Link Prediction in Co-authorship Networks
DOI:
https://doi.org/10.25271/sjuoz.2022.10.4.1040Keywords:
Link Prediction, Co-authorship Networks, Topological-based measures, Content-based measuresAbstract
Besides social network analysis, the Link-Prediction (LP) problem has useful applications in information retrieval, bioinformatics, telecommunications, microbiology, and e-commerce as a forecast of future links in a given context to find what possible connections are based on a local and global statistical analysis of the given graph data. However, in Academic Social Networks (ASNs), the LP issue has recently attracted a lot of attention in academia and called for a variety of link prediction techniques to predict co-authorship among researchers and to examine the rich structural and associated data. As a result, this study investigates the problem of LP in ASNs to forecast the upcoming co-authorships among researchers. In a systematic approach, this review presents, analyses, and compares the primary taxonomies of topological-based, content-based, and hybrid-based approaches, which are used for computing similar scores for each pair of unconnected nodes. Then, this study ends with findings on challenges and open problems for the community to work on for further development of the LP problem of scholarly social networks.
References
Abdul, M., & Mastan, N. (2013). REVIEW A Survey on LDA Approach in Predicting Link Behavior in Social Networks. 2(3), 176–180.
Adamic, L. A., & Adar, E. (2003). Friends and neighbors on the Web. Social Networks, 25(3), 211–230. https://doi.org/10.1016/S0378-8733(03)00009-1
Aghabozorgi, F., & Khayyambashi, M. R. (2018). A new similarity measure for link prediction based on local structures in social networks. Physica A: Statistical Mechanics and Its Applications, 501, 12–23. https://doi.org/10.1016/j.physa.2018.02.010
Ahmed, N. M., Chen, L., Wang, Y., Li, B., Li, Y., & Liu, W. (2016). Sampling-based algorithm for link prediction in temporal networks. Information Sciences, 374, 1–14. https://doi.org/10.1016/j.ins.2016.09.029
Alghamdi, R., & Alfalqi, K. (2015). A Surv e y o f Topic Mode ling i n Text Mining. Nternational Journal of Advanced Computer Science and Applications, 6(1), 7.
Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe, E. D., Gutierrez, J. B., & Kochut, K. (2017). A Brief Survey of Text Mining: Classification, Clustering and Extraction Techniques. http://arxiv.org/abs/1707.02919
Antunes, J. B., Antunes, J. B., Filho, H. F. B. P., Maia, R. D., De Queiroz, R. B., Da Silva, C. M. R., Rodrigues, R. B., & De Almeida Barros, F. (2013). ConPredict: A method for link prediction in co-authored content-based networks. Proceedings of the IADIS International Conference WWW/Internet 2013, ICWI 2013, January, 11–18.
Assouli, N., Benahmed, K., & Gasbaoui, B. (2021). How to predict crime — informatics-inspired approach from link prediction. Physica A: Statistical Mechanics and Its Applications, 570. https://doi.org/10.1016/j.physa.2021.125795
Bahabadi, M. D., Golpayegani, A. H., & Esmaeili, L. (2014). A Novel C2C E-Commerce Recommender System Based on Link Prediction: Applying Social Network Analysis.
Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512. https://doi.org/10.1126/science.286.5439.509
Bartal, A., Sasson, E., & Ravid, G. (2009). Predicting links in social networks using text mining and SNA. Proceedings of the 2009 International Conference on Advances in Social Network Analysis and Mining, ASONAM 2009, 131–136. https://doi.org/10.1109/ASONAM.2009.12
Berlusconi, G., Calderoni, F., Parolini, N., Verani, M., & Piccardi, C. (2016). Link prediction in criminal networks: A tool for criminal intelligence analysis. PLoS ONE, 11(4). https://doi.org/10.1371/journal.pone.0154244
Bhattacharyya, P., Garg, A., & Wu, S. F. (2011). Analysis of user keyword similarity in online social networks. Social Network Analysis and Mining, 1(3), 143–158. https://doi.org/10.1007/s13278-010-0006-4
Blei, D. M., & Lafferty, J. D. (2007). A correlated topic model of Science. The Annals of Applied Statistics, 1(1), 17–35. https://doi.org/10.1214/07-aoas114
Börner, K., Maru, J. T., & Goldstone, R. L. (2004). The simultaneous evolution of author and paper networks. Proceedings of the National Academy of Sciences of the United States of America, 101(SUPPL. 1), 5266–5273. https://doi.org/10.1073/pnas.0307625100
Chuan, P. M., Son, L. H., Ali, M., Khang, T. D., Huong, L. T., & Dey, N. (2018). Link prediction in co-authorship networks based on hybrid content similarity metric. Applied Intelligence, 48(8), 2470–2486. https://doi.org/10.1007/s10489-017-1086-x
Coskun, M., & Koyuturk, M. (2016). Link Prediction in Large Networks by Comparing the Global View of Nodes in the Network. Proceedings - 15th IEEE International Conference on Data Mining Workshop, ICDMW 2015, 485–492. https://doi.org/10.1109/ICDMW.2015.195
Crichton, G., Guo, Y., Pyysalo, S., & Korhonen, A. (2018). Neural networks for link prediction in realistic biomedical graphs: A multi-dimensional evaluation of graph embedding-based approaches. BMC Bioinformatics, 19(1), 1–11. https://doi.org/10.1186/s12859-018-2163-9
Daud, N. N., Ab Hamid, S. H., Saadoon, M., Sahran, F., & Anuar, N. B. (2020). Applications of link prediction in social networks: A review. In Journal of Network and Computer Applications (Vol. 166). Academic Press. https://doi.org/10.1016/j.jnca.2020.102716
Davisu, J., & Goadrich, M. (2016). The relationship between precision-recall and ROC curves. 233–240.
