PREPARATION, CHARACTERIZATION AND RELEASING -SWELLING KINETICS OF MYRRH BASED HYDROGEL

Authors

  • Mohammad I. Hamodi Faculty of Science, University of Zakho, Zakho, Kurdistan Region, Iraq
  • Mohammed K. Younis Faculty of Science, University of Zakho, Zakho, Kurdistan Region, Iraq

DOI:

https://doi.org/10.25271/sjuoz.2023.11.2.1147

Keywords:

hydrogel, drug delivery, Myrrh, swelling, releasing kinetics, methylene blue

Abstract

In this work, Myrrh gum was used with sodium alginate (SA) to create novel Myrrh-Alginate beads composite. These beads were produced utilizing the ionotropic gelation technique. Methylene blue (MB) was employed as a drug model to evaluate the kinetics of drug release and the capacity of the synthesized beads to function as a drug delivery system. The molecular interaction between sodium alginate and myrrh was confirmed by FTIR spectroscopy. The physical characteristics of the Myrrh-Alginate beads, including drug content, particle size, thermal properties, equilibrium water content (EWC), swelling behavior, and equilibrium swelling ratio (ESR), were studied to establish the hydrogel's response type, as well as the releasing kinetics at 37°C and in Phosphate buffer solution (PBS) at pH = 6.8 and 10. All beads (loaded and unloaded) were analyzed by Differential scanning calorimetry, Scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). The drug content percentages of the Myrrh-Alginate beads increased with a moderate fraction (5% ) of Myrrh but dropped with a higher Myrrh percentage. The Myrrh-Alginate beads absorbed more water and swelled more than the pure calcium alginate beads (S2) in pH 6.8 and 10 of (PBS). In a pH 6.8 of (PBS), the Myrrh-Alginate beads demonstrated a controlled and regulated style of releasing and demonstrated a high match with the Korsmeyer-Peppas model as they had the maximum values of the correlation factor (R2) in this model.

References

Draget, K. I., PHilips, G. O., & Williams, P. A. (2000). Handbook of hydrocolloids.‏

Grant, G. T. (1973). Biological interactions between polysaccharides and divalent cations: the egg-box model. Febs Lett., 32, 195-198.‏

Sugawara, S., Imai, T., & Otagiri, M. (1994). The controlled release of prednisolone using alginate gel. PHarmaceutical Research, 11(2), 272-277.‏

Hwang, S. J., Rhee, G. J., Lee, K. M., Oh, K. H., & Kim, C. K. (1995). Release characteristics of ibuprofen from excipient-loaded alginate gel beads. International journal of pHarmaceutics, 116(1), 125-128.‏

Fernandez-Hervas, M. J., Holgado, M. A., Fini, A., & Fell, J. T. (1998). In vitro evaluation of alginate beads of a diclofenac salt. International Journal of PHarmaceutics, 163(1-2), 23-34.‏

Kikuchi, A., Kawabuchi, M., Sugihara, M., Sakurai, Y., & Okano, T. (1997). Pulsed dextran release from calcium-alginate gel beads. Journal of Controlled Release, 47(1), 21-29.‏

Kim, M. S., Park, G. D., Jun, S. W., Lee, S., Park, J. S., & Hwang, S. J. (2005). Controlled release tamsulosin hydrochloride from alginate beads with waxy materials. Journal of PHarmacy and Pharmacology, 57(12), 1521-1528.‏

Pongjanyakul, T., Sungthongjeen, S., & Puttipipatkhachorn, S. (2006). Modulation of drug release from glyceryl palmitostearate–alginate beads via heat treatment. International journal of pharmaceutics, 319(1-2), 20-28.‏

Puttipipatkhachorn, S., Pongjanyakul, T., & Priprem, A. (2005). Molecular interaction in alginate beads reinforced with sodium starch glycolate or magnesium aluminum silicate, and their pHysical characteristics. International journal of pHarmaceutics, 293(1-2), 51-62.

