-1
Geetanjali., Tamta A., Chandra B., Kandpal N. D., Joshi R., Green Route Synthesis of Manganese Oxide Nanoparticles by Using Methanolic Extract of Sapindus mukorossi (reetha). Journal of Water Environment and Nanotechnology, 2024; 9(2): 211-222. https://doi.org/10.22090/jwent.2024.02.07
Gharehyakheh, S., Ahmeda, A., Haddadi, A., Jamshidi, M., Nowrozi, M., Zangeneh, M. M., & Zangeneh, A. (2020). Effect of gold Nanoparticles synthesized using the aqueous extract of Satureja hortensis leaf on enhancing the shelf life and removing Escherichia coli O157:H7 and Listeria monocytogenes in minced camel’s meat: The role of nanotechnology in the food industry. Applied Organometallic Chemistry, 34(4). https://doi.org/10.1002/aoc.5492
Han, K., Huang, H., Gong, Q., Si, T., Zhang, Z., & Zhou, G. (2018). Temperature-induced hierarchical Tremella-like and Pinecone-like NiO microspheres for high-performance supercapacitor electrode materials. Journal of Materials Science, 53(17), 12477–12491. https://doi.org/10.1007/s10853-018-2532-9
Haneefa, M.M. (2017). Green Synthesis Characterization and Antimicrobial Activity Evaluation of Manganese Oxide Nanoparticles and Comparative Studies with Salicylalchitosan Functionalized Nanoform. Asian Journal of Pharmaceutics, 11. https://doi.org/10.22377/AJP.V11I01.1045
Haneefa, M. M., M, J., & V, B. (2017a). Evaluation of antimicrobial activity of green-synthesized manganese oxide Nanoparticles and comparative studies with curcuminaniline functionalized nanoform. Asian Journal of Pharmaceutical and Clinical Research, 10(3), 347. https://doi.org/10.22159/ajpcr.2017.v10i3.16246
Haq, S., Rehman, W., Waseem, M., Shah, A., Khan, A. R., Rehman, M. U., Ahmad, P., Khan, B., & Ali, G. (2020). Green synthesis and characterization of tin dioxide Nanoparticles for photocatalytic and antimicrobial studies. Materials Research Express, 7(2), 025012. https://doi.org/10.1088/2053-1591/ab6fa1
Hariharan, D., Thangamuniyandi, P., Christy, A. J., Vasantharaja, R., Selvakumar, P., Sagadevan, S., Pugazhendhi, A., & Nehru, L. (2019a). Enhanced photocatalysis and anticancer activity of green hydrothermal synthesized Ag@TiO2 Nanoparticles. Journal of Photochemistry and Photobiology B Biology, 202, 111636. https://doi.org/10.1016/j.jphotobiol.2019.111636
Heesterbeek, D. a. C., Martin, N. I., Velthuizen, A., Duijst, M., Ruyken, M., Wubbolts, R., Rooijakkers, S. H. M., & Bardoel, B. W. (2019). Publisher Correction: Complement-dependent outer membrane perturbation sensitizes Gram-negative bacteria to Gram-positive specific antibiotics. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-43208-4
Helen, S., Hebzi, M., & Rani, E. (2015). Characterization and Antimicrobial Study of Nickel Nanoparticles Synthesized from Dioscorea (Elephant Yam) by Green Route. International Journal of Science and Research (IJSR), 4(11), 216–219. https://doi.org/10.21275/v4i11.nov151105
Hussain, S., Muazzam, M. A., Ahmed, M., Ahmad, M., Mustafa, Z., Murtaza, S., Ali, J., Ibrar, M., Shahid, M., & Imran, M. (2023). Green synthesis of nickel oxide Nanoparticles using Acacia nilotica leaf extracts and investigation of their electrochemical and biological properties. Journal of Taibah University for Science, 17(1). https://doi.org/10.1080/16583655.2023.2170162
Iravani, S. (2011). Green synthesis of metal Nanoparticles using plants. Green Chemistry, 13(10), 2638. https://doi.org/10.1039/c1gc15386b
Jaganyi, D., Altaf, M., & Wekesa, I. (2012). Synthesis and characterization of whisker-shaped MnO2 nanostructure at room temperature. Applied Nanoscience, 3(4), 329–333. https://doi.org/10.1007/s13204-012-0135-3
Jayandran, M., Haneefa, M., & Balasubramanian, V. (2015). Green synthesis and characterization of Manganese Nanoparticles using natural plant extracts and its evaluation of antimicrobial activity. Journal of Applied Pharmaceutical Science, 105–110. https://doi.org/10.7324/japs.2015.501218
Joshi, N. C., Joshi, E., & Singh, A. (2020). Biological Synthesis, Characterisations and Antimicrobial activities of manganese dioxide (MnO2) Nanoparticles. Research Journal of Pharmacy and Technology, 13(1), 135. https://doi.org/10.5958/0974-360x.2020.00027.x