De Tre, G., Hallez, A., & Bronselaer, A. (2014). Performance optimization of object comparison. International Journal of Intelligent Systems, 29(2), 495–524. https://doi.org/10.1002/int
Dong, L., Li, Y., Yin, H., Le, H., & Rui, M. (2013). The algorithm of link prediction on social network. Mathematical Problems in Engineering, 2013. https://doi.org/10.1155/2013/125123
Dong, Y., Ke, Q., Wang, B., & Wu, B. (2011). Link prediction based on local information. Proceedings - 2011 International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2011, 382–386. https://doi.org/10.1109/ASONAM.2011.43
Drummond, C., & Holte, R. C. (2006). Cost curves: An improved method for visualizing classifier performance. Machine Learning, 65(1), 95–130. https://doi.org/10.1007/s10994-006-8199-5
E Fonseca, B. de P. F., Sampaio, R. B., Fonseca, M. V. de A., & Zicker, F. (2016). Co-authorship network analysis in health research: Method and potential use. In Health Research Policy and Systems (Vol. 14, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s12961-016-0104-5
F Shahrabi Farahani, M Alavi, M Ghasem, Bt. (2020). Scientific Map of Papers Related to Data Mining in Civilica Database Based on Co-Word Analysis. International Journal of Web Research, 3(1), 11–18.
Fu, C., Zhao, M., Fan, L., Chen, X., Chen, J., Wu, Z., Xia, Y., & Xuan, Q. (2018). Link Weight Prediction Using Supervised Learning Methods and Its Application to Yelp Layered Network. IEEE Transactions on Knowledge and Data Engineering, 30(8), 1507–1518. https://doi.org/10.1109/TKDE.2018.2801854
Gao, F., Musial, K., Cooper, C., & Tsoka, S. (2015). Link prediction methods and their accuracy for different social networks and network metrics. Scientific Programming, 2015(i). https://doi.org/10.1155/2015/172879
Ghorbanzadeh, H., Sheikhahmadi, A., Jalili, M., & Sulaimany, S. (2021a). A hybrid method of link prediction in directed graphs. Expert Systems with Applications, 165(February 2020), 113896. https://doi.org/10.1016/j.eswa.2020.113896
Ghorbanzadeh, H., Sheikhahmadi, A., Jalili, M., & Sulaimany, S. (2021b). A hybrid method of link prediction in directed graphs. Expert Systems with Applications, 165. https://doi.org/10.1016/j.eswa.2020.113896
Haghani, S., & Keyvanpour, M. R. (2019). A systemic analysis of link prediction in social network. Artificial Intelligence Review, 52(3), 1961–1995. https://doi.org/10.1007/s10462-017-9590-2
Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1), 29–36. https://doi.org/10.1148/radiology.143.1.7063747
Hasan, M. Al, Chaoji, V., Salem, S., Zaki, M., & York, N. (n.d.). Link Prediction using Supervised Learning.
Hassan, D. (n.d.). SUPERVISED LINK PREDICTION IN CO-AUTHORSHIP NETWORKS BASED ON RESEARCH PERFORMANCE AND SIMILARITY OF RESEARCH INTERESTS AND AFFILIATIONS.
Hemkiran, S., & Sudha Sadasivam, G. (2020). A review of similarity measures and link prediction models in social networks. International Journal of Computing and Digital Systems, 9(2), 239–248. https://doi.org/10.12785/IJCDS/090209
Ibrahim, N. M. A., & Chen, L. (2015). Link prediction in dynamic social networks by integrating different types of information. Applied Intelligence, 42(4), 738–750. https://doi.org/10.1007/s10489-014-0631-0
Jaccard, P. (1982). Etude de la distribution florale dans une portion des Alpes et du Jura. Bulletin de La Murithienne, XXXVII, 81-92. https://doi.org/10.5169/seals-266450
Jaya Lakshmi, T., & Durga Bhavani, S. (2017). Link prediction in temporal heterogeneous networks. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10241 LNCS, 83–98. https://doi.org/10.1007/978-3-319-57463-9_6
Kong, X., Shi, Y., Yu, S., Liu, J., & Xia, F. (2019). Journal of Network and Computer Applications Academic social networks : Modeling , analysis , mining and applications. Journal of Network and Computer Applications, 132(December 2018), 86–103. https://doi.org/10.1016/j.jnca.2019.01.029
Kumar, A., Mishra, S., Singh, S. S., Singh, K., & Biswas, B. (2020). Link prediction in complex networks based on Significance of Higher-Order Path Index (SHOPI). Physica A: Statistical Mechanics and Its Applications, 545, 123790. https://doi.org/10.1016/j.physa.2019.123790
Kumari, A., Behera, R. K., Sahoo, K. S., Nayyar, A., Kumar Luhach, A., & Prakash Sahoo, S. (2020). Supervised link prediction using structured-based feature extraction in social network. Concurrency Computation , February, 1–16. https://doi.org/10.1002/cpe.5839
Kushwah, A. K. S., & Manjhvar, A. K. (2016). A review on link prediction in social network. International Journal of Grid and Distributed Computing, 9(2), 43–50. https://doi.org/10.14257/ijgdc.2016.9.2.05
Leicht, E. A., Holme, P., & Newman, M. E. J. (2006). Vertex similarity in networks. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 73(2), 1–10. https://doi.org/10.1103/PhysRevE.73.026120
