Solid State Synthesis of Silver Nanoparticles Using Violuric Acid as a Novel Reducing Agent

Authors

  • Amir Abdulrahman Ahmad Ministry of Higher Education and Scientific Research, Erbil- Kurdistan Region-Iraq

DOI:

https://doi.org/10.25271/sjuoz.2022.10.4.1021

Keywords:

Silver Nanoparticles, Solid-State Synthesis, Violuric Acid, Nanoparticle characterization

Abstract

Metal Nanoparticles (NPs) are recognized as the most attractive materials due to their distinct physical and chemical characteristics. Several physical and chemical synthesis methods have already been tested to obtain NPs of appropriate size and shape. Although the chemical-based solution methods provide NPs within a proper size and shape and can be reasonably controlled, they require a large amount of raw material including solvents, capping agents, etc., which usually lead to toxic output and waste. In this study, the author tested an easy and environmentally friendly solid-state synthesis pathway for synthesizing silver (Ag) NPs within a suitable size and shape, using a novel reducing agent. Silver carbonate (Ag2CO3) was allowed to react with Violuric acid (C4H3N3O4) as a reducing agent through a solid-state grinding method for one hour. The results confirmed that Violuric Acid can be considered a promising reducing agent that results in the formation of well-shaped spherical Ag NPs within an average particle size of about 60 nm.

Author Biography

Amir Abdulrahman Ahmad, Ministry of Higher Education and Scientific Research, Erbil- Kurdistan Region-Iraq

- Ministry of Higher Education and Scientific Research, Erbil- Kurdistan Region-Iraq.

- Salahaddin University, College of Science, Physics Department, Erbil- Kurdistan Region-Iraq (amir.ahmad@su.edu.krd)

References

Ahani, M., & Khatibzadeh, M. (2017). Optimisation of significant parameters through response surface methodology in the synthesis of silver nanoparticles by chemical reduction method. Micro & Nano Letters, 12(9), 705-710.

Al-Namil, D. S., Khoury, E. E., & Patra, D. (2019). Solid-state green synthesis of Ag NPs: Higher temperature harvests larger Ag NPs but smaller size has better catalytic reduction reaction. Scientific reports, 9(1), 1-9.

Babu Kalidindi, S., Sanyal, U., & Jagirdar, B. R. (2011). Chemical synthesis of metal nanoparticles using amine–boranes. ChemSusChem, 4(3), 317-324.

Bykkam, S., Ahmadipour, M., Narisngam, S., Kalagadda, V. R., & Chidurala, S. C. (2015). Extensive studies on X-ray diffraction of green synthesized silver nanoparticles. Adv. Nanopart, 4(1), 1-10.

Chen, J., Wiley, B. J., & Xia, Y. (2007). One-dimensional nanostructures of metals: large-scale synthesis and some potential applications. Langmuir, 23(8), 4120-4129.

Dang‐Bao, T., Favier, I., & Gómez, M. (2021). Metal nanoparticles in polyols: bottom‐up and top‐down syntheses and catalytic applications. Nanoparticles in Catalysis: Advances in Synthesis and Applications, 99-122.

Debnath, D., Kim, C., Kim, S. H., & Geckeler, K. E. (2010). Solid‐state synthesis of silver nanoparticles at room temperature: poly (vinylpyrrolidone) as a tool. Macromolecular rapid communications, 31(6), 549-553.

Dhand, V., Soumya, L., Bharadwaj, S., Chakra, S., Bhatt, D., & Sreedhar, B. (2016). Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Materials Science and Engineering: C, 58, 36-43.

Dondi, R., Su, W., Griffith, G. A., Clark, G., & Burley, G. A. (2012). Highly Size‐and Shape‐Controlled Synthesis of Silver Nanoparticles via a Templated Tollens Reaction. small, 8(5), 770-776.

Durval, I. J. B., Meira, H. M., de Veras, B. O., Rufino, R. D., Converti, A., & Sarubbo, L. A. (2021). Green Synthesis of Silver Nanoparticles Using a Biosurfactant from Bacillus cereus UCP 1615 as Stabilizing Agent and Its Application as an Antifungal Agent. Fermentation, 7(4), 233.

Gherasim, O., Puiu, R. A., Bîrcă, A. C., Burdușel, A.-C., & Grumezescu, A. M. (2020). An updated review on silver nanoparticles in biomedicine. Nanomaterials, 10(11), 2318.

Hamad, A., Khashan, K. S., & Hadi, A. (2020). Silver nanoparticles and silver ions as potential antibacterial agents. Journal of Inorganic and Organometallic Polymers and Materials, 30(12), 4811-4828.

Hebeish, A., Shaheen, T. I., & El-Naggar, M. E. (2016). Solid state synthesis of starch-capped silver nanoparticles. International journal of biological macromolecules, 87, 70-76.

Iravani, S., Korbekandi, H., Mirmohammadi, S. V., & Zolfaghari, B. (2014). Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in pharmaceutical sciences, 9(6), 385.

Jain, P. K., Huang, X., El-Sayed, I. H., & El-Sayed, M. A. (2008). Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Accounts of chemical research, 41(12), 1578-1586.

Jamkhande, P. G., Ghule, N. W., Bamer, A. H., & Kalaskar, M. G. (2019). Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of drug delivery science and technology, 53, 101174.