Kazmi, S. T. B., Naz, I., Zahra, S. S., Nasar, H., Fatima, H., Farooq, A. S., & Haq, I. (2022). Phytochemical analysis and comprehensive evaluation of pharmacological potential of Artemisia brevifolia Wall. ex DC. Saudi Pharmaceutical Journal, 30(6), 793–814. https://doi.org/10.1016/j.jsps.2022.03.012
Khan, S. A., & Lee, C. (2020a). Green biological synthesis of Nanoparticles and their biomedical applications. In Nanotechnology in the life sciences (pp. 247–280). https://doi.org/10.1007/978-3-030-44176-0_10
Khan, S. A., & Lee, C. (2020b). Recent progress and strategies to develop antimicrobial contact lenses and lens cases for different types of microbial keratitis. Acta Biomaterialia, 113, 101–118. https://doi.org/10.1016/j.actbio.2020.06.039
Koteeswari, P., Sagadevan, S., Fatimah, I., Sibhatu, A. K., Razak, S. I. A., Soga, T., & Léonard, E. (2022). Green synthesis and characterization of copper oxide Nanoparticles and their photocatalytic activity. Inorganic Chemistry Communications, 144, 109851. https://doi.org/10.1016/j.inoche.2022.109851
Kumar, V., & Yadav, S. K. (2008). Plant‐mediated synthesis of silver and gold Nanoparticles and their applications. Journal of Chemical Technology & Biotechnology, 84(2), 151–157. https://doi.org/10.1002/jctb.2023
Kumar, V., and Yadav, S.K. (2013). Influence of physiochemical factors on size of gold Nanoparticles synthesised using leaf extract of Syzygium cumini L. Journal of Chemical Science and Technology. 2, 104–113.
Kumar, V., Singh, K., Panwar, S., & Mehta, S. K. (2017). Green synthesis of manganese oxide Nanoparticles for the electrochemical sensing of p-nitrophenol. International Nano Letters., 7(2), 123–131. https://doi.org/10.1007/s40089-017-0205-3
Lefojane, R., Direko, P., Mfengwana, P., Mashele, S., Matinise, N., Maaza, M., & Sekhoacha, M. (2020). Green Synthesis of Nickel Oxide (NiO) Nanoparticles Using Spirostachys africana Bark Extract. Asian Journal of Scientific Research, 13(4), 284–291. https://doi.org/10.3923/ajsr.2020.284.291
Lu, H., Zhang, X., Khan, S. A., Li, W., & Wan, L. (2021). Biogenic Synthesis of MnO2 Nanoparticles With Leaf Extract of Viola betonicifolia for Enhanced Antioxidant, Antimicrobial, Cytotoxic, and Biocompatible Applications. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.761084
Luo, Y. (2006). Preparation of MnO2 Nanoparticles by directly mixing potassium permanganate and polyelectrolyte aqueous solutions. Materials Letters, 61(8–9), 1893–1895. https://doi.org/10.1016/j.matlet.2006.07.165
Mai-Prochnow, A., Clauson, M., Hong, J., & Murphy, A. B. (2016). Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Scientific Reports, 6(1). https://doi.org/10.1038/srep38610
Manjula, R., Thenmozhi, M., Thilagavathi, S., Srinivasan, R., & Kathirvel, A. (2019). Green synthesis and characterization of manganese oxide Nanoparticles from Gardenia resinifera leaves. Materials Today Proceedings, 26, 3559–3563. https://doi.org/10.1016/j.matpr.2019.07.396
Mohammed, I. A., Ahmed, M., Ikram, R., Muddassar, M., Qadir, M. A., & Awang, K. B. (2018). Synthesis of 1,3-benzoxazines based on 2,4,4-trimethyl-7,2’,4’-trihydroxy flavan: antibacterial, anti-inflammatory, cyclooxygenase-2 inhibition and molecular modelling studies. Letters in Drug Design & Discovery, 16(1), 58–65. https://doi.org/10.2174/1570180815666180420100922
Muthukumaran, M., Dhinagaran, G., Venkatachalam, K., Sagadevan, S., Gunasekaran, S., Podder, J., Mohammad, F., Shahid, M., & Oh, W. C. (2020). Green synthesis of cuprous oxide Nanoparticles for environmental remediation and enhanced visible-light photocatalytic activity. Optik, 214, 164849. https://doi.org/10.1016/j.ijleo.2020.164849
Pooja R, Varsha S L, Aliya M S, Chetana Kumar T, Damini B M, Divya H K, Lakshmi J, Sushma J M, Swati K, Annapurneshwari M H, Ravi M, & Vedamurthy A B. (2022). Phytochemical screening, GCMS, UV-vis and FTIR analysis of leaf methanolic extract of Sapindus mukorossi L. International Journal of Progressive Research in Science and Engineering, 3(05), 97–104.