Li, L., Wang, L., Luo, H., & Chen, X. (2021). Towards effective link prediction: A hybrid similarity model. Journal of Intelligent and Fuzzy Systems, 40(3), 4013–4026. https://doi.org/10.3233/JIFS-200344
Liben-Nowell, D., & Kleinberg, J. (2007). The link-prediction problem for social networks. Journal of the American Society for Information Science and Technology, 58(7), 1019–1031. https://doi.org/10.1002/asi.20591
Lichtenwalter, R., & Chawla, N. V. (2012). Link prediction: Fair and effective evaluation. Proceedings of the 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2012, 376–383. https://doi.org/10.1109/ASONAM.2012.68
Lichtenwalter, R. N., & Chawla, N. V. (2012). Vertex collocation profiles. 1019, 1019–1028. https://doi.org/10.1145/2187836.2187973
Lichtenwalter, R. N., Lussier, J. T., & Chawla, N. V. (2010). New perspectives and methods in link prediction. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 243–252. https://doi.org/10.1145/1835804.1835837
Linyuan, L. L., & Zhou, T. (2011). Link prediction in complex networks: A survey. Physica A: Statistical Mechanics and Its Applications, 390(6), 1150–1170. https://doi.org/10.1016/j.physa.2010.11.027
Liu, H., Kou, H., Yan, C., & Qi, L. (2019). Link prediction in paper citation network to construct paper correlation graph. Eurasip Journal on Wireless Communications and Networking, 2019(1). https://doi.org/10.1186/s13638-019-1561-7
Liu, J. H., Zhu, Y. X., & Zhou, T. (2016). Improving personalized link prediction by hybrid diffusion. Physica A: Statistical Mechanics and Its Applications, 447, 199–207. https://doi.org/10.1016/j.physa.2015.12.036
Liu, S., Ji, X., Liu, C., & Bai, Y. (2017). Extended resource allocation index for link prediction of complex network. Physica A: Statistical Mechanics and Its Applications, 479, 174–183. https://doi.org/10.1016/j.physa.2017.02.078
Liu, X., Zhang, J., & Guo, C. (2013). Full-text citation analysis: A new method to enhance scholarly networks. Journal of the American Society for Information Science and Technology, 64(9), 1852–1863. https://doi.org/10.1002/asi.22883
Ma, G., Yan, H., Qian, Y., Wang, L., Dang, C., & Zhao, Z. (2021). Path-based estimation for link prediction. International Journal of Machine Learning and Cybernetics, 12(9), 2443–2458. https://doi.org/10.1007/s13042-021-01312-w
Martin, T., Ball, B., Karrer, B., & Newman, M. E. J. (2013). Coauthorship and citation patterns in the Physical Review. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 88(1), 1–9. https://doi.org/10.1103/PhysRevE.88.012814
Martínez, V., Berzal, F., & Cubero, J.-C. (2017). A Survey of Link Prediction in Complex Networks. ACM Computing Surveys, 49(4), 1–33. https://doi.org/10.1145/3012704
Martínez, V., Berzal, F., & Cubero, J. C. (2016). A survey of link prediction in complex networks. ACM Computing Surveys, 49(4). https://doi.org/10.1145/3012704
Mishra, S., & Nandi, G. C. (2015). A novel hybrid approach for link prediction problem in social network. International Journal of Social Network Mining, 2(2), 115. https://doi.org/10.1504/ijsnm.2015.072281
Mohammad Al Hasan, Zaki, M. J. (2011). A SURVEY OF LINK PREDICTION IN SOCIAL NETWORKS. In Social Network Data Analytics. https://doi.org/10.1007/978-1-4419-8462-3
Muniz, C. P., Goldschmidt, R., & Choren, R. (2018). Combining contextual, temporal and topological information for unsupervised link prediction in social networks. Knowledge-Based Systems, 156, 129–137. https://doi.org/10.1016/j.knosys.2018.05.027
Mutlu, E. C., & Oghaz, T. (2020). Review on Graph Feature Learning and Feature Extraction Techniques for Link Prediction. Machine Learning and Knowledge Extraction, 2(4), 672–704. https://doi.org/10.3390/make2040036
Mutlu, E. C., Oghaz, T., Rajabi, A., & Garibay, I. (2020). Review on Learning and Extracting Graph Features for Link Prediction. Machine Learning and Knowledge Extraction, 2(4), 672–704. https://doi.org/10.3390/make2040036
Newman, M. E. J. (2001). Clustering and preferential attachment in growing networks. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 64(2), 4. https://doi.org/10.1103/PhysRevE.64.025102
Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167–256. https://doi.org/10.1137/S003614450342480
Newman, M. E. J. (2004). Coauthorship networks and patterns of scientific collaboration. Proceedings of the National Academy of Sciences of the United States of America, 101(SUPPL. 1), 5200–5205. https://doi.org/10.1073/pnas.0307545100
Papadimitriou, A., Symeonidis, P., & Manolopoulos, Y. (2012). Scalable link prediction in social networks based on local graph characteristics. Proceedings of the 9th International Conference on Information Technology, ITNG 2012, 738–743. https://doi.org/10.1109/ITNG.2012.145
PARIMI, R. (2010). LDA BASED APPROACH FOR PREDICTING FRIENDSHIP LINKS IN LIVE Copyright Rohit Parimi.