‏ Murata, Y., Tsumoto, K., Kofuji, K., & Kawashima, S. (2003). Effects of natural polysaccharide addition on drug release from calcium-induced alginate gel beads. Chemical and pHarmaceutical bulletin, 51(2), 218-220.‏

Murata, Y., Miyamoto, E., & Kawashima, S. (1996). Additive effect of chondroitin sulfate and chitosan on drug release from calcium-induced alginate gel beads. Journal of controlled release, 38(2-3), 101-108.‏

Ammar, C., El Ghoul, Y., & El Achari, A. (2015). Finishing of polypropylene fibers with cyclodextrins and polyacrylic acid as a crosslinking agent. Textile Research Journal, 85(2), 171-179.‏

Hanuš, L. O., Řezanka, T., Dembitsky, V. M., & Moussaieff, A. (2005). Myrrh-commipHora chemistry. Biomedical papers, 149(1), 3-28.‏

Greve, H. L., Kaiser, M., & Schmidt, T. J. (2020). Investigation of antiplasmodial effects of terpenoid compounds isolated from Myrrh. Planta medica, 86(09), 643-654.‏

Hough, L., Jones, J. K. N., & Wadman, W. H. (1952). 144. Some observations on the constitution of gum Myrrh. Journal of the Chemical Society (Resumed), 796-800.‏

Langhorst, J., Varnhagen, I., Schneider, S. B., Albrecht, U., Rueffer, A., Stange, R., ... & Dobos, G. J. (2013). Randomised clinical trial: a herbal preparation of Myrrh, chamomile and coffee charcoal compared with mesalazine in maintaining remission in ulcerative colitis–a double‐blind, double‐dummy study. Alimentary pHarmacology & therapeutics, 38(5), 490-500.‏

Shen, T., Li, G. H., Wang, X. N., & Lou, H. X. (2012). The genus CommipHora: a review of its traditional uses, pHytochemistry and pHarmacology. Journal of ethnopHarmacology, 142(2), 319-330.‏

Ahamad, S. R., Al-Ghadeer, A. R., Ali, R., Qamar, W., & Aljarboa, S. (2017). Analysis of inorganic and organic constituents of Myrrh resin by GC–MS and ICP-MS: An empHasis on medicinal assets. Saudi PHarmaceutical Journal, 25(5), 788-794.‏

Agrawal, A., & Purwar, R. (2018). Swelling and drug release kinetics of composite wound dressing. Indian Journal of Fibre & Textile Research (IJFTR), 43(1), 104-111.‏

Adnadjevic, B., & Jovanovic, J. (2009). A comparative kinetics study of isothermal drug release from poly (acrylic acid) and poly (acrylic-co-methacrylic acid) hydrogels. Colloids and Surfaces B: Biointerfaces, 69(1), 31-42.‏

Martinez-Ruvalcaba, A., Sánchez-Díaz, J. C., Becerra, F., Cruz-Barba, L. E., & Gonzalez-Alvarez, A. (2009). Swelling characterization and drug delivery kinetics of polyacrylamide-co-itaconic acid/chitosan hydrogels. Express Polym Lett, 3(1), 25-32.‏

Thakur, A., Wanchoo, R. K., & Singh, P. (2011). Hydrogels of poly (acrylamide-co-acrylic acid): in-vitro study on release of gentamicin sulfate. Chemical and Biochemical Engineering Quarterly, 25(4), 471-482.‏

Katime, I., Novoa, R., de Apodaca, E. D., Mendizábal, E., & Puig, J. (1999). TheopHylline release from poly (acrylic acid-co-acrylamide) hydrogels. Polymer Testing, 18(7), 559-566.