Prasad, K. S., & Patra, A. (2017a). Green synthesis of MnO2 nanorods using Phyllanthus amarus plant extract and their fluorescence studies. Green Processing and Synthesis, 6(6). https://doi.org/10.1515/gps-2016-0166
Rathinabala, R., Thamizselvi, R., Padmanabhan, D., Alshahateet, S. F., Fatimah, I., Sibhatu, A. K., Weldegebrieal, G. K., Razak, S. I. A., & Sagadevan, S. (2022). Sun light-assisted enhanced photocatalytic activity and cytotoxicity of green synthesized SnO2 NPs. Inorganic Chemistry Communications, 143, 109783. https://doi.org/10.1016/j.inoche.2022.109783
Romaniuk, J. A. H., & Cegelski, L. (2015). Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR. Philosophical Transactions of the Royal Society B Biological Sciences, 370(1679), 20150024. https://doi.org/10.1098/rstb.2015.0024
Shah, M., Fawcett, D., Sharma, S., Tripathy, S. K., & Poinern, G. E. J. (2015). Green synthesis of metallic Nanoparticles via biological entities. Materials, 8(11), 7278–7308. https://doi.org/10.3390/ma8115377
Sinha, A., Singh, V. N., Mehta, B. R., & Khare, S. K. (2011). Synthesis and characterization of monodispersed orthorhombic manganese oxide Nanoparticles produced by Bacillus sp. cells simultaneous to its bioremediation. Journal of Hazardous Materials, 192(2), 620–627. https://doi.org/10.1016/j.jhazmat.2011.05.103
Situmorang, P. C., Ilyas, S., Nugraha, S. E., Syahputra, R. A., & Rahman, N. M. a. N. A. (2024). Prospects of compounds of herbal plants as anticancer agents: a comprehensive review from molecular pathways. Frontiers in Pharmacology, 15. https://doi.org/10.3389/fphar.2024.1387866
Srivastava, V., Beg, M., Sharma, S., & Choubey, A. K. (2021). Application of manganese oxide Nanoparticles synthesized via green route for improved performance of water-based drilling fluids. Applied Nanoscience, 11(8), 2247–2260. https://doi.org/10.1007/s13204-021-01956-8
Sun, B., Zhang, Y., Zhang, R., Yu, H., Zhou, G., Zhang, H., & Wang, J. (2017). High‐Order nonlinear optical properties generated by different electron transition processes of NIO nanosheets and applications to ultrafast lasers. Advanced Optical Materials, 5(8). https://doi.org/10.1002/adom.201600937
Yang, X., Makita, Y., Liu, Z., Sakane, K., & Ooi, K. (2004). Structural Characterization of Self-Assembled MnO2Nanosheets from Birnessite Manganese Oxide Single Crystals. Chemistry of Materials, 16(26), 5581–5588. https://doi.org/10.1021/cm049025d
Yang, Z., Xia, G., & Stevenson, J. W. (2005). Mn[sub 1.5]Co[sub 1.5]O[sub 4] Spinel Protection Layers on Ferritic Stainless Steels for SOFC Interconnect Applications. Electrochemical and Solid-State Letters, 8(3), A168. https://doi.org/10.1149/1.1854122
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Mercy O. Bamigboye, Friday Danjuma
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License [CC BY-NC-SA 4.0] that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work, with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online.