Parimi, R., & Caragea, D. (2011). Predicting friendship links in social networks using a topic modeling approach. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6635 LNAI(PART 2), 75–86. https://doi.org/10.1007/978-3-642-20847-8_7
Quercia, D., Askham, H., & Crowcroft, J. (2012). TweetLDA: Supervised topic classification and link prediction in Twitter. Proceedings of the 4th Annual ACM Web Science Conference, WebSci’12, volume, 247–250. https://doi.org/10.1145/2380718.2380750
Raut, P., Khandelwal, H., & Vyas, G. (2020). A Comparative Study of Classification Algorithms for Link Prediction. 2nd International Conference on Innovative Mechanisms for Industry Applications, ICIMIA 2020 - Conference Proceedings, Icimia, 479–483. https://doi.org/10.1109/ICIMIA48430.2020.9074840
Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., & Barabási, A.-L. (2002). Hierarchical Organization of Modularity in Metabolic Networks. Science, 297(5586), 1551–1555. https://doi.org/10.1126/science.1073374
Sachan, M., & Ichise, R. (2010). Using Semantic Information to Improve Link Prediction Results in Network Datasets. International Journal of Engineering and Technology, 2(4), 334–339. https://doi.org/10.7763/ijet.2010.v2.143
Samad, A., Qadir, M., & Nawaz, I. (2019). SAM: A Similarity Measure for Link Prediction in Social Network. MACS 2019 - 13th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics, Proceedings. https://doi.org/10.1109/MACS48846.2019.9024762
Samad, A., Qadir, M., Nawaz, I., Islam, M., & Aleem, M. (2020). A Comprehensive Survey of Link Prediction Techniques for Social Network. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 7(23), 163988. https://doi.org/10.4108/eai.13-7-2018.163988
Shao, C. X., Dou, H. L., Yang, R. X., & Wang, B. H. (2013). Zero nodes effect: Valid link prediction in sparse networks. International Journal of Modern Physics B, 27(12). https://doi.org/10.1142/S0217979213500525
Smith, C., & Sotala, K. (2011). Knowledge , networks and nations Global scientific collaboration in the 21st century. In Networks: Vol. 03/11 (Issue RS Policy document 03/11). http://royalsociety.org/uploadedFiles/Royal_Society_Content/Influencing_Policy/Reports/2011-03-28-Knowledge-networks-nations.pdf
Sonnenwald, D. H. (2007). Scientific collaboration. Annual Review of Information Science and Technology, 41, 643–681. https://doi.org/10.1002/aris.2007.1440410121
Srilatha, P., & Manjula, R. (n.d.). Similarity Index based Link Prediction Algorithms in Social Networks: A Survey.
Tabassum, S., Pereira, F. S. F., Fernandes, S., & Gama, J. (2018). Social network analysis: An overview. In Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery (Vol. 8, Issue 5). Wiley-Blackwell. https://doi.org/10.1002/widm.1256
Wallace, M. L., Larivière, V., & Gingras, Y. (2012). A small world of citations? the influence of collaboration networks on citation practices. PLoS ONE, 7(3), 1–10. https://doi.org/10.1371/journal.pone.0033339
Wang, H., & Le, Z. (2020). Seven-layer model in complex networks link prediction: A survey. Sensors (Switzerland), 20(22), 1–33. https://doi.org/10.3390/s20226560
Wang, P., Xu, B. W., Wu, Y. R., & Zhou, X. Y. (2015). Link prediction in social networks: the state-of-the-art. In Science China Information Sciences (Vol. 58, Issue 1, pp. 1–38). Science in China Press. https://doi.org/10.1007/s11432-014-5237-y
Wu, H., Wang, S., & Fang, H. (2022). LP-UIT: A Multimodal Framework for Link Prediction in Social Networks. http://arxiv.org/abs/2201.10108
Yuliansyah, H., Othman, Z. A., & Bakar, A. A. (2020). Taxonomy of link prediction for social network analysis: A review. IEEE Access, 8(1), 183470–183487. https://doi.org/10.1109/ACCESS.2020.3029122
Zhang, Jianpei and Zhang, Yuan and Yang, Hailu and Yang, J. (2014). A link prediction algorithm based on socialized semi-local information. Journal of Computational Information Systems, 10(10), 4459--4466. https://doi.org/10.12733/jcis10454
Zhang, Q., Tong, T., & Wu, S. (2020). Hybrid link prediction via model averaging. Physica A: Statistical Mechanics and Its Applications, 556. https://doi.org/10.1016/j.physa.2020.124772
Zhang, W., & Wu, B. (2014). Accurate and fast link prediction in complex networks. 2014 10th International Conference on Natural Computation, ICNC 2014, 653–657. https://doi.org/10.1109/ICNC.2014.6975913
Zhang, Y., Li, F., Xu, B., Gao, K., & Yu, G. (2012). Using non-topological node attributes to improve results of link prediction in social networks. Proceedings - 9th Web Information Systems and Applications Conference, WISA 2012, 141–146. https://doi.org/10.1109/WISA.2012.21
Zhao, H., Du, L., & Buntine, W. (2017). Leveraging Node Attributes for Incomplete Relational Data. https://github.com/
Zhou, K., Michalak, T. P., Waniek, M., Rahwan, T., & Vorobeychik, Y. (2019). Attacking similarity-based link prediction in social networks. Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, 1, 305–313.