‏ Serra, L., Doménech, J., & Peppas, N. A. (2006). Drug transport mechanisms and release kinetics from molecularly designed poly (acrylic acid-g-ethylene glycol) hydrogels. Biomaterials, 27(31), 5440-5451.‏

Jovanovic, J., Adnadjevic, B., & Kostic, A. (2010). The effects of the pH value of the swelling medium on the kinetics of the swelling of a poly (acrylic acid) hydrogel. Journal of applied polymer science, 116(2), 1036-1043.‏

Manuja, A., Kumar, S., Dilbaghi, N., Bhanjana, G., Chopra, M., Kaur, H., ... & Yadav, S. C. (2014). Quinapyramine sulfate-loaded sodium alginate nanoparticles show enhanced trypanocidal activity. Nanomedicine, 9(11), 1625-1634.‏

Yeom, C. K., & Lee, K. H. (1998). Characterization of sodium alginate membrane crosslinked with glutaraldehyde in pervaporation separation. Journal of applied polymer science, 67(2), 209-219.‏

Cardenas‐Jiron, G., Leal, D., Matsuhiro, B., & Osorio‐Roman, I. O. (2011). Vibrational spectroscopy and density functional theory calculations of poly‐D‐mannuronate and heteropolymeric fractions from sodium alginate. Journal of Raman Spectroscopy, 42(4), 870-878.

Chandıa, N. P., Matsuhiro, B., & Vásquez, A. E. (2001). Alginic acids in Lessonia trabeculata: characterization by formic acid hydrolysis and FT-IR spectroscopy. Carbohydrate Polymers, 46(1), 81-87.‏

Daemi, H., & Barikani, M. (2012). Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Scientia Iranica, 19(6), 2023-2028.‏

Benhouria, A., Islam, M. A., Zaghouane-Boudiaf, H., Boutahala, M., & Hameed, B. H. (2015). Calcium alginate–bentonite–activated carbon composite beads as highly effective adsorbent for MB. Chemical engineering journal, 270, 621-630.‏

Li, Z., Yao, Y., Wei, G., Jiang, W., Wang, Y., & Zhang, L. (2016). Adsorption and heat‐energy‐aid desorption of cationic dye on a new thermo‐sensitive adsorbent: Methyl cellulose/calcium alginate beads. Polymer Engineering & Science, 56(12), 1382-1389.‏

Li, M., Han, G., & Yu, J. (2010). Microstructure and mechanical properties of apocynum venetum fibers extracted by alkali-assisted ultrasound with different frequencies. Fibers and Polymers, 11(1), 48-53.‏

Ricciardi, R., Auriemma, F., De Rosa, C., & Lauprêtre, F. (2004). X-ray diffraction analysis of poly (vinyl alcohol) hydrogels, obtained by freezing and thawing techniques. Macromolecules, 37(5), 1921-1927.‏

Yang, G., Zhang, L., Peng, T., & Zhong, W. (2000). Effects of Ca2+ bridge cross-linking on structure and pervaporation of cellulose/alginate blend membranes. Journal of Membrane Science, 175(1), 53-60.‏

Gaur, S., & Reed, T. B. (2020). Thermal data for natural and synthetic fuels. CRC press.‏

Kato, K. (1953). THERMAL DECOMPOSITION OF ALGINS: AS DETERMINED BY THERMO-BALANCE METHOD. Faculty of Fesheries Hokkaido University, 4(1), 40-42.‏

Farmoudeh, A., Akbari, J., Saeedi, M., Ghasemi, M., Asemi, N., & Nokhodchi, A. (2020). Methylene blue-loaded niosome: preparation, pHysicochemical characterization, and in vivo wound healing assessment. Drug delivery and translational research, 10(5), 1428-1441.‏

Rager, T., Geoffroy, A., Hilfiker, R., & Storey, J. M. (2012). The crystalline state of methylene blue: a zoo of hydrates. PHysical Chemistry Chemical PHysics, 14(22), 8074-8082.