Khatami, M., Mehnipor, R., Poor, M. H. S., & Jouzani, G. S. (2016). Facile biosynthesis of silver nanoparticles using Descurainia sophia and evaluation of their antibacterial and antifungal properties. Journal of Cluster Science, 27(5), 1601-1612.

Kovács, D., Igaz, N., Gopisetty, M. K., & Kiricsi, M. (2022). Cancer therapy by silver nanoparticles: fiction or reality? International journal of molecular sciences, 23(2), 839.

Lalegani, Z., Ebrahimi, S. S., Hamawandi, B., La Spada, L., & Toprak, M. (2020). Modeling, design, and synthesis of gram-scale monodispersed silver nanoparticles using microwave-assisted polyol process for metamaterial applications. Optical Materials, 108, 110381.

Lee, K. H., Jung, H. J., Lee, J. H., Kim, K., Lee, B., Nam, D., . . . Hur, N. H. (2018). Facile solid-state synthesis of oxidation-resistant metal nanoparticles at ambient conditions. Solid State Sciences, 79, 38-47.

Lee, S. H., & Jun, B.-H. (2019). Silver nanoparticles: synthesis and application for nanomedicine. International journal of molecular sciences, 20(4), 865.

Li, G., He, D., Qian, Y., Guan, B., Gao, S., Cui, Y., . . . Wang, L. (2011). Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. International journal of molecular sciences, 13(1), 466-476.

Okafor, F., Janen, A., Kukhtareva, T., Edwards, V., & Curley, M. (2013). Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. International journal of environmental research and public health, 10(10), 5221-5238.

Pryshchepa, O., Pomastowski, P., & Buszewski, B. (2020). Silver nanoparticles: Synthesis, investigation techniques, and properties. Advances in Colloid and Interface Science, 284, 102246.

Rafique, M., Sadaf, I., Rafique, M. S., & Tahir, M. B. (2017). A review on green synthesis of silver nanoparticles and their applications. Artificial cells, nanomedicine, and biotechnology, 45(7), 1272-1291. doi:http://dx.doi.org/10.1080/21691401.2016.1241792

Rajput, N. (2015). Methods of preparation of nanoparticles-a review. International Journal of Advances in Engineering & Technology, 7(6), 1806.

Raza, S., Stenger, N., Kadkhodazadeh, S., Fischer, S. V., Kostesha, N., Jauho, A.-P., . . . Mortensen, N. A. (2013). Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS. Nanophotonics, 2(2), 131-138.

Roy, A., Bulut, O., Some, S., Mandal, A. K., & Yilmaz, M. D. (2019). Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC advances, 9(5), 2673-2702.

Sajadi, S. M., Kolo, K., Hamad, S. M., Mahmud, S. A., Barzinjy, A. A., & Hussein, S. M. (2018). Green synthesis of the Ag/Bentonite nanocomposite UsingEuphorbia larica extract a reusable catalyst for efficient reduction of nitro compounds and organic dyes. ChemistrySelect, 3(43), 12274-12280.

Shen, W., Zhang, X., Huang, Q., Xu, Q., & Song, W. (2014). Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity. Nanoscale, 6(3), 1622-1628.

Sholikhah, U., Pujiyanto, A., Lestari, E., Sarmini, E., & Lubis, H. (2018). Critical parameters of silver nanoparticles (AgNPs) synthesized by sodium borohydride reduction. Res. J. Chem. Environ Vol. 22 (Special Issue II) August (2018), 22(2), 179-183.

Singh, M., Singh, S., Prasad, S., & Gambhir, I. (2008). Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Digest Journal of Nanomaterials and Biostructures, 3(3), 115-122.

Talabani, R. F., Hamad, S. M., Barzinjy, A. A., & Demir, U. (2021). Biosynthesis of Silver Nanoparticles and Their Applications in Harvesting Sunlight for Solar Thermal Generation. Nanomaterials, 11(9), 2421. doi:http://dx.doi.org/10.3390/nano11092421

Thambiratnam, K., Reduan, S. A., Tiu, Z. C., & Ahmad, H. (2020). Application of two-dimensional materials in fiber laser systems. In Nano-Optics (pp. 227-264): Elsevier.

Wang, L., & Hong, G. (2000). A new preparation of zinc sulfide nanoparticles by solid-state method at low temperature. Materials Research Bulletin, 35(5), 695-701.

Wang, L., Zhang, T., Li, P., Huang, W., Tang, J., Wang, P., . . . Li, B. (2015). Use of synchrotron radiation-analytical techniques to reveal the chemical origin of silver-nanoparticle cytotoxicity. ACS nano, 9(6), 6532-6547.

Zhang, A., Tian, Y., Xiao, Y., Sun, Y., & Li, F. (2015). Large scale synthesis and formation mechanism of silver nanoparticles in solid-state reactions at ambient temperature. Materials Science and Engineering: B, 197, 5-9.

Downloads

Published

2022-10-17

How to Cite

Ahmad, A. A. (2022). Solid State Synthesis of Silver Nanoparticles Using Violuric Acid as a Novel Reducing Agent. Science Journal of University of Zakho, 10(4), 193–196. https://doi.org/10.25271/sjuoz.2022.10.4.1021

Issue

Section

Science Journal of University of Zakho