Zhou, T., Lü, L., & Zhang, Y.-C. (2009). Predicting missing links via local information. The European Physical Journal B, 71(4), 623–630. https://doi.org/10.1140/epjb/e2009-00335-8
Zhu, J., Xie, Q., & Chin, E. J. (2012). A hybrid time-series link prediction framework for large social network. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7447 LNCS(PART 2), 345–359. https://doi.org/10.1007/978-3-642-32597-7_30
Abdul, M., & Mastan, N. (2013). REVIEW A Survey on LDA Approach in Predicting Link Behavior in Social Networks. 2(3), 176–180.
Adamic, L. A., & Adar, E. (2003). Friends and neighbors on the Web. Social Networks, 25(3), 211–230. https://doi.org/10.1016/S0378-8733(03)00009-1
Aghabozorgi, F., & Khayyambashi, M. R. (2018). A new similarity measure for link prediction based on local structures in social networks. Physica A: Statistical Mechanics and Its Applications, 501, 12–23. https://doi.org/10.1016/j.physa.2018.02.010
Ahmed, N. M., Chen, L., Wang, Y., Li, B., Li, Y., & Liu, W. (2016). Sampling-based algorithm for link prediction in temporal networks. Information Sciences, 374, 1–14. https://doi.org/10.1016/j.ins.2016.09.029
Alghamdi, R., & Alfalqi, K. (2015). A Surv e y o f Topic Mode ling i n Text Mining. Nternational Journal of Advanced Computer Science and Applications, 6(1), 7.
Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe, E. D., Gutierrez, J. B., & Kochut, K. (2017). A Brief Survey of Text Mining: Classification, Clustering and Extraction Techniques. http://arxiv.org/abs/1707.02919
Antunes, J. B., Antunes, J. B., Filho, H. F. B. P., Maia, R. D., De Queiroz, R. B., Da Silva, C. M. R., Rodrigues, R. B., & De Almeida Barros, F. (2013). ConPredict: A method for link prediction in co-authored content-based networks. Proceedings of the IADIS International Conference WWW/Internet 2013, ICWI 2013, January, 11–18.
Assouli, N., Benahmed, K., & Gasbaoui, B. (2021). How to predict crime — informatics-inspired approach from link prediction. Physica A: Statistical Mechanics and Its Applications, 570. https://doi.org/10.1016/j.physa.2021.125795
Bahabadi, M. D., Golpayegani, A. H., & Esmaeili, L. (2014). A Novel C2C E-Commerce Recommender System Based on Link Prediction: Applying Social Network Analysis.
Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512. https://doi.org/10.1126/science.286.5439.509
Bartal, A., Sasson, E., & Ravid, G. (2009). Predicting links in social networks using text mining and SNA. Proceedings of the 2009 International Conference on Advances in Social Network Analysis and Mining, ASONAM 2009, 131–136. https://doi.org/10.1109/ASONAM.2009.12
Berlusconi, G., Calderoni, F., Parolini, N., Verani, M., & Piccardi, C. (2016). Link prediction in criminal networks: A tool for criminal intelligence analysis. PLoS ONE, 11(4). https://doi.org/10.1371/journal.pone.0154244
Bhattacharyya, P., Garg, A., & Wu, S. F. (2011). Analysis of user keyword similarity in online social networks. Social Network Analysis and Mining, 1(3), 143–158. https://doi.org/10.1007/s13278-010-0006-4
Blei, D. M., & Lafferty, J. D. (2007). A correlated topic model of Science. The Annals of Applied Statistics, 1(1), 17–35. https://doi.org/10.1214/07-aoas114
Börner, K., Maru, J. T., & Goldstone, R. L. (2004). The simultaneous evolution of author and paper networks. Proceedings of the National Academy of Sciences of the United States of America, 101(SUPPL. 1), 5266–5273. https://doi.org/10.1073/pnas.0307625100
Chuan, P. M., Son, L. H., Ali, M., Khang, T. D., Huong, L. T., & Dey, N. (2018). Link prediction in co-authorship networks based on hybrid content similarity metric. Applied Intelligence, 48(8), 2470–2486. https://doi.org/10.1007/s10489-017-1086-x
Coskun, M., & Koyuturk, M. (2016). Link Prediction in Large Networks by Comparing the Global View of Nodes in the Network. Proceedings - 15th IEEE International Conference on Data Mining Workshop, ICDMW 2015, 485–492. https://doi.org/10.1109/ICDMW.2015.195
Crichton, G., Guo, Y., Pyysalo, S., & Korhonen, A. (2018). Neural networks for link prediction in realistic biomedical graphs: A multi-dimensional evaluation of graph embedding-based approaches. BMC Bioinformatics, 19(1), 1–11. https://doi.org/10.1186/s12859-018-2163-9
Daud, N. N., Ab Hamid, S. H., Saadoon, M., Sahran, F., & Anuar, N. B. (2020). Applications of link prediction in social networks: A review. In Journal of Network and Computer Applications (Vol. 166). Academic Press. https://doi.org/10.1016/j.jnca.2020.102716
Davisu, J., & Goadrich, M. (2016). The relationship between precision-recall and ROC curves. 233–240.