‏ Pasparakis, G., & Bouropoulos, N. (2006). Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate–chitosan beads. International journal of pHarmaceutics, 323(1-2), 34-42.‏

Dashevsky, A. (1998). Protein loss by the microencapsulation of an enzyme (lactase) in alginate beads. International journal of PHarmaceutics, 161(1), 1-5.‏

Barati, A. (2010). Swelling kinetics modeling of cationicmethacrylamide-based hydrogels. World Appl. Sci. J., 11, 1336-1341.‏

KARADAĞ, E., & Saraydin, D. U. R. S. U. N. (2002). Swelling of superabsorbent acrylamide/sodium acrylate hydrogels prepared using multifunctional crosslinkers. Turkish Journal of Chemistry, 26(6), 863-876.‏

Kim, S. J., Park, S. J., & Kim, S. I. (2003). Synthesis and characteristics of interpenetrating polymer network hydrogels composed of poly (vinyl alcohol) and poly (N-isopropylacrylamide). Reactive and Functional Polymers, 55(1), 61-67.‏

Ganji, F., Vasheghani, F. S., & VASHEGHANI, F. E. (2010). Theoretical description of hydrogel swelling: a review.‏

Gouda, R., Baishya, H., & Qing, Z. (2017). Application of mathematical models in drug release kinetics of carbidopa and levodopa ER tablets. J. Dev. Drugs, 6(02), 1-8.‏

Vigata, M., Meinert, C., Pahoff, S., Bock, N., & Hutmacher, D. W. (2020). Gelatin methacryloyl hydrogels control the localized delivery of albumin-bound paclitaxel. Polymers, 12(2), 501.

Qureshi, D., Nayak, S. K., Maji, S., Anis, A., Kim, D., & Pal, K. (2019). Environment sensitive hydrogels for drug delivery applications. European Polymer Journal, 120, 109220.‏

Dash, S., Murthy, P. N., Nath, L., & Chowdhury, P. (2010). Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol PHarm, 67(3), 217-223.‏

Korsmeyer, R. W., Gurny, R., Doelker, E., Buri, P., & Peppas, N. A. (1983). Mechanisms of solute release from porous hydropHilic polymers. International journal of pHarmaceutics, 15(1), 25-35.‏

Ritger, P. L., & Peppas, N. A. (1987). A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. Journal of controlled release, 5(1), 37-42.‏

Siepmann, J., & Peppas, N. A. (2012). Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Advanced drug delivery reviews, 64, 163-174.‏

Katime, I., & Mendizábal, E. (2010). Swelling properties of new hydrogels based on the dimethyl amino ethyl acrylate methyl chloride quaternary salt with acrylic acid and 2-methylene butane-1, 4-dioic acid monomers in aqueous solutions. Mater Sci Appl, 1(3), 162-7.‏

Thakur, A., Wanchoo, R. K., & Singh, P. (2011). Structural parameters and swelling behavior of pH sensitive poly (acrylamide-co-acrylic acid) hydrogels. Chemical and Biochemical Engineering Quarterly, 25(2), 181-194.‏

Peppas, N. A., & Khare, A. R. (1993). Preparation, structure and diffusional behavior of hydrogels in controlled release. Advanced drug delivery reviews, 11(1-2), 1-35.

Jovanovic, J., Adnadjevic, B., & Kostic, A. (2010). The effects of the pH value of the swelling medium on the kinetics of the swelling of a poly (acrylic acid) hydrogel. Journal of applied polymer science, 116(2), 1036-1043.‏

Downloads

Published

2023-04-01

How to Cite

I. Hamodi, M., & K. Younis, M. (2023). PREPARATION, CHARACTERIZATION AND RELEASING -SWELLING KINETICS OF MYRRH BASED HYDROGEL. Science Journal of University of Zakho, 11(2), 139–152. https://doi.org/10.25271/sjuoz.2023.11.2.1147

Issue

Section

Science Journal of University of Zakho