De Tre, G., Hallez, A., & Bronselaer, A. (2014). Performance optimization of object comparison. International Journal of Intelligent Systems, 29(2), 495–524. https://doi.org/10.1002/int
Dong, L., Li, Y., Yin, H., Le, H., & Rui, M. (2013). The algorithm of link prediction on social network. Mathematical Problems in Engineering, 2013. https://doi.org/10.1155/2013/125123
Dong, Y., Ke, Q., Wang, B., & Wu, B. (2011). Link prediction based on local information. Proceedings - 2011 International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2011, 382–386. https://doi.org/10.1109/ASONAM.2011.43
Drummond, C., & Holte, R. C. (2006). Cost curves: An improved method for visualizing classifier performance. Machine Learning, 65(1), 95–130. https://doi.org/10.1007/s10994-006-8199-5
E Fonseca, B. de P. F., Sampaio, R. B., Fonseca, M. V. de A., & Zicker, F. (2016). Co-authorship network analysis in health research: Method and potential use. In Health Research Policy and Systems (Vol. 14, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s12961-016-0104-5
F Shahrabi Farahani, M Alavi, M Ghasem, Bt. (2020). Scientific Map of Papers Related to Data Mining in Civilica Database Based on Co-Word Analysis. International Journal of Web Research, 3(1), 11–18.
Fu, C., Zhao, M., Fan, L., Chen, X., Chen, J., Wu, Z., Xia, Y., & Xuan, Q. (2018). Link Weight Prediction Using Supervised Learning Methods and Its Application to Yelp Layered Network. IEEE Transactions on Knowledge and Data Engineering, 30(8), 1507–1518. https://doi.org/10.1109/TKDE.2018.2801854
Gao, F., Musial, K., Cooper, C., & Tsoka, S. (2015). Link prediction methods and their accuracy for different social networks and network metrics. Scientific Programming, 2015(i). https://doi.org/10.1155/2015/172879
Ghorbanzadeh, H., Sheikhahmadi, A., Jalili, M., & Sulaimany, S. (2021a). A hybrid method of link prediction in directed graphs. Expert Systems with Applications, 165(February 2020), 113896. https://doi.org/10.1016/j.eswa.2020.113896
Ghorbanzadeh, H., Sheikhahmadi, A., Jalili, M., & Sulaimany, S. (2021b). A hybrid method of link prediction in directed graphs. Expert Systems with Applications, 165. https://doi.org/10.1016/j.eswa.2020.113896
Haghani, S., & Keyvanpour, M. R. (2019). A systemic analysis of link prediction in social network. Artificial Intelligence Review, 52(3), 1961–1995. https://doi.org/10.1007/s10462-017-9590-2
Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1), 29–36. https://doi.org/10.1148/radiology.143.1.7063747
Hasan, M. Al, Chaoji, V., Salem, S., Zaki, M., & York, N. (n.d.). Link Prediction using Supervised Learning.
Hassan, D. (n.d.). SUPERVISED LINK PREDICTION IN CO-AUTHORSHIP NETWORKS BASED ON RESEARCH PERFORMANCE AND SIMILARITY OF RESEARCH INTERESTS AND AFFILIATIONS.
Hemkiran, S., & Sudha Sadasivam, G. (2020). A review of similarity measures and link prediction models in social networks. International Journal of Computing and Digital Systems, 9(2), 239–248. https://doi.org/10.12785/IJCDS/090209
Ibrahim, N. M. A., & Chen, L. (2015). Link prediction in dynamic social networks by integrating different types of information. Applied Intelligence, 42(4), 738–750. https://doi.org/10.1007/s10489-014-0631-0
Jaccard, P. (1982). Etude de la distribution florale dans une portion des Alpes et du Jura. Bulletin de La Murithienne, XXXVII, 81-92. https://doi.org/10.5169/seals-266450
Jaya Lakshmi, T., & Durga Bhavani, S. (2017). Link prediction in temporal heterogeneous networks. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10241 LNCS, 83–98. https://doi.org/10.1007/978-3-319-57463-9_6
Kong, X., Shi, Y., Yu, S., Liu, J., & Xia, F. (2019). Journal of Network and Computer Applications Academic social networks : Modeling , analysis , mining and applications. Journal of Network and Computer Applications, 132(December 2018), 86–103. https://doi.org/10.1016/j.jnca.2019.01.029
Kumar, A., Mishra, S., Singh, S. S., Singh, K., & Biswas, B. (2020). Link prediction in complex networks based on Significance of Higher-Order Path Index (SHOPI). Physica A: Statistical Mechanics and Its Applications, 545, 123790. https://doi.org/10.1016/j.physa.2019.123790
Kumari, A., Behera, R. K., Sahoo, K. S., Nayyar, A., Kumar Luhach, A., & Prakash Sahoo, S. (2020). Supervised link prediction using structured-based feature extraction in social network. Concurrency Computation , February, 1–16. https://doi.org/10.1002/cpe.5839
Kushwah, A. K. S., & Manjhvar, A. K. (2016). A review on link prediction in social network. International Journal of Grid and Distributed Computing, 9(2), 43–50. https://doi.org/10.14257/ijgdc.2016.9.2.05
Leicht, E. A., Holme, P., & Newman, M. E. J. (2006). Vertex similarity in networks. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 73(2), 1–10. https://doi.org/10.1103/PhysRevE.73.026120
Li, L., Wang, L., Luo, H., & Chen, X. (2021). Towards effective link prediction: A hybrid similarity model. Journal of Intelligent and Fuzzy Systems, 40(3), 4013–4026. https://doi.org/10.3233/JIFS-200344
Liben-Nowell, D., & Kleinberg, J. (2007). The link-prediction problem for social networks. Journal of the American Society for Information Science and Technology, 58(7), 1019–1031. https://doi.org/10.1002/asi.20591
Lichtenwalter, R., & Chawla, N. V. (2012). Link prediction: Fair and effective evaluation. Proceedings of the 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2012, 376–383. https://doi.org/10.1109/ASONAM.2012.68
Lichtenwalter, R. N., & Chawla, N. V. (2012). Vertex collocation profiles. 1019, 1019–1028. https://doi.org/10.1145/2187836.2187973
Lichtenwalter, R. N., Lussier, J. T., & Chawla, N. V. (2010). New perspectives and methods in link prediction. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 243–252. https://doi.org/10.1145/1835804.1835837
Linyuan, L. L., & Zhou, T. (2011). Link prediction in complex networks: A survey. Physica A: Statistical Mechanics and Its Applications, 390(6), 1150–1170. https://doi.org/10.1016/j.physa.2010.11.027
Liu, H., Kou, H., Yan, C., & Qi, L. (2019). Link prediction in paper citation network to construct paper correlation graph. Eurasip Journal on Wireless Communications and Networking, 2019(1). https://doi.org/10.1186/s13638-019-1561-7
Liu, J. H., Zhu, Y. X., & Zhou, T. (2016). Improving personalized link prediction by hybrid diffusion. Physica A: Statistical Mechanics and Its Applications, 447, 199–207. https://doi.org/10.1016/j.physa.2015.12.036
Liu, S., Ji, X., Liu, C., & Bai, Y. (2017). Extended resource allocation index for link prediction of complex network. Physica A: Statistical Mechanics and Its Applications, 479, 174–183. https://doi.org/10.1016/j.physa.2017.02.078
Liu, X., Zhang, J., & Guo, C. (2013). Full-text citation analysis: A new method to enhance scholarly networks. Journal of the American Society for Information Science and Technology, 64(9), 1852–1863. https://doi.org/10.1002/asi.22883
Ma, G., Yan, H., Qian, Y., Wang, L., Dang, C., & Zhao, Z. (2021). Path-based estimation for link prediction. International Journal of Machine Learning and Cybernetics, 12(9), 2443–2458. https://doi.org/10.1007/s13042-021-01312-w
Martin, T., Ball, B., Karrer, B., & Newman, M. E. J. (2013). Coauthorship and citation patterns in the Physical Review. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 88(1), 1–9. https://doi.org/10.1103/PhysRevE.88.012814
Martínez, V., Berzal, F., & Cubero, J.-C. (2017). A Survey of Link Prediction in Complex Networks. ACM Computing Surveys, 49(4), 1–33. https://doi.org/10.1145/3012704
Martínez, V., Berzal, F., & Cubero, J. C. (2016). A survey of link prediction in complex networks. ACM Computing Surveys, 49(4). https://doi.org/10.1145/3012704
Mishra, S., & Nandi, G. C. (2015). A novel hybrid approach for link prediction problem in social network. International Journal of Social Network Mining, 2(2), 115. https://doi.org/10.1504/ijsnm.2015.072281
Mohammad Al Hasan, Zaki, M. J. (2011). A SURVEY OF LINK PREDICTION IN SOCIAL NETWORKS. In Social Network Data Analytics. https://doi.org/10.1007/978-1-4419-8462-3
Muniz, C. P., Goldschmidt, R., & Choren, R. (2018). Combining contextual, temporal and topological information for unsupervised link prediction in social networks. Knowledge-Based Systems, 156, 129–137. https://doi.org/10.1016/j.knosys.2018.05.027
Mutlu, E. C., & Oghaz, T. (2020). Review on Graph Feature Learning and Feature Extraction Techniques for Link Prediction. Machine Learning and Knowledge Extraction, 2(4), 672–704. https://doi.org/10.3390/make2040036
Mutlu, E. C., Oghaz, T., Rajabi, A., & Garibay, I. (2020). Review on Learning and Extracting Graph Features for Link Prediction. Machine Learning and Knowledge Extraction, 2(4), 672–704. https://doi.org/10.3390/make2040036
Newman, M. E. J. (2001). Clustering and preferential attachment in growing networks. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 64(2), 4. https://doi.org/10.1103/PhysRevE.64.025102
Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167–256. https://doi.org/10.1137/S003614450342480
Newman, M. E. J. (2004). Coauthorship networks and patterns of scientific collaboration. Proceedings of the National Academy of Sciences of the United States of America, 101(SUPPL. 1), 5200–5205. https://doi.org/10.1073/pnas.0307545100
Papadimitriou, A., Symeonidis, P., & Manolopoulos, Y. (2012). Scalable link prediction in social networks based on local graph characteristics. Proceedings of the 9th International Conference on Information Technology, ITNG 2012, 738–743. https://doi.org/10.1109/ITNG.2012.145
PARIMI, R. (2010). LDA BASED APPROACH FOR PREDICTING FRIENDSHIP LINKS IN LIVE Copyright Rohit Parimi.
Parimi, R., & Caragea, D. (2011). Predicting friendship links in social networks using a topic modeling approach. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6635 LNAI(PART 2), 75–86. https://doi.org/10.1007/978-3-642-20847-8_7
Quercia, D., Askham, H., & Crowcroft, J. (2012). TweetLDA: Supervised topic classification and link prediction in Twitter. Proceedings of the 4th Annual ACM Web Science Conference, WebSci’12, volume, 247–250. https://doi.org/10.1145/2380718.2380750
Raut, P., Khandelwal, H., & Vyas, G. (2020). A Comparative Study of Classification Algorithms for Link Prediction. 2nd International Conference on Innovative Mechanisms for Industry Applications, ICIMIA 2020 - Conference Proceedings, Icimia, 479–483. https://doi.org/10.1109/ICIMIA48430.2020.9074840
Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., & Barabási, A.-L. (2002). Hierarchical Organization of Modularity in Metabolic Networks. Science, 297(5586), 1551–1555. https://doi.org/10.1126/science.1073374
Sachan, M., & Ichise, R. (2010). Using Semantic Information to Improve Link Prediction Results in Network Datasets. International Journal of Engineering and Technology, 2(4), 334–339. https://doi.org/10.7763/ijet.2010.v2.143
Samad, A., Qadir, M., & Nawaz, I. (2019). SAM: A Similarity Measure for Link Prediction in Social Network. MACS 2019 - 13th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics, Proceedings. https://doi.org/10.1109/MACS48846.2019.9024762
Samad, A., Qadir, M., Nawaz, I., Islam, M., & Aleem, M. (2020). A Comprehensive Survey of Link Prediction Techniques for Social Network. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 7(23), 163988. https://doi.org/10.4108/eai.13-7-2018.163988
Shao, C. X., Dou, H. L., Yang, R. X., & Wang, B. H. (2013). Zero nodes effect: Valid link prediction in sparse networks. International Journal of Modern Physics B, 27(12). https://doi.org/10.1142/S0217979213500525
Smith, C., & Sotala, K. (2011). Knowledge , networks and nations Global scientific collaboration in the 21st century. In Networks: Vol. 03/11 (Issue RS Policy document 03/11). http://royalsociety.org/uploadedFiles/Royal_Society_Content/Influencing_Policy/Reports/2011-03-28-Knowledge-networks-nations.pdf
Sonnenwald, D. H. (2007). Scientific collaboration. Annual Review of Information Science and Technology, 41, 643–681. https://doi.org/10.1002/aris.2007.1440410121
Srilatha, P., & Manjula, R. (n.d.). Similarity Index based Link Prediction Algorithms in Social Networks: A Survey.
Tabassum, S., Pereira, F. S. F., Fernandes, S., & Gama, J. (2018). Social network analysis: An overview. In Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery (Vol. 8, Issue 5). Wiley-Blackwell. https://doi.org/10.1002/widm.1256
Wallace, M. L., Larivière, V., & Gingras, Y. (2012). A small world of citations? the influence of collaboration networks on citation practices. PLoS ONE, 7(3), 1–10. https://doi.org/10.1371/journal.pone.0033339
Wang, H., & Le, Z. (2020). Seven-layer model in complex networks link prediction: A survey. Sensors (Switzerland), 20(22), 1–33. https://doi.org/10.3390/s20226560
Wang, P., Xu, B. W., Wu, Y. R., & Zhou, X. Y. (2015). Link prediction in social networks: the state-of-the-art. In Science China Information Sciences (Vol. 58, Issue 1, pp. 1–38). Science in China Press. https://doi.org/10.1007/s11432-014-5237-y
Wu, H., Wang, S., & Fang, H. (2022). LP-UIT: A Multimodal Framework for Link Prediction in Social Networks. http://arxiv.org/abs/2201.10108
Yuliansyah, H., Othman, Z. A., & Bakar, A. A. (2020). Taxonomy of link prediction for social network analysis: A review. IEEE Access, 8(1), 183470–183487. https://doi.org/10.1109/ACCESS.2020.3029122
Zhang, Jianpei and Zhang, Yuan and Yang, Hailu and Yang, J. (2014). A link prediction algorithm based on socialized semi-local information. Journal of Computational Information Systems, 10(10), 4459--4466. https://doi.org/10.12733/jcis10454
Zhang, Q., Tong, T., & Wu, S. (2020). Hybrid link prediction via model averaging. Physica A: Statistical Mechanics and Its Applications, 556. https://doi.org/10.1016/j.physa.2020.124772
Zhang, W., & Wu, B. (2014). Accurate and fast link prediction in complex networks. 2014 10th International Conference on Natural Computation, ICNC 2014, 653–657. https://doi.org/10.1109/ICNC.2014.6975913
Zhang, Y., Li, F., Xu, B., Gao, K., & Yu, G. (2012). Using non-topological node attributes to improve results of link prediction in social networks. Proceedings - 9th Web Information Systems and Applications Conference, WISA 2012, 141–146. https://doi.org/10.1109/WISA.2012.21
Zhao, H., Du, L., & Buntine, W. (2017). Leveraging Node Attributes for Incomplete Relational Data. https://github.com/
Zhou, K., Michalak, T. P., Waniek, M., Rahwan, T., & Vorobeychik, Y. (2019). Attacking similarity-based link prediction in social networks. Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, 1, 305–313.
Zhou, T., Lü, L., & Zhang, Y.-C. (2009). Predicting missing links via local information. The European Physical Journal B, 71(4), 623–630. https://doi.org/10.1140/epjb/e2009-00335-8
Zhu, J., Xie, Q., & Chin, E. J. (2012). A hybrid time-series link prediction framework for large social network. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7447 LNCS(PART 2), 345–359. https://doi.org/10.1007/978-3-642-32597-7_30.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Hajar Ali Hasin, Diman Hassan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License [CC BY-NC-SA 4.0] that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work, with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online.